TWI774645B - Planarization device for TSV structure - Google Patents
Planarization device for TSV structure Download PDFInfo
- Publication number
- TWI774645B TWI774645B TW105133926A TW105133926A TWI774645B TW I774645 B TWI774645 B TW I774645B TW 105133926 A TW105133926 A TW 105133926A TW 105133926 A TW105133926 A TW 105133926A TW I774645 B TWI774645 B TW I774645B
- Authority
- TW
- Taiwan
- Prior art keywords
- wafer
- metal layer
- layer
- barrier layer
- tsv structure
- Prior art date
Links
- 238000000034 method Methods 0.000 claims abstract description 211
- 230000008569 process Effects 0.000 claims abstract description 208
- 229910052751 metal Inorganic materials 0.000 claims abstract description 122
- 239000002184 metal Substances 0.000 claims abstract description 122
- 230000004888 barrier function Effects 0.000 claims abstract description 107
- 239000000126 substance Substances 0.000 claims abstract description 74
- 238000007517 polishing process Methods 0.000 claims abstract description 14
- 235000012431 wafers Nutrition 0.000 claims description 130
- 238000001039 wet etching Methods 0.000 claims description 61
- 238000004140 cleaning Methods 0.000 claims description 17
- 239000013078 crystal Substances 0.000 claims 1
- 239000000758 substrate Substances 0.000 abstract 4
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 42
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 31
- 229910052802 copper Inorganic materials 0.000 description 31
- 239000010949 copper Substances 0.000 description 31
- 229910021641 deionized water Inorganic materials 0.000 description 22
- 239000000463 material Substances 0.000 description 21
- 238000005530 etching Methods 0.000 description 16
- 238000012546 transfer Methods 0.000 description 15
- 230000000737 periodic effect Effects 0.000 description 14
- 239000003792 electrolyte Substances 0.000 description 10
- 239000000654 additive Substances 0.000 description 9
- 238000005259 measurement Methods 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 7
- 239000008367 deionised water Substances 0.000 description 7
- 229910052719 titanium Inorganic materials 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 229910004298 SiO 2 Inorganic materials 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 6
- 230000008439 repair process Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000009713 electroplating Methods 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000005240 physical vapour deposition Methods 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000000137 annealing Methods 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000005498 polishing Methods 0.000 description 3
- 239000002894 chemical waste Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005389 semiconductor device fabrication Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/7684—Smoothing; Planarisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/32115—Planarisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3205—Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
- H01L21/321—After treatment
- H01L21/3213—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer
- H01L21/32133—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only
- H01L21/32134—Physical or chemical etching of the layers, e.g. to produce a patterned layer from a pre-deposited extensive layer by chemical means only by liquid etching only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76898—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics formed through a semiconductor substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
- H01L23/532—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body characterised by the materials
- H01L23/53204—Conductive materials
- H01L23/53209—Conductive materials based on metals, e.g. alloys, metal silicides
- H01L23/53228—Conductive materials based on metals, e.g. alloys, metal silicides the principal metal being copper
- H01L23/53238—Additional layers associated with copper layers, e.g. adhesion, barrier, cladding layers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Weting (AREA)
- Medicinal Preparation (AREA)
- Shaping Of Tube Ends By Bending Or Straightening (AREA)
- Supporting Of Heads In Record-Carrier Devices (AREA)
Abstract
Description
本發明關於半導體器件製造,尤其關於TSV(矽通孔)結構的平坦化製程和裝置。 The present invention relates to semiconductor device fabrication, and more particularly, to a planarization process and apparatus for TSV (through silicon via) structures.
隨著電子工業的快速發展,對電子產品提出微型、低功耗、高可靠性的要求是必然。基於摩爾定律,積體電路特徵尺寸的減小接近瓶頸。近年來,晶圓級的垂直小型化3D矽通孔(TSV)和2.5D插件封裝集成成為可選擇的解決方案,透過降低設計、製程和成本等突破摩爾定律的瓶頸。相應的,由於銅的高導電性、更好的抗電遷移能力,當製造TSV或插件時,銅被廣泛用於填充通孔。 With the rapid development of the electronic industry, it is inevitable to put forward the requirements of miniature, low power consumption and high reliability for electronic products. Based on Moore's Law, the reduction in feature size of integrated circuits is approaching a bottleneck. In recent years, wafer-level vertical miniaturization of 3D through-silicon vias (TSVs) and 2.5D plug-in package integration has become an alternative solution, breaking through the bottleneck of Moore's Law by reducing design, process and cost. Accordingly, copper is widely used to fill vias when manufacturing TSVs or interposers due to its high conductivity and better resistance to electromigration.
通常,銅金屬層的沈積和平坦化製程包括以下步驟:PVD(物理氣相沈積)、ECP(電鍍)、退火、CMP(化學機械平坦化)。TSV或插件中的通孔通常具有高深寬比,為了無空隙的填充深通孔,厚的銅覆蓋層將透過電鍍製程沈積在晶圓表面。因此,大量的銅層需要透過CMP去除,從而使CMP製程在3D TSV和2.5D插件封裝集成中所占成本最高。例如,在中間通孔製程中,CMP製程佔據了總成本的35%。另一方面,Cu和Si之間CTE(熱膨脹 係數)的不匹配產生應力,表現為晶圓級翹曲。應力進一步誘發矽層的微裂紋、載體的移動變化和器件缺陷。經證實,退火溫度越高、銅覆蓋層越厚將導致晶圓級翹曲越高。在CMP製程中,晶圓將被CMP的研磨頭的下壓力壓平,外部的機械壓力將與晶圓的內部應力衝突,從而導致晶圓裂化或產生缺陷。儘管優化了傳統製程流程並且在退火前銅覆蓋層的厚度達到最小,可以在CMP製程之前成功的消除應力並最小化晶圓翹曲,然而,3D TSV或2.5D插件是否可以快速產業化取決於能否解決降低成本和應力的問題。 Typically, the deposition and planarization process of the copper metal layer includes the following steps: PVD (physical vapor deposition), ECP (electroplating), annealing, CMP (chemical mechanical planarization). Vias in TSVs or interposers typically have high aspect ratios. To fill deep vias without voids, a thick copper capping layer will be deposited on the wafer surface through an electroplating process. Therefore, a large amount of copper layer needs to be removed by CMP, making the CMP process the most expensive in 3D TSV and 2.5D package integration. For example, in the via-in-the-middle process, the CMP process accounts for 35% of the total cost. On the other hand, the CTE (thermal expansion) between Cu and Si A mismatch in coefficients) creates stress that manifests as wafer-level warpage. The stress further induces microcracks in the silicon layer, movement changes of the carrier and device defects. Higher annealing temperatures and thicker copper overlays have been shown to result in higher wafer-level warpage. In the CMP process, the wafer will be flattened by the downward pressure of the CMP grinding head, and the external mechanical pressure will conflict with the internal stress of the wafer, resulting in wafer cracking or defects. Although optimizing the traditional process flow and minimizing the thickness of the copper capping layer before annealing can successfully relieve stress and minimize wafer warpage before the CMP process, however, whether 3D TSV or 2.5D inserts can be rapidly industrialized depends on Can it solve the problem of reducing cost and stress.
在一種具體實施方式中,本發明提出一種TSV結構的平坦化製程。TSV結構包括晶圓、晶圓上的通孔、晶圓上的氧化層、氧化層上及通孔的底部和側壁上的阻擋層、通孔內及阻擋層上的金屬層。TSV結構的平坦化製程包括:採用無應力抛光製程去除晶圓的非凹進區域上的全部金屬層;採用化學濕法蝕刻製程去除非凹進區域上的金屬層殘餘以及阻擋層。 In a specific embodiment, the present invention provides a planarization process for a TSV structure. The TSV structure includes a wafer, a through hole on the wafer, an oxide layer on the wafer, a barrier layer on the oxide layer and on the bottom and sidewalls of the through hole, and a metal layer in the through hole and on the barrier layer. The planarization process of the TSV structure includes: using a stress-free polishing process to remove all metal layers on the non-recessed areas of the wafer; using a chemical wet etching process to remove the metal layer residues and barrier layers on the non-recessed areas.
在另一種具體實施方式中,本發明提出一種TSV結構的平坦化製程。TSV結構包括晶圓、晶圓上的通孔、晶圓上的氧化層、氧化層上及通孔的底部和側壁上的阻擋層、通孔內及阻擋層上的金屬層。TSV結構的平坦化製程包括:採用無應力抛光製程去除晶圓的非凹進區域上 的大部分金屬層,並在非凹進區域上保留一定厚度的金屬層;採用金屬層化學濕法蝕刻製程去除非凹進區域上餘留的金屬層;採用阻擋層化學濕法蝕刻製程去除非凹進區域上的金屬層殘餘和阻擋層。 In another specific embodiment, the present invention provides a planarization process for a TSV structure. The TSV structure includes a wafer, a through hole on the wafer, an oxide layer on the wafer, a barrier layer on the oxide layer and on the bottom and sidewalls of the through hole, and a metal layer in the through hole and on the barrier layer. The planarization process of the TSV structure includes: using a stress-free polishing process to remove the non-recessed areas of the wafer Most of the metal layer, and retain a certain thickness of metal layer on the non-recessed area; use the metal layer chemical wet etching process to remove the remaining metal layer on the non-recessed area; use the barrier layer chemical wet etching process to remove the non-recessed metal layer Metal layer residues and barrier layers on recessed areas.
在另一種具體實施方式中,本發明提出一種TSV結構的平坦化製程。TSV結構包括晶圓、晶圓上的通孔、晶圓上的氧化層、氧化層上及通孔的底部和側壁上的阻擋層、通孔內及阻擋層上的金屬層。TSV結構的平坦化製程包括:採用無應力抛光製程去除晶圓的非凹進區域上的全部金屬層;採用化學機械平坦化製程去除非凹進區域上的金屬層殘餘;採用阻擋層化學濕法蝕刻製程去除非凹進區域上的阻擋層。 In another specific embodiment, the present invention provides a planarization process for a TSV structure. The TSV structure includes a wafer, a through hole on the wafer, an oxide layer on the wafer, a barrier layer on the oxide layer and on the bottom and sidewalls of the through hole, and a metal layer in the through hole and on the barrier layer. The planarization process of the TSV structure includes: using a stress-free polishing process to remove all metal layers on the non-recessed areas of the wafer; using a chemical mechanical planarization process to remove the metal layer residues on the non-recessed areas; using a barrier layer chemical wet method The etching process removes the barrier layer on the non-recessed areas.
在另一種具體實施方式中,本發明提出一種TSV結構的平坦化製程。TSV結構包括晶圓、晶圓上的通孔、晶圓上的氧化層、氧化層上及通孔的底部和側壁上的阻擋層、通孔內及阻擋層上的金屬層。TSV結構的平坦化製程包括:去除晶圓的非凹進區域上的大部分金屬層,並在非凹進區域上保留一定厚度的金屬層;採用化學機械平坦化製程去除非凹進區域上餘留的金屬層;採用阻擋層化學濕法蝕刻製程去除非凹進區域上的金屬層殘餘和阻擋層。 In another specific embodiment, the present invention provides a planarization process for a TSV structure. The TSV structure includes a wafer, a through hole on the wafer, an oxide layer on the wafer, a barrier layer on the oxide layer and on the bottom and sidewalls of the through hole, and a metal layer in the through hole and on the barrier layer. The planarization process of the TSV structure includes: removing most of the metal layer on the non-recessed area of the wafer, and leaving a certain thickness of the metal layer on the non-recessed area; using a chemical mechanical planarization process to remove the remaining metal layer on the non-recessed area The remaining metal layer; the barrier layer chemical wet etching process is used to remove the metal layer residue and the barrier layer on the non-recessed area.
在一種具體實施方式中,本發明提出一種TSV結構的平坦化裝置。TSV結構包括晶圓、晶圓上的通孔、晶圓上的氧化層、氧化層上及通孔的底部和側壁上的阻擋 層、通孔內及阻擋層上的金屬層。TSV結構的平坦化裝置包括至少一個SFP模組、CMP模組和濕法蝕刻模組。SFP模組用於對晶圓進行無應力抛光製程以去除晶圓的非凹進區域上的金屬層。CMP模組用於對晶圓進行化學機械平坦化製程以去除非凹進區域上的金屬層。濕法蝕刻模組用於對晶圓進行化學濕法蝕刻製程以去除非凹進區域上的金屬層和/或阻擋層。 In a specific embodiment, the present invention provides a planarization device of a TSV structure. The TSV structure includes the wafer, vias on the wafer, oxide on the wafer, barriers on the oxide and the bottom and sidewalls of the vias layers, metal layers in vias, and on barrier layers. The planarization device of the TSV structure includes at least one SFP module, a CMP module and a wet etching module. SFP modules are used to perform a stress-free polishing process on wafers to remove metal layers on non-recessed areas of the wafer. The CMP module is used to perform a chemical mechanical planarization process on the wafer to remove the metal layer on the non-recessed areas. The wet etch module is used to perform a chemical wet etch process on wafers to remove metal layers and/or barrier layers on non-recessed areas.
與傳統的使用CMP製程去除非凹進區域上的金屬層和阻擋層的TSV結構的平坦化製程相比,本發明利用無應力抛光製程和化學濕法蝕刻製程實現無應力的去除非凹進區域上的金屬層和阻擋層,只保留通孔內的金屬層和阻擋層,改善了金屬層凹陷的均勻性,減少了平坦化過程中的應力,使晶圓微裂紋的可能性降至最低,並縮短了CMP製程的持續時間,最終降低了平坦化製程的成本以及減少了化學廢液的排放。 Compared with the conventional planarization process of the TSV structure using the CMP process to remove the metal layer and the barrier layer on the non-recessed area, the present invention utilizes the stress-free polishing process and the chemical wet etching process to achieve stress-free removal of the non-recessed area. The metal layer and barrier layer on the top of the plate, only the metal layer and barrier layer in the through hole are retained, which improves the uniformity of the metal layer depression, reduces the stress during the planarization process, and minimizes the possibility of wafer microcracks. And shorten the duration of the CMP process, ultimately reducing the cost of the planarization process and reducing the discharge of chemical waste.
101:晶圓 101: Wafers
102:通孔 102: Through hole
103:氧化層 103: oxide layer
104:阻擋層 104: Barrier
105:金屬層(銅層) 105: Metal layer (copper layer)
1001:EFEM(設備前端模組) 1001: EFEM (Equipment Front End Module)
1003:緩衝位 1003: buffer bit
1005:機械手 1005: Robot
1007:SFP模組 1007:SFP module
1009:CMP模組 1009: CMP Module
1011:量測模組 1011: Measurement module
1013:刷子清洗模組 1013: Brush Cleaning Module
1015:濕法蝕刻模組 1015: Wet Etching Module
1017:清洗模組 1017: Cleaning Module
圖1是TSV結構在實施平坦化製程前的截面圖;圖2是已經平坦化的TSV結構的截面圖;圖3是本發明一種具體實施方式的TSV結構的平坦化製程的流程圖;圖4是本發明另一種具體實施方式的TSV結構的平坦化製程的流程圖; 圖5是本發明另一種具體實施方式的TSV結構的平坦化製程的流程圖;圖6是本發明另一種具體實施方式的TSV結構的平坦化製程的流程圖;圖7是本發明另一種具體實施方式的TSV結構的平坦化製程的流程圖;圖8是本發明另一種具體實施方式的TSV結構的平坦化製程的流程圖;圖9是濕法蝕刻脈衝模式處方的一種具體實施方式;圖10是本發明的TSV結構的平坦化裝置的方塊圖;圖11是一種晶圓傳輸順序的方塊圖;圖12是另一種晶圓傳輸順序的方塊圖。 1 is a cross-sectional view of a TSV structure before a planarization process is implemented; FIG. 2 is a cross-sectional view of a planarized TSV structure; FIG. 3 is a flow chart of the planarization process of the TSV structure according to a specific embodiment of the present invention; FIG. 4 is a flow chart of the planarization process of the TSV structure according to another specific embodiment of the present invention; FIG. 5 is a flow chart of a planarization process of a TSV structure according to another specific embodiment of the present invention; FIG. 6 is a flow chart of a planarization process of a TSV structure according to another specific embodiment of the present invention; FIG. 7 is another specific embodiment of the present invention. The flow chart of the planarization process of the TSV structure according to the embodiment; FIG. 8 is the flow chart of the planarization process of the TSV structure according to another specific embodiment of the present invention; FIG. 9 is a specific embodiment of the wet etching pulse mode prescription; FIG. 10 is a block diagram of the planarization apparatus of the TSV structure of the present invention; FIG. 11 is a block diagram of a wafer transfer sequence; FIG. 12 is a block diagram of another wafer transfer sequence.
形成TSV結構的製程步驟通常包括以下步驟:採用蝕刻在晶圓101上形成通孔102,其中,晶圓101的材料可以選用矽;採用等離子體增強化學氣相沈積(PECVD)在晶圓101上沈積氧化層103,其中,氧化層103的材料可以選用二氧化矽(SiO2);採用物理氣相沈積(PVD)在氧化層103上及通孔102的底部和側壁沈積阻擋層104,其中,阻擋層104的材料可以選用鈦(Ti);採用電鍍法在通孔102內沈積金屬層105,其中,金屬層105的材料可以選用銅。
The process steps of forming the TSV structure generally include the following steps: forming through
由於TSV結構的通孔102通常具有高深寬
比,因此,為了在通孔102內無空隙的沈積金屬層105,採用電鍍法在阻擋層104上沈積厚的金屬覆蓋層105。如圖1所示是在實施平坦化製程前的TSV結構的一種具體實施方式,沈積在非凹進區域上的金屬層105的厚度為2μm-4μm,在通孔102內和非凹進區域上沈積金屬層105後,接下來的步驟是去除沈積在非凹進區域上的金屬層105和阻擋層104。
Due to the TSV structure, the
參考圖3所示,圖3是本發明一種具體實施方式的TSV結構的平坦化製程的流程圖,用於去除非凹進區域上的金屬層105和阻擋層104。該TSV結構的平坦化製程包括以下步驟:
Referring to FIG. 3 , FIG. 3 is a flow chart of a planarization process of a TSV structure according to an embodiment of the present invention, which is used to remove the
步驟301:採用無應力抛光製程(SFP)去除非凹進區域上的全部金屬層105。採用SFP過抛光控制通孔102內的金屬層凹陷。SFP製程為電化學製程,晶圓101上的金屬層105作為陽極,電解液噴頭作為陰極。當陽極和陰極之間施加正電壓時,金屬層105被接觸的電解液溶解、抛光。SFP製程更詳細的描述參見美國專利申請號10/590,460,標題為“Controlling removal rate uniformity of an electropolishing process in integrated circuit fabrication”的專利,申請日為2005年2月23日,這件專利的全部內容都被引用到這裏。
Step 301 : Use a stress-free polishing process (SFP) to remove all the
步驟303:採用金屬層化學濕法蝕刻製程去除非凹進區域上的金屬層殘餘。SFP製程完成後,非凹進區域上的阻擋層104上可能殘留一些金屬層,為了去除非凹
進區域上的阻擋層104上殘留的金屬層,使用金屬層化學濕法蝕刻製程去除金屬層殘餘。金屬層105的材料較佳者為銅,相應的,用於去除銅殘餘的蝕刻劑主要包括雙氧水(H2O2)、添加劑和氫氟酸,氫氟酸的濃度在2%-10%。在濕法蝕刻製程中,蝕刻劑在脈衝模式下被噴到晶圓表面,如圖9所示。一個脈衝模式步驟包括一步蝕刻劑步驟和一步DIW步驟,例如,首先對晶圓進行10秒鐘的化學濕法蝕刻,然後,對晶圓進行5秒鐘的去離子水處理。多個周期性的步驟形成濕法蝕刻製程處方。周期性的濕法蝕刻製程優化了凹進區域的銅凹陷,DIW將會填滿凹進區域並降低該區域的蝕刻速率。晶圓固定在卡盤上並與卡盤一起轉動,有利於濕法蝕刻製程的晶圓轉速為200RPM-600RPM。不同半徑上蝕刻率與轉速有關,轉速越高導致晶圓邊緣去除率越高、晶圓中心去除率越低,相反的,轉速越低導致晶圓邊緣去除率越低、晶圓中心去除率越高。此外,蝕刻劑噴頭在製程過程中是可移動的,蝕刻率受噴頭的掃描速度和掃描區域位置的影響,最佳的掃描速度為40mm/sec-100mm/sec。
Step 303: Use a metal layer chemical wet etching process to remove the metal layer residue on the non-recessed area. After the SFP process is completed, some metal layer may remain on the
步驟305:採用阻擋層化學濕法蝕刻製程去除非凹進區域上的阻擋層104。非凹進區域上的阻擋層104的厚度為0.2μm-0.5μm,非凹進區域上的阻擋層104的厚度取決於製程需求。阻擋層104的材料包含鈦,相應的,用於阻擋層化學濕法蝕刻製程的化學液主要包括氫氟酸(HF)和添加劑,氫氟酸的濃度為0.1%-1%。與銅濕法蝕
刻製程相似,在阻擋層濕法蝕刻製程中,蝕刻劑在脈衝模式下被噴到晶圓表面,如圖9所示。一個脈衝模式步驟包括一步蝕刻劑步驟和一步DIW步驟,例如,首先對晶圓進行10秒鐘的化學濕法蝕刻,然後,對晶圓進行5秒鐘的去離子水處理。多個周期性的步驟形成濕法蝕刻製程處方。周期性的濕法蝕刻製程優化了凹進區域側壁上的阻擋層過刻。DIW將會填滿凹進區域並降低該區域的蝕刻速率。晶圓固定在卡盤上並與卡盤一起轉動,有利於濕法蝕刻製程的晶圓轉速為200RPM-600RPM。不同半徑上蝕刻率與轉速有關,轉速越高導致晶圓邊緣去除率越高、晶圓中心去除率越低,相反的,轉速越低導致晶圓邊緣去除率越低、晶圓中心去除率越高。此外,蝕刻劑噴頭在製程過程中是可移動的,蝕刻率受噴頭的掃描速度和掃描區域位置的影響,最佳的掃描速度為40mm/sec-100mm/sec。
Step 305 : remove the
採用阻擋層化學濕法蝕刻製程去除非凹進區域上的阻擋層104後,阻擋層104下方的氧化層103暴露出來,氧化層103的材料為SiO2,氧化層103的厚度大約為2μm。為了得到平坦的上表面,應用CMP製程去除一部分的氧化層103。通常,去除的氧化層103厚度為0.2μm。CMP製程在氧化層103和銅層105之間具有高選擇比,比如100:1。CMP製程可以修復通孔102內銅層105的粗糙度。
After the
參考圖4所示,圖4是本發明另一種具體實施方式的TSV結構的平坦化製程的流程圖,用於去除非凹進
區域上的金屬層105和阻擋層104。該TSV結構的平坦化製程包括以下步驟:
Referring to FIG. 4, FIG. 4 is a flow chart of a planarization process of a TSV structure according to another specific embodiment of the present invention, for removing
步驟401:採用無應力抛光製程(SFP)去除非凹進區域上的全部金屬層105。採用SFP過抛光控制通孔102內的金屬層凹陷。SFP製程為電化學製程,晶圓101上的金屬層105作為陽極,電解液噴頭作為陰極。當陽極和陰極之間施加正電壓時,金屬層105被接觸的電解液溶解、抛光。SFP製程更詳細的描述參見美國專利申請號10/590,460,標題為“Controlling removal rate uniformity of an electropolishing process in integrated circuit fabrication”的專利,申請日為2005年2月23日,這件專利的全部內容都被引用到這裏。
Step 401 : Use a stress-free polishing process (SFP) to remove all the metal layers 105 on the non-recessed areas. SFP over-polishing is used to control the recess of the metal layer in the through
步驟403:採用阻擋層化學濕法蝕刻製程去除非凹進區域上的金屬層殘餘和阻擋層104。在一種具體實施方式中,金屬層105的材料是銅,阻擋層104的材料包括鈦。用於阻擋層化學濕法蝕刻製程的化學品主要包括氫氟酸(HF)和添加劑,氫氟酸的濃度為0.1%-1%。在阻擋層濕法蝕刻製程中,蝕刻劑在脈衝模式下被噴到晶圓表面,如圖9所示。一個脈衝模式步驟包括一步蝕刻劑步驟和一步DIW步驟,例如,首先對晶圓進行10秒鐘的化學濕法蝕刻,然後,對晶圓進行5秒鐘的去離子水處理。多個周期性的步驟形成濕法蝕刻製程處方。周期性的濕法蝕刻製程優化了凹進區域側壁上的阻擋層過刻。DIW將會填滿凹進區域並降低該區域的蝕刻速率。晶圓固定在卡盤上
並與卡盤一起轉動,有利於濕法蝕刻製程的晶圓轉速為200RPM-600RPM。不同半徑上蝕刻率與轉速有關,轉速越高導致晶圓邊緣去除率越高、晶圓中心去除率越低,相反的,轉速越低導致晶圓邊緣去除率越低、晶圓中心去除率越高。此外,蝕刻劑噴頭在製程過程中是可移動的,蝕刻率受噴頭的掃描速度和掃描區域位置的影響,最佳的掃描速度為40mm/sec-100mm/sec。
Step 403 : Remove the metal layer residue and the
採用阻擋層化學濕法蝕刻製程去除非凹進區域上的金屬層殘餘和阻擋層104後,阻擋層104下方的氧化層103暴露出來,氧化層103的材料為SiO2,氧化層103的厚度大約為2μm。為了得到平坦的上表面,應用CMP製程去除一部分的氧化層103。通常,去除的氧化層103厚度為0.2μm。CMP製程在氧化層103和銅層105之間具有高選擇比,比如100:1。CMP製程可以修復通孔102內銅層105的粗糙度。
After the metal layer residue on the non-recessed area and the
參考圖5所示,圖5是本發明另一種具體實施方式的TSV結構的平坦化製程的流程圖,用於去除非凹進區域上的金屬層105和阻擋層104。該TSV結構的平坦化製程包括以下步驟:
Referring to FIG. 5 , FIG. 5 is a flowchart of a planarization process of a TSV structure according to another embodiment of the present invention, which is used to remove the
步驟501:採用無應力抛光製程去除非凹進區域上的大部分金屬層105,並在非凹進區域上餘留大約0.2μm-0.5μm的金屬層105。SFP製程為電化學製程,晶圓101上的金屬層105作為陽極,電解液噴頭作為陰極。當陽極和陰極之間施加正電壓時,金屬層105被接觸的電解
液溶解、抛光。SFP製程更詳細的描述參見美國專利申請號10/590,460,標題為“Controlling removal rate uniformity of an electropolishing process in integrated circuit fabrication”的專利,申請日為2005年2月23日,這件專利的全部內容都被引用到這裏。
Step 501 : use a stress-free polishing process to remove most of the
步驟503:採用金屬層化學濕法蝕刻製程去除非凹進區域上餘留的金屬層105。透過金屬層化學濕法蝕刻製程的過刻時間長度控制通孔102內的金屬層凹陷。金屬層105的材料為銅,用於銅金屬層化學濕法蝕刻製程的化學品主要包括雙氧水(H2O2)、添加劑和氫氟酸,氫氟酸的濃度在2%-10%。在濕法蝕刻製程中,蝕刻劑在脈衝模式下被噴到晶圓表面,如圖9所示。一個脈衝模式步驟包括一步蝕刻劑步驟和一步DIW步驟,例如,首先對晶圓進行10秒鐘的化學濕法蝕刻,然後,對晶圓進行5秒鐘的去離子水處理。多個周期性的步驟形成濕法蝕刻製程處方。周期性的濕法蝕刻製程優化了凹進區域內的銅凹陷。DIW將會填滿凹進區域並降低該區域的蝕刻速率。晶圓固定在卡盤上並與卡盤一起轉動,有利於濕法蝕刻製程的晶圓轉速為200RPM-600RPM。不同半徑上蝕刻率與轉速有關,轉速越高導致晶圓邊緣去除率越高、晶圓中心去除率越低,相反的,轉速越低導致晶圓邊緣去除率越低、晶圓中心去除率越高。此外,蝕刻劑噴頭在製程過程中是可移動的,蝕刻率受噴頭的掃描速度和掃描區域位置的影響,最佳的掃描速度為40mm/sec-100mm/sec。
Step 503: Use a metal layer chemical wet etching process to remove the
步驟505:採用阻擋層化學濕法蝕刻製程去除非凹進區域上的金屬層殘餘和阻擋層104。阻擋層104的材料包括鈦,用於阻擋層化學濕法蝕刻製程的化學品主要包括氫氟酸(HF)和添加劑,氫氟酸的濃度為0.1%-1%。在阻擋層濕法蝕刻製程中,蝕刻劑在脈衝模式下被噴到晶圓表面,如圖9所示。一個脈衝模式步驟包括一步蝕刻劑步驟和一步DIW步驟,例如,首先對晶圓進行10秒鐘的化學濕法蝕刻,然後,對晶圓進行5秒鐘的去離子水處理。多個周期性的步驟形成濕法蝕刻製程處方。周期性的濕法蝕刻製程優化了凹進區域側壁上的阻擋層過刻。DIW將會填滿凹進區域並降低該區域的蝕刻速率。晶圓固定在卡盤上並與卡盤一起轉動,有利於濕法蝕刻製程的晶圓轉速為200RPM-600RPM。不同半徑上蝕刻率與轉速有關,轉速越高導致晶圓邊緣去除率越高、晶圓中心去除率越低,相反的,轉速越低導致晶圓邊緣去除率越低、晶圓中心去除率越高。此外,蝕刻劑噴頭在製程過程中是可移動的,蝕刻率受噴頭的掃描速度和掃描區域位置的影響,最佳的掃描速度為40mm/sec-100mm/sec。
Step 505 : Remove the metal layer residue and the
採用阻擋層化學濕法蝕刻製程去除非凹進區域上的金屬層殘餘和阻擋層104後,阻擋層104下方的氧化層103暴露出來,氧化層103的材料為SiO2,氧化層103的厚度大約為2μm。為了得到平坦的上表面,較佳的,應用CMP製程去除一部分的氧化層103。通常,去除的氧化層103厚度為0.2μm。CMP製程在氧化層103和銅層
105之間具有高選擇比,比如100:1。CMP製程可以修復通孔102內銅層105的粗糙度。
After the metal layer residue on the non-recessed area and the
參考圖6所示,圖6是本發明另一種具體實施方式的TSV結構的平坦化製程的流程圖,用於去除非凹進區域上的金屬層105和阻擋層104。該TSV結構的平坦化製程包括以下步驟:
Referring to FIG. 6 , FIG. 6 is a flowchart of a planarization process of a TSV structure according to another embodiment of the present invention, which is used to remove the
步驟601:採用無應力抛光製程(SFP)去除非凹進區域上的全部金屬層105。採用SFP過抛光控制通孔102內的金屬層凹陷。SFP製程為電化學製程,晶圓101上的金屬層105作為陽極,電解液噴頭作為陰極。當陽極和陰極之間施加正電壓時,金屬層105被接觸的電解液溶解、抛光。SFP製程更詳細的描述參見美國專利申請號10/590,460,標題為“Controlling removal rate uniformity of an electropolishing process in integrated circuit fabrication”的專利,申請日為2005年2月23日,這件專利的全部內容都被引用到這裏。
Step 601 : Use a stress-free polishing process (SFP) to remove all the metal layers 105 on the non-recessed areas. SFP over-polishing is used to control the recess of the metal layer in the through
步驟603:採用化學機械平坦化(CMP)製程去除非凹進區域上的金屬層殘餘。SFP製程完成後,非凹進區域上的阻擋層104上可能還殘留了一些金屬層。為了去除金屬層殘餘,向晶圓101應用化學機械平坦化製程去除金屬層殘餘。由於採用SFP製程幾乎去除了非凹進區域上全部的金屬層,因此CMP製程的製程時間非常短,節約了成本的同時避免了對晶圓的損傷。
Step 603: Use a chemical mechanical planarization (CMP) process to remove metal layer residues on the non-recessed regions. After the SFP process is completed, some metal layers may remain on the
步驟605:採用阻擋層化學濕法蝕刻製程去除
非凹進區域上的阻擋層104。非凹進區域上的阻擋層104的厚度為0.2μm-0.5μm,非凹進區域上的阻擋層104的厚度取決於製程需求。阻擋層104的材料包含鈦,相應的,用於阻擋層化學濕法蝕刻製程的化學品主要包括氫氟酸(HF)和添加劑,氫氟酸的濃度為0.1%-1%。在阻擋層濕法蝕刻製程中,蝕刻劑在脈衝模式下被噴到晶圓表面,如圖9所示。一個脈衝模式步驟包括一步蝕刻劑步驟和一步DIW步驟,例如,首先對晶圓進行10秒鐘的化學濕法蝕刻,然後,對晶圓進行5秒鐘的去離子水處理。多個周期性的步驟形成濕法蝕刻製程處方。周期性的濕法蝕刻製程優化了凹進區域側壁上的阻擋層過刻。DIW將會填滿凹進區域並降低該區域的蝕刻速率。晶圓固定在卡盤上並與卡盤一起轉動,有利於濕法蝕刻製程的晶圓轉速為200RPM-600RPM。不同半徑上蝕刻率與轉速有關,轉速越高導致晶圓邊緣去除率越高、晶圓中心去除率越低,相反的,轉速越低導致晶圓邊緣去除率越低、晶圓中心去除率越高。此外,蝕刻劑噴頭在製程過程中是可移動的,蝕刻率受噴頭的掃描速度和掃描區域位置的影響,最佳的掃描速度為40mm/sec-100mm/sec。
Step 605 : Remove the
採用阻擋層化學濕法蝕刻製程去除非凹進區域上的阻擋層104後,阻擋層104下方的氧化層103暴露出來,氧化層103的材料為SiO2,氧化層103的厚度大約為2μm。為了得到平坦的上表面,較佳的,應用CMP製程去除一部分的氧化層103。通常,去除的氧化層103厚
度為0.2μm。CMP製程在氧化層103和銅層105之間具有高選擇比,比如100:1。CMP製程可以修復通孔102內銅層105的粗糙度。
After the
參考圖7所示,圖7是本發明另一種具體實施方式的TSV結構的平坦化製程的流程圖,用於去除非凹進區域上的金屬層105和阻擋層104。該TSV結構的平坦化製程包括以下步驟:
Referring to FIG. 7 , FIG. 7 is a flow chart of a planarization process of a TSV structure according to another embodiment of the present invention, which is used to remove the
步驟701:採用無應力抛光製程去除非凹進區域上的大部分金屬層105,並在非凹進區域上餘留大約0.2μm-0.5μm的金屬層105。SFP製程為電化學製程,晶圓101上的金屬層105作為陽極,電解液噴頭作為陰極。當陽極和陰極之間施加正電壓時,金屬層105被接觸的電解液溶解、抛光。SFP製程更詳細的描述參見美國專利申請號10/590,460,標題為“Controlling removal rate uniformity of an electropolishing process in integrated circuit fabrication”的專利,申請日為2005年2月23日,這件專利的全部內容都被引用到這裏。
Step 701 : use a stress-free polishing process to remove most of the
步驟703:採用化學機械平坦化製程去除非凹進區域上餘留的金屬層105。透過化學機械平坦化製程的過刻時間長度控制通孔102內的金屬層凹陷。金屬層105的材料為銅。
Step 703: Use a chemical mechanical planarization process to remove the remaining
步驟705:採用阻擋層化學濕法蝕刻製程去除非凹進區域上的金屬層殘餘和阻擋層104。阻擋層104的材料包括鈦,用於阻擋層化學濕法蝕刻製程的化學品主要
包括氫氟酸(HF)和添加劑,氫氟酸的濃度為0.1%-1%。在阻擋層濕法蝕刻製程中,蝕刻劑在脈衝模式下被噴到晶圓表面,如圖9所示。一個脈衝模式步驟包括一步蝕刻劑步驟和一步DIW步驟,例如,首先對晶圓進行10秒鐘的化學濕法蝕刻,然後,對晶圓進行5秒鐘的去離子水處理。多個周期性的步驟形成濕法蝕刻製程處方。周期性的濕法蝕刻製程優化了凹進區域側壁上的阻擋層過刻。DIW將會填滿凹進區域並降低該區域的蝕刻速率。晶圓固定在卡盤上並與卡盤一起轉動,有利於濕法蝕刻製程的晶圓轉速為200RPM-600RPM。不同半徑上蝕刻率與轉速有關,轉速越高導致晶圓邊緣去除率越高、晶圓中心去除率越低,相反的,轉速越低導致晶圓邊緣去除率越低、晶圓中心去除率越高。此外,蝕刻劑噴頭在製程過程中是可移動的,蝕刻率受噴頭的掃描速度和掃描區域位置的影響,最佳的掃描速度為40mm/sec-100mm/sec。
Step 705 : Remove the metal layer residue and the
採用阻擋層化學濕法蝕刻製程去除非凹進區域上的金屬層殘餘和阻擋層104後,阻擋層104下方的氧化層103暴露出來,氧化層103的材料為SiO2,氧化層103的厚度大約為2μm。為了得到平坦的上表面,較佳的,應用CMP製程去除一部分的氧化層103。通常,去除的氧化層103厚度為0.2μm。CMP製程在氧化層103和銅層105之間具有高選擇比,比如100:1。CMP製程可以修復通孔102內銅層105的粗糙度。
After the metal layer residue on the non-recessed area and the
參考圖8所示,圖8是本發明另一種具體實施
方式的TSV結構的平坦化製程的流程圖,用於去除非凹進區域上的金屬層105和阻擋層104。該TSV結構的平坦化製程包括以下步驟:
Referring to FIG. 8, FIG. 8 is another specific implementation of the present invention
A flow chart of a planarization process of a TSV structure in a manner to remove the
步驟801:採用金屬層化學濕法蝕刻製程去除非凹進區域上的大部分金屬層105,並在非凹進區域上保留大約0.2μm-0.5μm的金屬層。金屬層105的材料較佳者為銅,相應的,用於銅化學濕法蝕刻製程的化學液主要包括雙氧水(H2O2)、添加劑和氫氟酸,氫氟酸的濃度在2%-10%。
Step 801 : use a metal layer chemical wet etching process to remove most of the
步驟803:採用化學機械平坦化製程去除非凹進區域上餘留的金屬層105。透過化學機械平坦化製程的過刻時間長度控制通孔102內的金屬層凹陷。
Step 803 : Use a chemical mechanical planarization process to remove the remaining
步驟805:採用阻擋層化學濕法蝕刻製程去除非凹進區域上的金屬層殘餘和阻擋層104。阻擋層104的材料包括鈦,用於阻擋層化學濕法蝕刻製程的化學液主要包括氫氟酸(HF)和添加劑,氫氟酸的濃度為0.1%-1%。
Step 805 : Remove the metal layer residue and the
採用阻擋層化學濕法蝕刻製程去除非凹進區域上的金屬層殘餘和阻擋層104後,阻擋層104下方的氧化層103暴露出來,氧化層103的材料為SiO2,氧化層103的厚度大約為2μm。為了得到平坦的上表面,較佳的,應用CMP製程去除一部分的氧化層103。通常,去除的氧化層103厚度為0.2μm。CMP製程在氧化層103和銅層105之間具有高選擇比,比如100:1。CMP製程可以修復通孔102內銅層105的粗糙度。
After the metal layer residue on the non-recessed area and the
參考圖10所示,圖10是本發明的TSV結構的平坦化裝置的方塊圖。裝置包括EFEM(設備前端模組)1001、緩衝位元1003、製程機械手1005、疊放的兩個SFP模組1007、CMP模組1009、測量模組1011、刷子清洗模組1013、濕法蝕刻模組1015和清洗模組1017。測量模組1011和刷子清洗模組1013疊放在一起,濕法蝕刻模組1015和清洗模組1017疊放在一起。該裝置還包括電模組、氣模組和管道模組。SFP模組1007用於對晶圓進行無應力抛光製程去除晶圓的非凹進區域上的金屬層。CMP模組1009用於對晶圓進行化學機械平坦化製程去除非凹進區域上的金屬層。濕法蝕刻模組1015用於對晶圓進行化學濕法蝕刻製程去除非凹進區域上的金屬層和/或阻擋層。化學濕法蝕刻製程包括金屬層化學濕法蝕刻製程和/或阻擋層化學濕法蝕刻製程。濕法蝕刻製程採取脈衝模式,每個脈衝模式步驟包括一步蝕刻劑步驟和一步DIW步驟。
Referring to FIG. 10 , FIG. 10 is a block diagram of the planarization apparatus of the TSV structure of the present invention. The device includes EFEM (Equipment Front End Module) 1001,
參考圖11,圖11所示為一種晶圓傳輸順序的方塊圖。設備前端模組機械手從裝載端取走一片未加工的晶圓並將晶圓傳輸到緩衝位1003,製程機械手1005從緩衝位1003取走晶圓並傳輸到測量模組1011以測量金屬層的厚度。測量模組1011測量完金屬層厚度後,製程機械手1005從測量模組1011取走晶圓並傳輸到其中一個SFP模組1007。在SFP模組1007中,對晶圓進行SFP製程去除非凹進區域上全部的金屬層。SFP製程完成後,製程機械手1005從SFP模組1007取走晶圓並傳輸到清洗模組1017
清洗晶圓。然後機械手1005從清洗模組1017取走晶圓並傳輸到CMP模組1009。在CMP模組1009中,對晶圓進行CMP製程去除非凹進區域上的金屬層殘餘。CMP製程完成後,製程機械手1005從CMP模組1009取走晶圓並傳輸到刷子清洗模組1013清洗晶圓。然後製程機械手從刷子清洗模組1013取走晶圓並傳輸到濕法蝕刻模組1015。在濕法蝕刻模組1015,對晶圓進行阻擋層化學濕法蝕刻製程去除非凹進區域上的阻擋層。阻擋層化學濕法蝕刻製程完成後,製程機械手1005從濕法蝕刻模組1015取走晶圓並傳輸到清洗模組1017清洗晶圓,然後製程機械手1005從清洗模組1017取走晶圓並傳輸到緩衝位元1003,最後,設備前端模組機械手從緩衝位元1003取走晶圓並傳輸到晶圓裝載端。
Referring to FIG. 11, a block diagram of a wafer transfer sequence is shown. The equipment front-end module robot takes a raw wafer from the loading end and transfers the wafer to the
如果CMP模組1009沒有測量金屬層厚度的功能,在對晶圓進行CMP製程前,晶圓應當被傳輸到測量模組1011測量SFP製程後的金屬層厚度,如圖12所示。
If the
除了以上晶圓傳輸順序,使用該裝置的其他傳輸順序可以根據不同的製程需求實施。 In addition to the above wafer transfer sequence, other transfer sequences using the device can be implemented according to different process requirements.
綜上所述,與傳統使用CMP製程去除非凹進區域上的金屬層、阻擋層和一部分氧化層的TSV結構平坦化製程相比,本發明利用SFP製程、金屬層化學濕法蝕刻製程和阻擋層化學濕法蝕刻製程無應力的去除非凹進區域上的金屬層105和阻擋層104,僅保留通孔102內的金屬層105和阻擋層104,如圖2所示,改善了TSV結構金屬
層凹陷的均勻性,減少了平坦化製程過程中的應力,使晶圓產生微裂紋的可能性降至最低,縮短了CMP製程持續時間,最終降低了平坦化製程的成本以及減少了化學廢液的排放。
To sum up, compared with the traditional TSV structure planarization process that uses the CMP process to remove the metal layer, the barrier layer and a part of the oxide layer on the non-recessed area, the present invention utilizes the SFP process, the metal layer chemical wet etching process and the barrier process. The layer chemical wet etching process removes the
以上所述,僅是本發明的較佳實施例而已,並非對本發明作任何形式上的限制。任何熟悉本領域的技術人員,在不脫離本發明技術方案範圍情況下,都可利用上述揭示的技術內容對本發明技術方案作出許多可能的變動和修飾,或修改為等同變化的等效實施例。因此,凡是未脫離本發明技術方案的內容,依據本發明的技術實質對以上實施例所做的任何簡單修改、等同變化及修飾,均仍屬於本發明技術方案保護的範圍內。 The above descriptions are only preferred embodiments of the present invention, and do not limit the present invention in any form. Any person skilled in the art, without departing from the scope of the technical solution of the present invention, can make many possible changes and modifications to the technical solution of the present invention by using the technical content disclosed above, or modify the equivalent embodiments of equivalent changes. Therefore, any simple modifications, equivalent changes and modifications made to the above embodiments according to the technical essence of the present invention without departing from the content of the technical solutions of the present invention still fall within the protection scope of the technical solutions of the present invention.
1001:EFEM(設備前端模組) 1001: EFEM (Equipment Front End Module)
1003:緩衝位 1003: buffer bit
1005:機械手 1005: Robot
1007:SFP模組 1007:SFP module
1009:CMP模組 1009: CMP Module
1011:量測模組 1011: Measurement module
1013:刷子清洗模組 1013: Brush Cleaning Module
1015:濕法蝕刻模組 1015: Wet Etching Module
1017:清洗模組 1017: Cleaning Module
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2016/078656 WO2017173613A1 (en) | 2016-04-07 | 2016-04-07 | Tsv structure planarization process and apparatus |
WOPCT/CN2016/078656 | 2016-04-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201737417A TW201737417A (en) | 2017-10-16 |
TWI774645B true TWI774645B (en) | 2022-08-21 |
Family
ID=60000123
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105133926A TWI774645B (en) | 2016-04-07 | 2016-10-20 | Planarization device for TSV structure |
Country Status (5)
Country | Link |
---|---|
KR (1) | KR102599825B1 (en) |
CN (1) | CN108886016B (en) |
SG (1) | SG11201808636TA (en) |
TW (1) | TWI774645B (en) |
WO (1) | WO2017173613A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113059405A (en) * | 2019-12-30 | 2021-07-02 | 盛美半导体设备(上海)股份有限公司 | Processing method and cleaning device for semiconductor structure |
CN114156231B (en) * | 2021-11-04 | 2024-09-20 | 上海至临半导体技术有限公司 | Method for improving structure of wafer bridging wire |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103474395A (en) * | 2013-09-13 | 2013-12-25 | 华进半导体封装先导技术研发中心有限公司 | TSV planarization method |
TW201530693A (en) * | 2013-10-31 | 2015-08-01 | Micron Technology Inc | Devices, systems and methods for manufacturing through-substrate vias and front-side structures |
TW201546329A (en) * | 2009-08-04 | 2015-12-16 | Novellus Systems Inc | Wet etching methods for copper removal and planarization in semiconductor processing |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020192941A1 (en) * | 2001-06-19 | 2002-12-19 | Chia-Lin Hsu | Method for reducing dishing in copper chemical mechanical polishing process |
KR101492467B1 (en) * | 2008-08-20 | 2015-02-11 | 에이씨엠 리서치 (상하이) 인코포레이티드 | Barrier layer removal method and apparatus |
US8415254B2 (en) * | 2008-11-20 | 2013-04-09 | Taiwan Semiconductor Manufacturing Company, Ltd. | Method for removing dummy poly in a gate last process |
CN101882595B (en) * | 2009-05-08 | 2014-07-09 | 盛美半导体设备(上海)有限公司 | Method and device for removing barrier layer |
US8956974B2 (en) * | 2012-06-29 | 2015-02-17 | Micron Technology, Inc. | Devices, systems, and methods related to planarizing semiconductor devices after forming openings |
KR101976727B1 (en) * | 2012-11-27 | 2019-05-10 | 에이씨엠 리서치 (상하이) 인코포레이티드 | Method for forming interconnection structures |
WO2014172835A1 (en) * | 2013-04-22 | 2014-10-30 | Acm Research (Shanghai) Inc | Method and apparatus for through-silicon vias reveal |
CN103474394B (en) * | 2013-09-11 | 2015-07-08 | 华进半导体封装先导技术研发中心有限公司 | TSV process method without metal CMP |
CN105336672A (en) * | 2014-07-24 | 2016-02-17 | 中芯国际集成电路制造(上海)有限公司 | Semiconductor structure and formation method therefor |
CN105390384B (en) * | 2015-10-29 | 2018-05-01 | 上海集成电路研发中心有限公司 | A kind of method that silica is removed during unstressed electrochemical polish copper |
-
2016
- 2016-04-07 WO PCT/CN2016/078656 patent/WO2017173613A1/en active Application Filing
- 2016-04-07 CN CN201680084216.8A patent/CN108886016B/en active Active
- 2016-04-07 SG SG11201808636TA patent/SG11201808636TA/en unknown
- 2016-04-07 KR KR1020187031089A patent/KR102599825B1/en active IP Right Grant
- 2016-10-20 TW TW105133926A patent/TWI774645B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201546329A (en) * | 2009-08-04 | 2015-12-16 | Novellus Systems Inc | Wet etching methods for copper removal and planarization in semiconductor processing |
CN103474395A (en) * | 2013-09-13 | 2013-12-25 | 华进半导体封装先导技术研发中心有限公司 | TSV planarization method |
TW201530693A (en) * | 2013-10-31 | 2015-08-01 | Micron Technology Inc | Devices, systems and methods for manufacturing through-substrate vias and front-side structures |
Also Published As
Publication number | Publication date |
---|---|
KR20180133433A (en) | 2018-12-14 |
CN108886016A (en) | 2018-11-23 |
WO2017173613A1 (en) | 2017-10-12 |
TW201737417A (en) | 2017-10-16 |
SG11201808636TA (en) | 2018-10-30 |
CN108886016B (en) | 2023-03-10 |
KR102599825B1 (en) | 2023-11-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20180182665A1 (en) | Processed Substrate | |
KR100970069B1 (en) | Method of manufacturing a semiconductor device and a semiconductor manufacturing equipment | |
US9607895B2 (en) | Silicon via with amorphous silicon layer and fabrication method thereof | |
US10008391B2 (en) | Method of forming copper interconnects | |
TW569330B (en) | Forming a semiconductor structure using a combination of planarizing methods and electropolishing | |
US20040253809A1 (en) | Forming a semiconductor structure using a combination of planarizing methods and electropolishing | |
JP2006041453A (en) | Method and apparatus for wiring formation | |
TWI774645B (en) | Planarization device for TSV structure | |
JP2007511095A (en) | Integrated circuit interconnect fabrication system and method | |
US7001641B2 (en) | Seed layer treatment | |
US20040248405A1 (en) | Method of and apparatus for manufacturing semiconductor device | |
CN105742229B (en) | The forming method of semiconductor structure | |
KR20030025618A (en) | Method and apparatus for polishing of Cu layer and method for forming of wiring using Cu | |
US6395635B1 (en) | Reduction of tungsten damascene residue | |
CN105742183B (en) | The forming method of semiconductor structure | |
JP2004356117A (en) | Method and apparatus for processing substrate | |
JP2005260032A (en) | Semiconductor device manufacturing method | |
CN112259501B (en) | Optimization method for contact hole chemical mechanical planarization | |
KR100814259B1 (en) | Method of manufacturing semiconductor device | |
TW461843B (en) | Chemical mechanical polish process for copper damascene structure | |
JP2006147655A (en) | Method of manufacturing semiconductor device | |
US20100062693A1 (en) | Two step method and apparatus for polishing metal and other films in semiconductor manufacturing | |
CN105742182B (en) | The forming method of semiconductor structure | |
KR20070054932A (en) | Method of manufacturing semiconductor device | |
CN105742230B (en) | The forming method of semiconductor structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
GD4A | Issue of patent certificate for granted invention patent |