TWI602181B - Memory system and method for operating test device to transmit fail address to memory device - Google Patents
Memory system and method for operating test device to transmit fail address to memory device Download PDFInfo
- Publication number
- TWI602181B TWI602181B TW102106526A TW102106526A TWI602181B TW I602181 B TWI602181 B TW I602181B TW 102106526 A TW102106526 A TW 102106526A TW 102106526 A TW102106526 A TW 102106526A TW I602181 B TWI602181 B TW I602181B
- Authority
- TW
- Taiwan
- Prior art keywords
- address
- memory
- column
- array
- invalidation
- Prior art date
Links
Landscapes
- For Increasing The Reliability Of Semiconductor Memories (AREA)
- Techniques For Improving Reliability Of Storages (AREA)
Description
本發明概念的實施例是關於記憶體系統,且更特定言之,是關於用於藉由使用測試元件來測試包含非揮發性儲存元件的記憶體元件而修復記憶胞的方法與元件,以及包含所述元件的系統。 Embodiments of the inventive concept relate to a memory system, and more particularly to a method and an element for repairing a memory cell by testing a memory element including a non-volatile storage element using a test element, and including The system of components.
半導體晶片是根據半導體製造程序來製造的,且接著使用測試設備以晶圓、晶粒或封裝的形式來測試。經由測試,可挑選出有缺陷的部分或有缺陷的晶片。在半導體晶片的一些記憶胞有缺陷時,藉由修復此等有缺陷的記憶胞來修理所述半導體晶片。 Semiconductor wafers are fabricated in accordance with semiconductor fabrication procedures and then tested in the form of wafers, dies or packages using test equipment. Through testing, defective parts or defective wafers can be selected. The semiconductor wafer is repaired by repairing such defective memory cells when some of the memory cells of the semiconductor wafer are defective.
最近,隨著製造諸如動態隨機存取記憶體(dynamic random access memory;DRAM)的半導體晶片的程序變得愈來愈精細,愈加有可能在製造程序期間發生錯誤。且,即使在初始測試時期未偵測到錯誤,在晶片的操作期間仍可能發生錯誤。為解 決此問題,已開發各種測試方法與元件。 Recently, as programs for manufacturing semiconductor wafers such as dynamic random access memory (DRAM) have become more and more fine, it has become more and more likely that errors occur during the manufacturing process. Moreover, even if no errors are detected during the initial test period, an error may still occur during the operation of the wafer. For solution To solve this problem, various test methods and components have been developed.
本發明概念的實施例提供一種用於可靠地修復記憶胞的測試元件。 Embodiments of the inventive concept provide a test element for reliably repairing a memory cell.
本發明概念的實施例亦提供一種用於可靠地修復記憶胞的測試方法。 Embodiments of the inventive concept also provide a test method for reliably repairing memory cells.
本發明概念的實施例亦提供一種包含用於可靠地修復記憶胞的測試元件與方法的記憶體系統。 Embodiments of the inventive concept also provide a memory system including test elements and methods for reliably repairing memory cells.
本發明概念的技術目標不限於上述揭露內容;對於一般熟習此項技術者而言,基於下文描述,其他目標可變得顯而易見。 The technical objects of the inventive concept are not limited to the above disclosure; other objects may become apparent to those skilled in the art from the following description.
根據本發明概念的態樣,一種記憶體系統包含:記憶體元件,包含具有至少N×M的矩陣陣列結構的非揮發性儲存元件,其中N以及M各自表示等於或大於2的整數;以及測試元件,經組態以測試所述記憶體元件。由所述測試元件偵測的失效位址被傳輸至所述記憶體元件且儲存於所述非揮發性儲存元件中。 According to an aspect of the inventive concept, a memory system includes: a memory element including a non-volatile storage element having a matrix array structure of at least N×M, wherein N and M each represent an integer equal to or greater than 2; and testing An element configured to test the memory element. A failed address detected by the test component is transmitted to the memory component and stored in the non-volatile storage component.
在實施例中,所述測試元件可包含半導體晶片。 In an embodiment, the test element can comprise a semiconductor wafer.
在實施例中,所述半導體晶片可包含錯誤校正碼(error correcting code;ECC)引擎,且所述非揮發性儲存元件可包含具有至少N×M的矩陣陣列結構的反熔絲陣列,其中N以及M各自表示等於或大於2的整數。 In an embodiment, the semiconductor wafer may include an error correcting code (ECC) engine, and the non-volatile storage element may include an antifuse array having a matrix array structure of at least N×M, where N And M each represents an integer equal to or greater than 2.
在實施例中,所述半導體晶片可包含內建式自測試 (built-in self test;BIST)單元,且所述非揮發性儲存元件可包含具有至少N×M的矩陣陣列結構的反熔絲陣列,其中N以及M各自表示等於或大於2的整數。 In an embodiment, the semiconductor wafer may include a built-in self-test A (built-in self test; BIST) unit, and the non-volatile storage element may comprise an antifuse array having a matrix array structure of at least N×M, wherein N and M each represent an integer equal to or greater than two.
在實施例中,所述BIST單元可連接至ECC引擎。 In an embodiment, the BIST unit can be connected to an ECC engine.
在實施例中,所述半導體晶片可包含錯誤校正碼(ECC)引擎或內建式自測試(BIST)單元,以及經組態以儲存所述失效位址的失效位址記憶體。 In an embodiment, the semiconductor wafer can include an error correction code (ECC) engine or a built-in self test (BIST) unit, and a failed address memory configured to store the failed address.
在實施例中,所述失效位址記憶體可由控制單元控制。 In an embodiment, the failed address memory can be controlled by a control unit.
在實施例中,所述半導體晶片可包含錯誤校正碼(ECC)引擎或內建式自測試(BIST)單元、失效位址記憶體、位址輸出單元、控制輸出單元、資料緩衝器以及控制單元。 In an embodiment, the semiconductor wafer may include an error correction code (ECC) engine or a built-in self-test (BIST) unit, a failed address memory, an address output unit, a control output unit, a data buffer, and a control unit. .
在實施例中,所述控制輸出單元可控制所述ECC引擎或所述BIST單元、所述失效位址記憶體、所述資料緩衝器以及所述控制單元的操作。 In an embodiment, the control output unit may control operation of the ECC engine or the BIST unit, the failed address memory, the data buffer, and the control unit.
在實施例中,所述記憶體晶片可包含於記憶體控制器中且連接至中央處理單元(CPU)。 In an embodiment, the memory chip can be included in a memory controller and connected to a central processing unit (CPU).
在實施例中,所述CPU可將測試命令供應至所述記憶體元件。 In an embodiment, the CPU may supply test commands to the memory component.
在實施例中,所述測試命令可包含測試開始命令、測試退出命令或失效位址傳輸命令。 In an embodiment, the test command may include a test start command, a test exit command, or a fail address transfer command.
在實施例中,所述測試元件可包含於測試設備中。 In an embodiment, the test element can be included in a test device.
在實施例中,所述測試設備可包含型樣產生器、探針卡 以及插槽。 In an embodiment, the test device may include a pattern generator, a probe card As well as slots.
在實施例中,所述非揮發性儲存元件可包含具有至少N×M的矩陣陣列結構的反熔絲陣列,其中N以及M各自表示等於或大於2的整數。 In an embodiment, the non-volatile storage element may comprise an anti-fuse array having a matrix array structure of at least N x M, wherein N and M each represent an integer equal to or greater than two.
在實施例中,所述記憶體系統可更包含經組態以儲存所述失效位址的暫時失效位址儲存器。 In an embodiment, the memory system can further include a temporary invalidation address store configured to store the failed address.
在實施例中,所述失效位址可在所述控制單元的控制下儲存於所述反熔絲陣列中。 In an embodiment, the failed address may be stored in the anti-fuse array under the control of the control unit.
在實施例中,所述控制單元可回應於自解碼單元接收的模式啟用信號而啟動。 In an embodiment, the control unit is enabled in response to a mode enable signal received from the decoding unit.
在實施例中,所述控制單元控制將所述失效位址寫入至所述反熔絲陣列或自所述反熔絲陣列讀取所述失效位址,且控制在所述記憶體元件之外傳輸驗證結果。 In an embodiment, the control unit controls writing the failed address to the anti-fuse array or reading the invalid address from the anti-fuse array, and controlling the memory element Outgoing verification results.
在實施例中,所述反熔絲陣列可連接至經組態以儲存所述失效位址的修復位址儲存器,所述修復位址儲存器可連接至經組態以比較所述失效位址與外部位址的比較單元,且所述比較單元可連接至經組態以選擇所述失效位址以及所述外部位址中的一者的多工器。 In an embodiment, the anti-fuse array can be coupled to a repair address store configured to store the failed address, the repair address store being connectable to being configured to compare the fail bit A comparison unit of the address and the external address, and the comparison unit is connectable to a multiplexer configured to select one of the failed address and the external address.
根據本發明概念的態樣,一種記憶體元件包含:暫時失效位址儲存器,用於暫時儲存失效位址;非揮發性儲存元件,具有至少N×M的矩陣陣列結構以儲存所述失效位址,其中N以及M各自表示等於或大於2的整數;以及控制單元,經組態以控制儲 存於所述暫時失效位址儲存器中的所述失效位址至所述非揮發性儲存元件的傳輸。 According to an aspect of the inventive concept, a memory element includes: a temporary fail address storage for temporarily storing a failed address; and a non-volatile storage element having a matrix array structure of at least N×M to store the fail bit Address, where N and M each represent an integer equal to or greater than 2; and a control unit configured to control the storage The transmission of the failed address in the temporary invalidated address store to the non-volatile storage element.
在實施例中,所述非揮發性儲存元件可包含反熔絲陣列。 In an embodiment, the non-volatile storage element can comprise an anti-fuse array.
在實施例中,為了判定是否準確地寫入所述失效位址,所述控制單元可控制自所述反熔絲陣列讀取所述失效位址,且控制在所述記憶體元件之外傳輸驗證結果。 In an embodiment, in order to determine whether the invalidation address is accurately written, the control unit may control reading the invalidation address from the anti-fuse array and control transmission outside the memory component Validation results.
在實施例中,所述控制單元可控制對所述反熔絲陣列進行感測或程式化。 In an embodiment, the control unit can control sensing or stylizing the anti-fuse array.
在實施例中,所述反熔絲陣列可連接至經組態以儲存所述失效位址的修復位址儲存器,所述修復位址儲存器可連接至經組態以比較所述失效位址與外部位址的比較單元,且所述比較單元可連接至經組態以選擇所述失效位址以及所述外部位址中的一者的多工器。 In an embodiment, the anti-fuse array can be coupled to a repair address store configured to store the failed address, the repair address store being connectable to being configured to compare the fail bit A comparison unit of the address and the external address, and the comparison unit is connectable to a multiplexer configured to select one of the failed address and the external address.
在實施例中,所述暫時失效位址儲存器可連接至經組態以接收外部位址的位址緩衝器。 In an embodiment, the temporary invalidation address store is connectable to an address buffer configured to receive an external address.
在實施例中,所述控制單元可根據由解碼單元產生的模式啟用信號而啟動。 In an embodiment, the control unit may be activated in accordance with a mode enable signal generated by the decoding unit.
在實施例中,所述解碼單元可連接至所述位址緩衝器以及經組態以接收控制信號的控制緩衝器。 In an embodiment, the decoding unit is connectable to the address buffer and a control buffer configured to receive a control signal.
根據本發明概念的另一態樣,一種測試元件包含:錯誤校正碼(ECC)電路,經組態以偵測且校正失效位元;失效位址記憶體,經組態以儲存所述失效位元的失效位址;以及控制單元, 經組態以根據測試命令而控制將所述失效位址儲存於所述失效位址記憶體中且傳輸至外部。 In accordance with another aspect of the inventive concept, a test component includes an error correction code (ECC) circuit configured to detect and correct a fail bit; a failed address memory configured to store the fail bit The failure address of the element; and the control unit, The configuration is configured to store the failed address in the failed address memory and transmit to the outside according to a test command.
在實施例中,所述ECC電路可連接至經組態以接收所述失效位元的資料緩衝器。 In an embodiment, the ECC circuit can be coupled to a data buffer configured to receive the failed bit.
在實施例中,所述測試命令可包含測試開始命令、測試退出命令或失效位址傳輸命令。 In an embodiment, the test command may include a test start command, a test exit command, or a fail address transfer command.
在實施例中,所述ECC電路可包含內建式自測試(BIST)單元。 In an embodiment, the ECC circuit can include a built-in self-test (BIST) unit.
在實施例中,所述測試元件可包含於記憶體控制器中且連接至中央處理單元(CPU)。 In an embodiment, the test component can be included in a memory controller and connected to a central processing unit (CPU).
在實施例中,所述測試元件可包含於測試設備中。 In an embodiment, the test element can be included in a test device.
在實施例中,所述測試設備可更包含型樣產生器、探針卡以及插槽。 In an embodiment, the test device may further include a pattern generator, a probe card, and a slot.
根據本發明概念的另一態樣,一種操作測試元件以傳輸失效位址的方法包含:使用錯誤校正碼(ECC)電路來偵測所述失效位址;將所述失效位址儲存於失效位址記憶體中;根據測試命令而進入失效位址傳輸模式;傳輸包含模式暫存器設定命令的傳輸信號;以及傳輸所述失效位址。 According to another aspect of the inventive concept, a method of operating a test component to transmit a failed address includes: using an error correction code (ECC) circuit to detect the failed address; storing the failed address in a fail bit In the address memory; enter the fail address transfer mode according to the test command; transmit a transfer signal including the mode register set command; and transmit the invalid address.
在實施例中,所述失效位址可由ECC引擎或內建式自測試(BIST)單元偵測。 In an embodiment, the invalidation address may be detected by an ECC engine or a built-in self-test (BIST) unit.
在實施例中,所述傳輸信號可更包含寫入命令以及晶片選擇信號。 In an embodiment, the transfer signal may further comprise a write command and a wafer select signal.
在實施例中,所述測試命令可包含指示開始所述失效位址的傳輸的命令或指示結束所述失效位址的所述傳輸的命令,且所述測試命令是自中央處理單元(CPU)給出。 In an embodiment, the test command may include a command to start transmission of the invalidation address or a command to end the transmission of the invalidation address, and the test command is from a central processing unit (CPU) Given.
根據本發明概念的另一態樣,一種操作記憶體元件以將失效位址寫入至所述記憶體元件的方法包含:根據模式暫存器設定命令而接收所述失效位址;將所述失效位址儲存於暫時失效位址儲存器中;以及將所述失效位址儲存於具有至少N×M的矩陣陣列結構的非揮發性儲存元件中,其中N以及M各自表示等於或大於2的整數。 According to another aspect of the inventive concept, a method of operating a memory element to write a failed address to the memory element includes: receiving the failed address according to a mode register setting command; The invalidation address is stored in the temporary invalidation address storage; and the failed address is stored in a non-volatile storage element having a matrix array structure of at least N×M, wherein N and M each represent equal to or greater than 2 Integer.
在實施例中,在所述失效位址儲存於所述非揮發性儲存元件中之前,所述方法可更包含檢查所述非揮發性儲存元件的儲存空間。 In an embodiment, the method may further comprise checking a storage space of the non-volatile storage element before the failed address is stored in the non-volatile storage element.
在實施例中,在所述失效位址儲存於所述非揮發性儲存元件中之後,所述方法可更包含讀取所儲存的失效位址。 In an embodiment, after the invalidation address is stored in the non-volatile storage element, the method may further comprise reading the stored invalidation address.
在實施例中,在讀取所儲存的失效位址之後,所述方法可更包含將指示所讀取的失效位址的狀態的驗證結果串列或並列傳輸至外部。 In an embodiment, after reading the stored invalidation address, the method may further include serially or side-by-side transmitting the verification result indicating the status of the read failed address to the outside.
根據本發明概念的另一態樣,一種操作測試元件以將失效位址傳輸至記憶體元件的方法包含:藉由錯誤校正碼(ECC)電路來偵測所述失效位址;將所述失效位址儲存於失效位址記憶體中;根據測試命令而進入失效位址傳輸模式;傳輸包含模式暫存器設定命令的傳輸信號;傳輸所述失效位址;根據所述模式暫 存器設定命令而接收所述失效位址;將所述失效位址儲存於暫時失效位址儲存器中;以及將所述失效位址儲存於具有至少N×M的矩陣陣列結構的非揮發性儲存元件中,其中N以及M各自表示等於或大於2的整數。 According to another aspect of the inventive concept, a method of operating a test component to transmit a failed address to a memory component includes: detecting the failed address by an error correction code (ECC) circuit; The address is stored in the invalid address memory; the failed address transmission mode is entered according to the test command; the transmission signal including the mode register setting command is transmitted; the invalid address is transmitted; Receiving the invalidation address by a memory setting command; storing the invalidation address in a temporary invalidation address storage; and storing the invalidation address in a non-volatile matrix structure having at least N×M In the storage element, wherein N and M each represent an integer equal to or greater than 2.
在實施例中,在所述失效位址儲存於所述非揮發性儲存元件中之前,所述方法可更包含檢查所述非揮發性儲存元件的儲存空間。 In an embodiment, the method may further comprise checking a storage space of the non-volatile storage element before the failed address is stored in the non-volatile storage element.
根據本發明概念的另一態樣,一種記憶體系統包含:測試元件,經組態以將測試資料提供至記憶體元件;以及所述記憶體元件,包含:內建式自測試(BIST)單元,經組態以測試所述記憶體元件;以及非揮發性儲存元件,具有至少N×M的矩陣陣列結構,其中N以及M各自表示等於或大於2的整數。藉由以所述BIST單元測試所述記憶體元件而產生的失效位址儲存於所述非揮發性儲存元件中。 According to another aspect of the inventive concept, a memory system includes: a test component configured to provide test data to a memory component; and the memory component includes: a built-in self-test (BIST) unit Configuring to test the memory element; and a non-volatile storage element having a matrix array structure of at least N x M, wherein N and M each represent an integer equal to or greater than two. A failure address generated by testing the memory element with the BIST unit is stored in the non-volatile storage element.
在實施例中,所述非揮發性儲存元件可包含具有至少N×M的矩陣陣列結構的反熔絲陣列,其中N以及M各自表示等於或大於2的整數。 In an embodiment, the non-volatile storage element may comprise an anti-fuse array having a matrix array structure of at least N x M, wherein N and M each represent an integer equal to or greater than two.
在實施例中,所述記憶體元件可更包含經組態以暫時儲存所述失效位址的至少兩個失效位址暫存器陣列。 In an embodiment, the memory component can further include at least two failed address register arrays configured to temporarily store the failed address.
在實施例中,所述BIST單元可根據失效旗標而將所述失效位址傳輸至所述至少兩個失效位址儲存暫存器陣列。 In an embodiment, the BIST unit may transmit the failed address to the at least two failed address storage register arrays according to a failure flag.
在實施例中,所述失效產生旗標可替換為預充電命令。 In an embodiment, the failure generation flag may be replaced with a precharge command.
100‧‧‧測試元件 100‧‧‧Test components
110、FAM #1、FAM #2‧‧‧失效位址記憶體 110, FAM #1, FAM #2‧‧‧Failed address memory
120、7101‧‧‧ECC引擎(或BIST單元) 120, 7101‧‧‧ ECC engine (or BIST unit)
130、270、360、4100、8110‧‧‧控制單元 130, 270, 360, 4100, 8110‧‧‧ control unit
140‧‧‧位址輸出緩衝器 140‧‧‧ address output buffer
141‧‧‧失效位址ADD 141‧‧‧Failed address ADD
150‧‧‧控制輸出單元 150‧‧‧Control output unit
151‧‧‧控制信號 151‧‧‧Control signal
160‧‧‧輸入/輸出(I/O)資料緩衝器 160‧‧‧Input/Output (I/O) Data Buffer
200、5000、8200‧‧‧記憶體元件 200, 5000, 8200‧‧‧ memory components
210‧‧‧位址緩衝器 210‧‧‧ address buffer
220‧‧‧控制緩衝器 220‧‧‧Control buffer
230‧‧‧資料緩衝器 230‧‧‧Data buffer
240‧‧‧解碼單元 240‧‧‧Decoding unit
250‧‧‧修復位址暫存器 250‧‧‧Repair address register
251‧‧‧比較單元 251‧‧‧Comparative unit
252‧‧‧多工器 252‧‧‧Multiplexer
260‧‧‧暫時失效位址儲存器 260‧‧‧ Temporary invalid address storage
280、3601~3604、5100、7301、8221‧‧‧反熔絲陣列 280, 3601~3604, 5100, 7301, 8221‧‧‧ anti-fuse array
290、320‧‧‧記憶胞陣列 290, 320‧‧‧ memory cell array
300‧‧‧記憶體元件 300‧‧‧ memory components
310、3801~3804、5400、7302、8222‧‧‧BIST單元 310, 3801~3804, 5400, 7302, 8222‧‧‧BIST units
330‧‧‧暫時失效位址記憶體(FAM) 330‧‧‧ Temporary Failure Address Memory (FAM)
340‧‧‧熔絲陣列 340‧‧‧Fuse Array
350‧‧‧熔絲陣列資訊儲存器 350‧‧‧Fuse Array Information Storage
360、4100‧‧‧控制單元 360, 4100‧‧‧ control unit
1000‧‧‧非揮發性儲存元件 1000‧‧‧Non-volatile storage components
1100‧‧‧熔絲陣列/系統單晶片(SOC) 1100‧‧‧Fuse Array/System Single Chip (SOC)
1110、6510‧‧‧記憶體控制器 1110, 6510‧‧‧ memory controller
1120、6100、7100‧‧‧CPU 1120, 6100, 7100‧‧‧ CPU
1130‧‧‧介面 1130‧‧ interface
1200‧‧‧測試設備 1200‧‧‧Test equipment
1200_1至1200_m‧‧‧位準移位器 1200_1 to 1200_m‧‧‧ position shifter
1210‧‧‧型樣產生器 1210‧‧‧Model generator
1220‧‧‧探針卡 1220‧‧ ‧ Probe Card
1230‧‧‧插槽 1230‧‧‧Slots
1300‧‧‧感測放大器 1300‧‧‧Sense Amplifier
1400‧‧‧第一暫存器單元 1400‧‧‧First register unit
1500‧‧‧第二暫存器單元 1500‧‧‧Second register unit
2200‧‧‧模組 2200‧‧‧ modules
3100‧‧‧介面晶片 3100‧‧‧Interface Wafer
3200、3300、3400、3500‧‧‧記憶體晶片 3200, 3300, 3400, 3500‧‧‧ memory chips
3701~3704‧‧‧微凸塊uBump以及TSV 3701~3704‧‧‧Microbump uBump and TSV
4000、8100‧‧‧控制器 4000, 8100‧‧‧ controller
4200、5200‧‧‧I/O電路 4200, 5200‧‧‧I/O circuits
5300‧‧‧DRAM核心 5300‧‧‧DRAM core
6110、7110‧‧‧系統匯流排 6110, 7110‧‧‧ system bus
6200‧‧‧隨機存取記憶體(RAM) 6200‧‧‧ Random Access Memory (RAM)
6300、7200‧‧‧使用者介面 6300, 7200‧‧‧ user interface
6400‧‧‧數據機 6400‧‧‧Data machine
6500‧‧‧記憶體系統 6500‧‧‧ memory system
6520、7300‧‧‧記憶體 6520, 7300‧‧‧ memory
8120‧‧‧I/O電路 8120‧‧‧I/O circuit
8121‧‧‧控制器傳輸 8121‧‧‧Controller transmission
8122‧‧‧控制器接收器 8122‧‧‧Controller Receiver
8210‧‧‧I/O電路 8210‧‧‧I/O circuit
8211‧‧‧接收器 8211‧‧‧ Receiver
8223‧‧‧DRAM核心 8223‧‧‧DRAM core
8500、8501‧‧‧光學鏈路 8500, 8501‧‧‧ optical link
ACT‧‧‧作用命令 ACT‧‧‧ action order
ADD‧‧‧失效位址 ADD‧‧‧ invalid address
BL1至BLn‧‧‧位元線 BL1 to BLn‧‧‧ bit line
CKE‧‧‧輸入時脈啟用信號 CKE‧‧‧ input clock enable signal
CLK‧‧‧時脈信號 CLK‧‧‧ clock signal
CMD‧‧‧命令線 CMD‧‧‧Command Line
CS‧‧‧晶片選擇信號 CS‧‧‧ wafer selection signal
com、Control‧‧‧測試命令 Com, Control‧‧‧ test command
DQ‧‧‧測試資料 DQ‧‧‧ test data
DQ0至DQ7‧‧‧資料插腳 DQ0 to DQ7‧‧‧ data pins
DQS‧‧‧資料選通 DQS‧‧‧ data strobe
E/O‧‧‧將電信號轉換為光信號的元件 E/O‧‧‧ Components that convert electrical signals into optical signals
EDQ‧‧‧測試資料 EDQ‧‧‧ test data
F-CA‧‧‧行失效位址 F-CA‧‧‧ failure address
F-RA‧‧‧列失效位址 F-RA‧‧‧ column failure address
FAM1至FAMn‧‧‧失效位址陣列 FAM1 to FAMn‧‧‧Failed Address Array
Info_FA、Info_DC‧‧‧資訊 Info_FA, Info_DC‧‧‧ Information
MRS‧‧‧模式暫存器設定命令 MRS‧‧‧ mode register setting command
O/E‧‧‧將光信號轉換為電信號的元件 O/E‧‧‧ Components that convert optical signals into electrical signals
OUT1至OUTn‧‧‧熔絲資料 OUT1 to OUTn‧‧‧Fuse Information
Pre‧‧‧預充電命令 Pre‧‧‧Precharge command
rData、RDQ‧‧‧讀取資料 rData, RDQ‧‧‧ reading data
RD‧‧‧讀取命令 RD‧‧‧ read command
S100、S105、S110、S120、S130、S140、S150、S160、S170、S180、S190、S200、S300、S310、S320、S330、S340、S350、S360、S370‧‧‧操作 S100, S105, S110, S120, S130, S140, S150, S160, S170, S180, S190, S200, S300, S310, S320, S330, S340, S350, S360, S370‧‧‧ operation
wData‧‧‧寫入資料 wData‧‧‧Write data
WL1至WLm‧‧‧字元線 WL1 to WLm‧‧‧ character line
WLP1至WLPm‧‧‧電壓信號 WLP1 to WLPm‧‧‧ voltage signal
WR‧‧‧寫入命令 WR‧‧‧Write command
本發明概念的前述及其他特徵與優點將自如附圖所說明的本發明概念的較佳實施例的更特定描述顯而易見,在所述附圖中,相似參考數字在不同視圖中指相同部分。所述圖式未必按照比例繪製,而是著重於說明本發明概念的原理。 The above and other features and advantages of the present invention are apparent from the detailed description of the preferred embodiments of the invention. The drawings are not necessarily to scale,
圖1至圖4為根據本發明概念的實施例的記憶體系統的概念圖。 1 through 4 are conceptual diagrams of a memory system in accordance with an embodiment of the inventive concept.
圖5說明根據本發明概念的實施例的測試元件的電路方塊圖。 FIG. 5 illustrates a circuit block diagram of a test element in accordance with an embodiment of the inventive concept.
圖6A為說明根據本發明概念的實施例的包含測試元件的系統單晶片(SOC)的圖式。 6A is a diagram illustrating a system single wafer (SOC) including test elements, in accordance with an embodiment of the inventive concept.
圖6B為說明根據本發明概念的實施例的使用測試元件的測試設備的圖式。 FIG. 6B is a diagram illustrating a test apparatus using test elements in accordance with an embodiment of the inventive concept.
圖7說明根據本發明概念的實施例的記憶體元件的電路方塊圖。 FIG. 7 illustrates a circuit block diagram of a memory element in accordance with an embodiment of the inventive concept.
圖8為說明根據本發明概念的實施例的非揮發性儲存元件的圖式。 FIG. 8 is a diagram illustrating a non-volatile storage element in accordance with an embodiment of the inventive concept.
圖9說明根據本發明概念的實施例的模組的結構。 FIG. 9 illustrates the structure of a module in accordance with an embodiment of the inventive concept.
圖10及圖11為說明根據本發明概念的實施例在傳輸失效位址時的時序的時序圖。 10 and 11 are timing diagrams illustrating timings when transmitting a failed address in accordance with an embodiment of the inventive concept.
圖12為說明根據本發明概念的例示性實施例在並列傳輸驗證結果時的時序的時序圖。 FIG. 12 is a timing diagram illustrating timings when side-by-side transmission of verification results, according to an exemplary embodiment of the inventive concept.
圖13為說明根據本發明概念的例示性實施例待並列傳輸的驗證結果的表格。 FIG. 13 is a table illustrating verification results to be performed in parallel transmission according to an exemplary embodiment of the inventive concept.
圖14為說明根據本發明概念的例示性實施例在傳輸驗證結果時的時序的時序圖。 FIG. 14 is a timing diagram illustrating timings when a verification result is transmitted, according to an exemplary embodiment of the inventive concept.
圖15為說明根據本發明概念的例示性實施例待串列傳輸的驗證結果的表格。 15 is a table illustrating verification results of a serial transmission in accordance with an exemplary embodiment of the inventive concept.
圖16及圖17為說明根據本發明概念的例示性實施例的操作測試元件的方法的時序圖。 16 and 17 are timing diagrams illustrating a method of operating a test element in accordance with an illustrative embodiment of the inventive concept.
圖18為根據本發明概念的另一例示性實施例的記憶體系統的概念圖。 FIG. 18 is a conceptual diagram of a memory system in accordance with another exemplary embodiment of the inventive concept.
圖19說明根據本發明概念的另一例示性實施例的記憶體元件的電路方塊圖。 FIG. 19 illustrates a circuit block diagram of a memory element in accordance with another exemplary embodiment of the inventive concept.
圖20及圖21為說明根據本發明概念的例示性實施例的記憶體元件的操作的時序圖。 20 and 21 are timing diagrams illustrating the operation of a memory element in accordance with an illustrative embodiment of the inventive concept.
圖22為說明根據本發明概念的例示性實施例的操作記憶體元件的方法的流程圖。 FIG. 22 is a flowchart illustrating a method of operating a memory element in accordance with an exemplary embodiment of the inventive concept.
圖23為說明根據本發明概念的例示性實施例的記憶體系統的光學鏈路的圖式。 23 is a diagram illustrating an optical link of a memory system in accordance with an illustrative embodiment of the inventive concept.
圖24說明根據本發明概念的例示性實施例的應用了記憶體系統的矽通孔(TSV)堆疊晶片。 24 illustrates a through via (TSV) stacked wafer to which a memory system is applied, in accordance with an illustrative embodiment of the inventive concept.
圖25(a)~圖25(d)說明根據本發明概念的例示性實施例的記憶體系統的各種介面。 25(a) to 25(d) illustrate various interfaces of a memory system in accordance with an exemplary embodiment of the inventive concept.
圖26及圖27為說明根據本發明概念的例示性實施例的記憶體系統的系統連接的圖式。 26 and 27 are diagrams illustrating system connections of a memory system in accordance with an illustrative embodiment of the inventive concept.
現將參看附圖來更全面描述各種實施例,附圖中繪示了一些實施例。然而,本發明概念可按照不同形式來體現且不應解釋為限於本文所闡述的實施例。實情為,提供此等實施例,以使得本揭露將為全面且完整的,且向熟習此項技術者完全傳達本發明概念。在諸圖中,相似參考數字表示相似部件,且為了清楚起見,可能誇示了層以及區域的大小以及相對大小。 Various embodiments will now be described more fully hereinafter with reference to the accompanying drawings. However, the inventive concept may be embodied in different forms and should not be construed as being limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete. In the figures, like reference numerals indicate similar parts, and, for the sake of clarity, the layers and the size and relative sizes of the layers may be exaggerated.
本文中所使用的術語僅是出於描述特定實施例的目的,且不意欲限制本發明概念。如本文中所使用,單數形式「一個」以及「該」意欲亦包含複數形式,除非上下文另有清楚指示。應進一步理解,術語「包括」在用於本說明書中時指定所敍述的特徵、整體、步驟、操作、部件及/或組件的存在,但不排除一或多個其他特徵、整體、步驟、操作、部件、組件及/或其群組的存在或添加。 The terminology used herein is for the purpose of describing particular embodiments, and is not intended to limit the inventive concepts. As used herein, the singular and " It will be further understood that the term "comprising", when used in the specification, is intended to mean the presence of the described features, integers, steps, operations, components and/or components, but does not exclude one or more other features, integers, steps, operations The presence or addition of components, components, and/or groups thereof.
除非另有定義,否則本文中所使用的所有術語(包含技術以及科學術語)具有與一般熟習本發明概念所屬技術者通常所理解者相同的含義。應進一步理解,術語(諸如,常用字典中所 定義的術語)應被解釋為具有與其在相關技術背景中的含義一致的含義,且不應以理想化或過度正式的意義來解釋,除非本文中明確地如此定義。 Unless otherwise defined, all terms (including technical and scientific terms) used herein have the same meaning meaning meaning Should be further understood, terms (such as commonly used in dictionaries) The terminology defined should be interpreted as having a meaning consistent with its meaning in the relevant technical context, and should not be interpreted in an idealized or overly formal sense unless explicitly defined herein.
圖1至圖4為根據本發明概念的實施例的記憶體系統的概念圖。 1 through 4 are conceptual diagrams of a memory system in accordance with an embodiment of the inventive concept.
參看圖1,記憶體系統包含測試元件100以及記憶體元件200。測試元件100傳輸控制信號,所述控制信號包含失效位址、指示操作記憶體元件200的命令以及資料DQ。雖然未繪示,但測試元件100可包含於記憶體控制器或測試設備中。記憶體元件200包含動態隨機存取記憶體(DRAM),其為揮發性記憶體。或者,記憶體元件200可包含非揮發性記憶體,例如,磁阻性RAM(MRAM)、電阻性RAM(RRAM)、相變RAM(PRAM)或「反及」(NAND)快閃記憶體。記憶體元件200包含非揮發性儲存元件,其包含反熔絲陣列。非揮發性儲存元件用於儲存失效位址。非揮發性儲存元件可包含MRAM、RRAM、PRAM、「反及」快閃記憶體或其類似者。記憶體元件200根據控制信號而操作,且將資料DQ傳輸至測試元件100。 Referring to FIG. 1, a memory system includes a test component 100 and a memory component 200. Test component 100 transmits a control signal that includes a failed address, a command indicating operation of memory component 200, and a data DQ. Although not shown, test component 100 can be included in a memory controller or test device. Memory component 200 includes a dynamic random access memory (DRAM), which is a volatile memory. Alternatively, memory component 200 can comprise non-volatile memory, such as magnetoresistive RAM (MRAM), resistive RAM (RRAM), phase change RAM (PRAM), or "NAND" (NAND) flash memory. Memory element 200 includes a non-volatile storage element that includes an array of antifuse. Non-volatile storage elements are used to store the failed address. Non-volatile storage elements can include MRAM, RRAM, PRAM, "reverse" flash memory, or the like. The memory element 200 operates in accordance with a control signal and transmits the data DQ to the test element 100.
參看圖2,測試元件100包含錯誤校正碼(ECC)引擎。ECC引擎自接收自記憶體元件200的資料DQ偵測失效位元以及失效位址,且校正所述失效位元。記憶體元件200包含反熔絲陣列,且儲存自測試元件100接收的失效位址。失效記憶胞是基於所儲存的失效位址來修復。 Referring to Figure 2, test component 100 includes an error correction code (ECC) engine. The ECC engine detects the invalidation bit and the invalidation address from the data DQ received from the memory component 200, and corrects the failed bit. The memory component 200 includes an array of antifuse and stores the failed address received from the test component 100. The failed memory cell is repaired based on the stored invalidation address.
參看圖3,測試元件100包含內建式自測試(BIST)單元。BIST單元對測試元件100或記憶體元件200進行測試。為了測試記憶體元件200,產生測試資料且將測試資料傳輸至記憶體元件200。藉由將測試資料寫入至記憶胞且接著自記憶胞讀取測試資料來偵測失效記憶胞。作為失效記憶胞的位址的失效位址暫時儲存於測試元件100中且接著傳輸至記憶體元件200。所傳輸的失效位址儲存於反熔絲陣列中以便修復失效記憶胞。 Referring to Figure 3, test component 100 includes a built-in self-test (BIST) unit. The BIST unit tests the test component 100 or the memory component 200. To test the memory component 200, test data is generated and the test data is transmitted to the memory component 200. The failed memory cell is detected by writing test data to the memory cell and then reading the test data from the memory cell. The invalidation address, which is the address of the failed memory cell, is temporarily stored in the test component 100 and then transmitted to the memory component 200. The transmitted failed address is stored in the anti-fuse array to repair the failed memory cell.
參看圖4,測試元件100包含BIST單元以及ECC引擎。記憶體元件200是使用BIST單元來測試,且失效位址儲存於記憶體元件200中所包含的反熔絲陣列中。作為在記憶體元件200的操作期間發生的失效位元的位址的失效位址是使用ECC引擎來偵測,且儲存於記憶體元件200的反熔絲陣列中。在記憶體元件200不操作時,記憶體元件200可根據自中央處理單元(CPU)給出的測試命令使用BIST單元來測試。在記憶體元件200操作時,失效位址可使用ECC引擎來偵測。 Referring to Figure 4, test component 100 includes a BIST unit and an ECC engine. The memory component 200 is tested using a BIST cell and the failed address is stored in an antifuse array included in the memory component 200. The invalidation address, which is the address of the failed bit that occurred during operation of the memory component 200, is detected using the ECC engine and stored in the antifuse array of the memory component 200. When the memory element 200 is not operating, the memory element 200 can be tested using a BIST unit based on test commands given from a central processing unit (CPU). When the memory component 200 is operating, the failed address can be detected using the ECC engine.
圖5說明根據本發明概念的實施例的測試元件100的電路方塊圖。 FIG. 5 illustrates a circuit block diagram of test component 100 in accordance with an embodiment of the present inventive concepts.
參看圖5,測試元件100包含失效位址記憶體110、ECC引擎(或BIST單元)120、控制單元130、位址輸出緩衝器140、控制輸出單元150以及輸入/輸出(I/O)資料緩衝器160。失效位址記憶體110儲存由ECC引擎(或BIST單元)120偵測到的失效位址ADD 141。失效位址記憶體110可被實施為暫存器、靜態隨 機存取記憶體(SRAM)或非揮發性記憶體。位址輸出緩衝器140連接至失效位址記憶體110,且將失效位址ADD 141傳輸至記憶體元件200。控制輸出單元150將控制信號151傳輸至記憶體元件200,控制信號151包含讀取命令、寫入命令、預充電命令、模式暫存器設定命令及其類似者。控制輸出單元150連接至控制單元130且由控制單元130控制。I/O資料緩衝器160由控制單元130控制,且接收或傳輸輸入/輸出(I/O)資料。I/O資料可僅包含用於測試記憶體元件200的測試資料。自記憶體元件200接收的資料經由I/O資料緩衝器160而傳輸至ECC引擎(或BIST單元)120。控制單元130連接至ECC引擎(或BIST單元)120、失效位址記憶體110、位址輸出單元140、控制輸出單元150以及I/O資料緩衝器160。控制單元130自CPU接收測試命令。測試命令可包含測試開始命令、測試退出命令、指示開始失效位址ADD的傳輸的命令以及指示結束失效位址ADD的傳輸的命令。由ECC引擎(或BIST單元)120偵測到的失效位址ADD 141根據所接收的測試命令而受控制,以儲存於失效位址記憶體110中。且,失效位址ADD 141以及控制信號151的傳輸是使用位址輸出單元140以及控制輸出單元150來控制的。 Referring to FIG. 5, the test component 100 includes a failed address memory 110, an ECC engine (or BIST unit) 120, a control unit 130, an address output buffer 140, a control output unit 150, and an input/output (I/O) data buffer. 160. The failed address memory 110 stores the invalidated address ADD 141 detected by the ECC engine (or BIST unit) 120. The failed address memory 110 can be implemented as a scratchpad, statically following Machine access memory (SRAM) or non-volatile memory. The address output buffer 140 is coupled to the failed address memory 110 and transmits the failed address ADD 141 to the memory element 200. The control output unit 150 transmits the control signal 151 to the memory element 200, which includes a read command, a write command, a precharge command, a mode register setting command, and the like. The control output unit 150 is connected to and controlled by the control unit 130. The I/O data buffer 160 is controlled by the control unit 130 and receives or transmits input/output (I/O) data. The I/O data may only contain test data for testing the memory component 200. The data received from the memory component 200 is transmitted to the ECC engine (or BIST unit) 120 via the I/O material buffer 160. The control unit 130 is connected to the ECC engine (or BIST unit) 120, the failed address memory 110, the address output unit 140, the control output unit 150, and the I/O data buffer 160. The control unit 130 receives a test command from the CPU. The test command may include a test start command, a test exit command, a command indicating the start of transmission of the invalidation address ADD, and a command indicating termination of transmission of the invalidation address ADD. The invalidation address ADD 141 detected by the ECC engine (or BIST unit) 120 is controlled in accordance with the received test command for storage in the failed address memory 110. Moreover, the transmission of the fail address ADD 141 and the control signal 151 is controlled using the address output unit 140 and the control output unit 150.
圖6A為說明根據本發明概念的實施例的包含測試元件100的系統單晶片(SOC)1100的圖式。 FIG. 6A is a diagram illustrating a system single wafer (SOC) 1100 including test elements 100, in accordance with an embodiment of the present inventive concepts.
參看圖6A,SOC 1100包含CPU 1120、記憶體控制器1110以及介面1130。記憶體控制器1110包含測試元件100。測試元件 100包含ECC引擎(或BIST單元)120、失效位址記憶體(FAM)110、控制單元等,其為圖5所說明的測試元件100的部件。記憶體控制器1110連接至CPU 1120以自CPU 1120接收測試命令Com。測試命令Com可包含測試開始命令、測試退出命令、指示開始失效位址的傳輸的命令以及指示結束失效位址的傳輸的命令。失效位址、控制信號以及資料經由介面1130而傳輸至記憶體元件200。 Referring to FIG. 6A, the SOC 1100 includes a CPU 1120, a memory controller 1110, and an interface 1130. Memory controller 1110 includes test component 100. Test component 100 includes an ECC engine (or BIST unit) 120, a failing address memory (FAM) 110, a control unit, etc., which are components of the test component 100 illustrated in FIG. The memory controller 1110 is connected to the CPU 1120 to receive the test command Com from the CPU 1120. The test command Com may include a test start command, a test exit command, a command indicating the start of transmission of the invalidation address, and a command indicating termination of transmission of the invalidation address. The invalidation address, control signals, and data are transmitted to the memory component 200 via the interface 1130.
圖6B為說明根據本發明概念的實施例的使用測試元件100的測試設備1200的圖式。 FIG. 6B is a diagram illustrating a test apparatus 1200 using test elements 100 in accordance with an embodiment of the present inventive concepts.
參看圖6B,測試設備1200包含測試元件100、型樣產生器1210、探針卡1220以及插槽1230。型樣產生器1210產生各種測試資料來測試記憶體元件200。探針卡1220直接經由探針而接觸記憶體元件200的測試襯墊(test pad),以便傳輸測試資料。插槽1230在記憶體元件200的測試期間固定記憶體元件200。 Referring to FIG. 6B, test device 1200 includes test component 100, pattern generator 1210, probe card 1220, and slot 1230. Pattern generator 1210 generates various test data to test memory component 200. The probe card 1220 directly contacts the test pad of the memory component 200 via the probe to transmit test data. Slot 1230 secures memory element 200 during testing of memory element 200.
圖7說明根據本發明概念的實施例的記憶體元件200的電路方塊圖。 FIG. 7 illustrates a circuit block diagram of a memory element 200 in accordance with an embodiment of the present inventive concepts.
參看圖7,記憶體元件200包含位址緩衝器210、控制緩衝器220、資料緩衝器230、解碼單元240、修復位址暫存器250、比較單元251、多工器(MUX)252、暫時失效位址儲存器260、控制單元270、反熔絲陣列280(其為非揮發性儲存元件)以及記憶胞陣列290。 Referring to FIG. 7, the memory component 200 includes an address buffer 210, a control buffer 220, a data buffer 230, a decoding unit 240, a repair address register 250, a comparison unit 251, a multiplexer (MUX) 252, and a temporary Failed address store 260, control unit 270, antifuse array 280 (which is a non-volatile storage element), and memory cell array 290.
失效位址是經由位址緩衝器210而接收且暫時儲存於暫 時失效位址儲存器260中。暫時失效位址儲存器260可被實施為暫存器陣列、SRAM或非揮發性記憶體。解碼單元240經由控制緩衝器220而接收控制信號,執行解碼且產生模式啟用信號。控制信號包含讀取命令、寫入命令、預充電命令、模式暫存器設定信號及其類似者。控制單元270根據模式啟用信號而啟動,且將失效位址儲存於反熔絲陣列280(其為非揮發性記憶體儲存元件)中。控制單元270感測所儲存的失效位址以驗證所述失效位址是否被正確地程式化。程式化的結果(驗證結果)經由資料輸出插腳而傳輸至測試元件100。反熔絲陣列280(其為非揮發性儲存元件)連接至修復位址暫存器250,而修復位址暫存器250經組態以儲存失效位址。修復位址暫存器250連接至比較單元251,而比較單元251經組態以比較失效位址與外部位址。比較單元251連接至多工器(MUX)252,而多工器252經組態以選擇失效位址以及外部位址中的一者。經由I/O資料緩衝器230而接收的資料可用作用於選擇記憶體模組上的晶片的晶片選擇信號(組件指定)。 The invalidation address is received via the address buffer 210 and temporarily stored in the temporary The time expires in the address store 260. Temporary invalidation address store 260 can be implemented as a scratchpad array, SRAM, or non-volatile memory. The decoding unit 240 receives the control signal via the control buffer 220, performs decoding, and generates a mode enable signal. The control signals include read commands, write commands, precharge commands, mode register settings signals, and the like. Control unit 270 is activated in response to the mode enable signal and stores the failed address in anti-fuse array 280, which is a non-volatile memory storage element. Control unit 270 senses the stored invalidation address to verify that the failed address is correctly programmed. The stylized result (verification result) is transmitted to the test element 100 via the data output pin. The anti-fuse array 280, which is a non-volatile storage element, is coupled to the repair address register 250, and the repair address register 250 is configured to store the failed address. Repair address register 250 is coupled to comparison unit 251, and comparison unit 251 is configured to compare the failed address with the external address. Comparison unit 251 is coupled to multiplexer (MUX) 252, and multiplexer 252 is configured to select one of a failed address and an external address. The material received via the I/O data buffer 230 can be used as a wafer selection signal (component designation) for selecting a wafer on the memory module.
圖8為說明根據本發明概念的實施例的非揮發性儲存元件1000的圖式。 FIG. 8 is a diagram illustrating a non-volatile storage element 1000 in accordance with an embodiment of the inventive concept.
參看圖8,非揮發性儲存元件1000包含:熔絲陣列1100a,熔絲陣列1100a上安置了多個熔絲1110a;位準移位器1200_1至1200_m,其產生高電壓以改變多個熔絲1110a的電阻狀態;以及感測放大器1300,其感測/放大儲存於熔絲陣列1100a中的資訊。非揮發性儲存元件1000更包含第一暫存器單元1400以 及第二暫存器單元1500以儲存在讀取儲存於反熔絲陣列1100a中的資訊時產生的熔絲資料。第一暫存器單元1400以及第二暫存器單元1500中的每一者可被實施為包含多個暫存器的移位暫存器。 Referring to FIG. 8, the non-volatile storage element 1000 includes: a fuse array 1100a on which a plurality of fuses 1110a are disposed; level shifters 1200_1 to 1200_m which generate a high voltage to change a plurality of fuses 1110a And a sense amplifier 1300 that senses/amplifies information stored in the fuse array 1100a. The non-volatile storage element 1000 further includes a first register unit 1400 to And the second register unit 1500 stores the fuse data generated when reading the information stored in the anti-fuse array 1100a. Each of the first register unit 1400 and the second register unit 1500 can be implemented as a shift register including a plurality of registers.
熔絲陣列1100a包含多個熔絲1110a,熔絲1110a中儲存了資訊。熔絲陣列1100a可包含雷射熔絲(其連接是經由雷射輻射來控制)或可包含電熔絲(其連接是根據電信號來控制)。另外,熔絲陣列1100a可包含反熔絲,其狀態根據電信號(例如,高電壓信號)而自高電阻狀態改變至低電阻狀態。熔絲陣列1100a可包含上述各種類型的熔絲中的任何類型的熔絲。在以下實施例中,假設熔絲陣列1100a為包含反熔絲的反熔絲陣列。且,下文中,儲存於反熔絲中的資訊或自反熔絲讀取的資料將稱為熔絲資料。 The fuse array 1100a includes a plurality of fuses 1110a in which information is stored. The fuse array 1100a may comprise a laser fuse (whose connection is controlled via laser radiation) or may comprise an electrical fuse (whose connection is controlled according to electrical signals). In addition, the fuse array 1100a may include an anti-fuse whose state changes from a high resistance state to a low resistance state in accordance with an electrical signal (eg, a high voltage signal). The fuse array 1100a may include any of the various types of fuses described above. In the following embodiments, it is assumed that the fuse array 1100a is an antifuse array including an antifuse. Also, hereinafter, the information stored in the anti-fuse or the data read from the anti-fuse will be referred to as fuse data.
反熔絲陣列1100a具有一種陣列結構,在所述陣列結構中,多個熔絲1110a安置於多個列以及多個行的交叉處。舉例而言,若反熔絲陣列1100a包含m個列(row)以及n個行(column),則反熔絲陣列1100a包含m×n個反熔絲1110a。反熔絲陣列1100a包含m條字元線WL1至WLm以及n條位元線BL1至BLn,所述m條字元線WL1至WLm用於存取安置於m個列中的反熔絲,且所述n條位元線BL1至BLn對應於n個行而安置以便遞送自多個反熔絲1110a讀取的資訊。 The antifuse array 1100a has an array structure in which a plurality of fuses 1110a are disposed at intersections of a plurality of columns and a plurality of rows. For example, if the antifuse array 1100a includes m rows and n columns, the antifuse array 1100a includes m×n antifuse 1110a. The antifuse array 1100a includes m word lines WL1 to WLm and n bit lines BL1 to BLn for accessing antifuse disposed in m columns, and The n bit lines BL1 to BLn are disposed corresponding to n rows to deliver information read from the plurality of antifuse 1110a.
反熔絲陣列1100a儲存與非揮發性儲存元件1000的操作相關的各種資訊。舉例而言,反熔絲陣列1100a可儲存用於設定 非揮發性儲存元件1000的操作環境的多段設定資訊。所述多段設定資訊是藉由將自位準移位器1200_1至1200_m提供的電壓信號WLP1至WLPm供應至反熔絲陣列1100a來改變多個反熔絲1110a的狀態而程式化。不同於一般熔絲電路(例如,雷射熔絲電路或電熔絲電路),資訊是藉由將多個反熔絲1110a自高電阻狀態程式化至低電阻狀態而儲存於多個反熔絲1110a中。多個反熔絲1110a可具有介電質層安置於兩個導電層之間的結構(亦即,電容器結構)。多個反熔絲1110a是藉由在兩個導電層之間施加高電壓來使介電質層崩潰而程式化。 The anti-fuse array 1100a stores various information related to the operation of the non-volatile storage element 1000. For example, the anti-fuse array 1100a can be stored for setting Multi-segment setting information for the operating environment of the non-volatile storage element 1000. The multi-segment setting information is programmed by changing the states of the plurality of anti-fuse 1110a by supplying the voltage signals WLP1 to WLPm supplied from the level shifters 1200_1 to 1200_m to the anti-fuse array 1100a. Unlike a general fuse circuit (for example, a laser fuse circuit or an electric fuse circuit), information is stored in a plurality of antifuse by staging a plurality of antifuse 1110a from a high resistance state to a low resistance state. In 1110a. The plurality of antifuse 1110a may have a structure in which a dielectric layer is disposed between two conductive layers (ie, a capacitor structure). The plurality of antifuse 1110a are programmed to collapse the dielectric layer by applying a high voltage between the two conductive layers.
在對反熔絲陣列1100a進行程式化之後,對反熔絲陣列1100a執行讀取操作,同時開始非揮發性儲存元件1000的驅動。可與反熔絲陣列1100a的驅動同時或在非揮發性儲存元件1000的驅動之後的預定設定時間,對反熔絲陣列1100a執行讀取操作。在反熔絲陣列1100a中,經由字元線WL1至WLm而提供字元線選擇信號,且將儲存於選定的反熔絲1110a中的資訊經由位元線BL1至BLn而提供至感測放大器1300。根據陣列結構的特性,可藉由驅動字元線WL1至WLm以及位元線BL1至BLn來隨機存取儲存於反熔絲陣列1100a中的資訊。 After the antifuse array 1100a is programmed, a read operation is performed on the antifuse array 1100a while starting the driving of the non-volatile storage element 1000. The read operation can be performed on the anti-fuse array 1100a simultaneously with the driving of the anti-fuse array 1100a or at a predetermined set time after the driving of the non-volatile storage element 1000. In the antifuse array 1100a, a word line selection signal is supplied via the word lines WL1 to WLm, and information stored in the selected antifuse 1110a is supplied to the sense amplifier 1300 via the bit lines BL1 to BLn. . According to the characteristics of the array structure, the information stored in the anti-fuse array 1100a can be randomly accessed by driving the word lines WL1 to WLm and the bit lines BL1 to BLn.
舉例而言,因為依序驅動字元線WL1至WLm,所以在反熔絲陣列1100a中自第一列至第m列依序存取多個反熔絲1110a。自多個反熔絲1110a依序存取的資訊被提供至感測放大器1300。感測放大器1300包含一或多個感測放大器電路。舉例而言, 在反熔絲陣列1100a包含n個行時,感測放大器1300包含對應於n個行的n個感測放大器電路。n個感測放大器電路分別連接至n條位元線BL1至BLn。圖8說明兩個感測放大器電路對應於n條位元線BL1至BLn中的每一者而安置的狀況。舉例而言,奇數感測放大器電路以及偶數感測放大器電路對應於第一位元線BL1而安置。奇數感測放大器電路感測/放大且輸出儲存於連接至奇數字元線WL1、WL3、WL5、……的反熔絲1110a中的資訊。偶數感測放大器電路感測/放大且輸出儲存於連接至偶數字元線WL2、WL4、WL6、……的反熔絲1110a中的資訊。然而,本發明概念不限於此,且感測放大器電路可按照各種形狀中的任一者而配置。舉例而言,僅一個感測放大器電路可對應於一條位元線而配置,或三個或三個以上感測放大器電路可對應於一條位元線而配置。 For example, since the word lines WL1 to WLm are sequentially driven, the plurality of antifuse 1110a are sequentially accessed from the first column to the mth column in the antifuse array 1100a. Information sequentially accessed from the plurality of antifuse 1110a is provided to the sense amplifier 1300. Sense amplifier 1300 includes one or more sense amplifier circuits. For example, When antifuse array 1100a includes n rows, sense amplifier 1300 includes n sense amplifier circuits corresponding to n rows. The n sense amplifier circuits are connected to n bit lines BL1 to BLn, respectively. FIG. 8 illustrates a state in which two sense amplifier circuits are disposed corresponding to each of the n bit lines BL1 to BLn. For example, the odd sense amplifier circuit and the even sense amplifier circuit are disposed corresponding to the first bit line BL1. The odd sense amplifier circuit senses/amplifies and outputs information stored in the antifuse 1110a connected to the odd digital line WL1, WL3, WL5, . The even sense amplifier circuit senses/amplifies and outputs information stored in the antifuse 1110a connected to the even digital line WL2, WL4, WL6, . However, the inventive concept is not limited thereto, and the sense amplifier circuit may be configured in any of various shapes. For example, only one sense amplifier circuit may be configured corresponding to one bit line, or three or more sense amplifier circuits may be configured corresponding to one bit line.
感測放大器1300感測/放大且輸出自反熔絲陣列1100a存取的資訊。所感測/所放大的資訊為熔絲資料OUT1至OUTn,其實際上用於設定非揮發性儲存元件1000的操作環境。如上所述,由於圖8說明兩個感測放大器電路對應於每一位元線而安置的狀況,因此,實際上一段熔絲資料(例如,第一熔絲資料OUT1)可包含奇數段熔絲資料以及偶數段熔絲資料。 The sense amplifier 1300 senses/amplifies and outputs information accessed from the anti-fuse array 1100a. The sensed/amplified information is fuse data OUT1 to OUTn, which are actually used to set the operating environment of the non-volatile storage element 1000. As described above, since FIG. 8 illustrates a situation in which two sense amplifier circuits are disposed corresponding to each bit line, actually, a piece of fuse data (for example, the first fuse data OUT1) may include odd-numbered fuse data and Even-numbered fuse data.
自感測放大器1300輸出的熔絲資料OUT1至OUTn被提供至第一暫存器單元1400。第一暫存器單元1400可被實施為移位暫存器,在所述移位暫存器中,多個暫存器串聯連接以依序遞送 信號。且,包含於第一暫存器單元1400中的暫存器的數目小於包含於反熔絲陣列1100a中的多個反熔絲1110a的數目。且,包含於第一暫存器單元1400中的暫存器的數目可基於包含於反熔絲陣列1100a中的行的數目來判定。舉例而言,在反熔絲陣列1100a包含n個行時,第一暫存器單元1400可包含n個暫存器。另外,如上所述,在兩個感測放大器電路對應於每一位元線而配置時,第一暫存器單元1400可包含2×n個暫存器。 The fuse data OUT1 to OUTn output from the sense amplifier 1300 are supplied to the first register unit 1400. The first register unit 1400 can be implemented as a shift register in which a plurality of registers are connected in series for sequential delivery signal. Moreover, the number of registers included in the first register unit 1400 is less than the number of the plurality of anti-fuse 1110a included in the anti-fuse array 1100a. Moreover, the number of registers included in the first register unit 1400 can be determined based on the number of rows included in the anti-fuse array 1100a. For example, when the anti-fuse array 1100a includes n rows, the first register unit 1400 can include n registers. In addition, as described above, when two sense amplifier circuits are configured corresponding to each bit line, the first register unit 1400 may include 2×n registers.
第一暫存器單元1400以反熔絲陣列1100a中的列為單位來接收熔絲資料OUT1至OUTn。舉例而言,在自反熔絲陣列1100a中的列選擇一個列時,將儲存於連接至選定的列的字元線的反熔絲1110a中的熔絲資料OUT1至OUTn並列提供至第一暫存器單元1400。第一暫存器單元1400藉由以位元為單位來移位所提供的熔絲資料OUT1至OUTn而將熔絲資料OUT1至OUTn提供至第二暫存器單元1500。第二暫存器單元1500可被實施為移位暫存器,在所述移位暫存器中,多個暫存器串聯連接以依序遞送信號。包含於第二暫存器單元1500中的暫存器的數目可等於包含於反熔絲陣列1100a中的多個反熔絲1110a的數目。儲存於第二暫存器單元1500中的熔絲資料OUT1至OUTn可用作用於設定非揮發性儲存元件1000的操作環境的資訊。舉例而言,儲存於第二暫存器單元1500中的熔絲資料OUT1至OUTn中的一些可用作用於將包含於非揮發性儲存元件1000中的記憶胞(未繪示)替換為冗餘記憶胞的資訊Info_FA,且熔絲資料OUT1至OUTn中的一些可用作用 於調整產生於非揮發性儲存元件1000中的電壓的修整資訊Info_DC。 The first register unit 1400 receives the fuse data OUT1 to OUTn in units of columns in the anti-fuse array 1100a. For example, when one column is selected from the columns in the anti-fuse array 1100a, the fuse data OUT1 to OUTn stored in the anti-fuse 1110a connected to the word line of the selected column are juxtaposed to the first temporary The memory unit 1400. The first register unit 1400 supplies the fuse data OUT1 to OUTn to the second register unit 1500 by shifting the supplied fuse data OUT1 to OUTn in units of bits. The second register unit 1500 can be implemented as a shift register in which a plurality of registers are connected in series to sequentially deliver signals. The number of registers included in the second register unit 1500 can be equal to the number of the plurality of antifuse 1110a included in the antifuse array 1100a. The fuse data OUT1 to OUTn stored in the second register unit 1500 can be used as information for setting the operating environment of the non-volatile storage element 1000. For example, some of the fuse data OUT1 to OUTn stored in the second register unit 1500 can be used to replace the memory cells (not shown) included in the non-volatile storage element 1000 with redundant memories. Cell information Info_FA, and some of the fuse data OUT1 to OUTn are available The trimming information Info_DC for adjusting the voltage generated in the non-volatile storage element 1000.
為了儲存來自反熔絲陣列1100a的熔絲資料OUT1至OUTn,需要如下暫存器:連接至感測放大器1300以便暫時儲存熔絲資料OUT1至OUTn的暫存器;以及鄰近於使用熔絲資料OUT1至OUTn的非揮發性儲存元件1000的各種電路區塊(例如,列解碼器及行解碼器或直流(DC)電壓產生器)而安置以便將熔絲資料OUT1至OUTn提供至電路區塊的暫存器。 In order to store the fuse data OUT1 to OUTn from the anti-fuse array 1100a, a register is required: a register connected to the sense amplifier 1300 to temporarily store the fuse data OUT1 to OUTn; and adjacent to the fuse information OUT1 Various circuit blocks to the non-volatile storage element 1000 of OUTn (eg, a column decoder and a row decoder or a direct current (DC) voltage generator) are disposed to provide the fuse data OUT1 to OUTn to the circuit block. Save.
根據本發明概念的例示性實施例,第一暫存器單元1400自感測放大器1300接收熔絲資料OUT1至OUTn,且將熔絲資料OUT1至OUTn傳輸至鄰近於此等電路區塊而安置的第二暫存器單元1500。特定言之,反熔絲陣列1100a具有陣列結構,且第一暫存器單元1400包含暫存器,其數目對應於包含於反熔絲陣列1100a中的行的數目。因此,包含於第一暫存器單元1400中的暫存器的數目小於包含於反熔絲陣列1100a中的多個反熔絲1110a的數目。舉例而言,在一個感測放大器電路對應於每一位元線而配置時,第一暫存器單元1400包含n個感測放大器電路。因此,與熔絲資料OUT1至OUTn相關的第一暫存器單元1400中的暫存器的數目不需為m×n,且因此可為n。特定言之,即使大數目的反熔絲1110a包含於反熔絲陣列1100a中,但根據反熔絲陣列1100a的結構,包含於第一暫存器單元1400中的暫存器的數目可限於n。因此,可防止包含於第一暫存器單元1400中的暫存器的數目 成比例地增大。 According to an exemplary embodiment of the inventive concept, the first register unit 1400 receives the fuse data OUT1 to OUTn from the sense amplifier 1300, and transmits the fuse data OUT1 to OUTn to be disposed adjacent to the circuit blocks. The second register unit 1500. In particular, the anti-fuse array 1100a has an array structure, and the first register unit 1400 includes a register, the number of which corresponds to the number of rows included in the anti-fuse array 1100a. Therefore, the number of registers included in the first register unit 1400 is smaller than the number of the plurality of anti-fuse 1110a included in the anti-fuse array 1100a. For example, when one sense amplifier circuit is configured corresponding to each bit line, the first register unit 1400 includes n sense amplifier circuits. Therefore, the number of registers in the first register unit 1400 associated with the fuse data OUT1 to OUTn need not be m×n, and thus may be n. In particular, even if a large number of antifuse 1110a is included in the antifuse array 1100a, the number of registers included in the first register unit 1400 may be limited to n according to the structure of the antifuse array 1100a. . Therefore, the number of registers included in the first register unit 1400 can be prevented. Increase proportionally.
圖9說明根據本發明概念的實施例的模組2200的結構。 FIG. 9 illustrates the structure of a module 2200 in accordance with an embodiment of the inventive concept.
參看圖9,模組2200包含記憶體,所述記憶體包含根據本發明概念的例示性實施例的記憶體元件。舉例而言,模組2200包含八個DRAM。DRAM中的每一者包含反熔絲陣列(其為非揮發性儲存元件)。在失效位址儲存於DRAM5中時,記憶體控制器可藉由將資料「0」僅傳輸至DRAM5來選擇DRAM5。包含於DRAM中的每一者中的反熔絲陣列用於將所產生的失效位址儲存於所述DRAM中。命令以及位址由八個DRAM共用。 Referring to Figure 9, module 2200 includes a memory that includes a memory component in accordance with an illustrative embodiment of the inventive concept. For example, module 2200 includes eight DRAMs. Each of the DRAMs includes an anti-fuse array (which is a non-volatile storage element). When the invalidation address is stored in the DRAM 5, the memory controller can select the DRAM 5 by transmitting the data "0" only to the DRAM 5. An antifuse array included in each of the DRAMs is used to store the generated invalidation address in the DRAM. The command and address are shared by eight DRAMs.
圖10及圖11為說明根據本發明概念的實施例在傳輸失效位址時的時序的時序圖。 10 and 11 are timing diagrams illustrating timings when transmitting a failed address in accordance with an embodiment of the inventive concept.
參看圖10,經由命令線CMD而接收模式暫存器設定命令MRS、作用命令ACT、讀取命令RD以及寫入命令WR。經由位址線ADD而接收列失效位址F-RA以及行失效位址F-CA。在圖9的模組2200中,可藉由經由資料插腳DQ來僅接收資料「0」(邏輯低)而在八個DRAM中選擇DRAM5。由於經由資料插腳DQ0至DQ7而接收的資料全部變為邏輯「低」,因此失效位址儲存於反熔絲陣列(其為包含於DRAM5中的非揮發性儲存元件)中。在依序輸入模式暫存器設定命令MRS、作用命令ACT以及寫入命令WR且輸入列失效位址F-RA以及行失效位址F-CA之後,經由資料插腳DQ而將資料「0」作為最終晶片選擇資料來供應,且將失效位址儲存於反熔絲陣列中。此區段為失效位址傳送區段。驗 證區段為介於當根據讀取命令RD而讀取經程式化的失效位址且當接收另一模式暫存器設定命令MRS兩者之間的區段。當在接收到讀取命令之後輸入另一模式暫存器設定命令MRS時,完成驗證程序。 Referring to FIG. 10, a mode register setting command MRS, an action command ACT, a read command RD, and a write command WR are received via a command line CMD. The column fail address F-RA and the row fail address F-CA are received via the address line ADD. In the module 2200 of FIG. 9, the DRAM 5 can be selected among the eight DRAMs by receiving only the material "0" (logic low) via the data pin DQ. Since the data received via the data pins DQ0 to DQ7 all become logical "low", the failed address is stored in the anti-fuse array (which is a non-volatile storage element included in the DRAM 5). After sequentially inputting the mode register setting command MRS, the action command ACT, and the write command WR, and inputting the column fail address F-RA and the row fail address F-CA, the data "0" is used as the data pin DQ. The final wafer selection data is supplied and the failed address is stored in the antifuse array. This section is a failed address transfer section. Test The certificate section is a section between when the programmed invalidation address is read according to the read command RD and when another mode register setting command MRS is received. When another mode register setting command MRS is input after receiving the read command, the verification process is completed.
圖11的時序圖類似於圖10的時序圖,不同之處在於藉由經由位址線ADD而僅接收列失效位址F-RA來修復對應於失效位址的記憶胞。且,在執行驗證程序以再次讀取失效位址時,根據預充電命令而完成驗證程序,並退出當前模式。 The timing diagram of FIG. 11 is similar to the timing diagram of FIG. 10 except that the memory cells corresponding to the failed address are repaired by receiving only the column fail address F-RA via the address line ADD. Moreover, when the verification procedure is executed to read the invalidation address again, the verification procedure is completed according to the precharge command, and the current mode is exited.
圖12為說明根據本發明概念的例示性實施例在並列傳輸驗證結果時的時序的時序圖。 FIG. 12 is a timing diagram illustrating timings when side-by-side transmission of verification results, according to an exemplary embodiment of the inventive concept.
參看圖12,在經由命令線CMD而輸入模式暫存器設定命令MRS、作用命令ACT以及寫入命令WR時,將列失效位址F-RA以及行失效位址F-CA儲存於反熔絲陣列(其為非揮發性記憶體元件)中。接著,藉由讀取列失效位址F-RA以及行失效位址F-CA而檢查所儲存的列失效位址F-RA以及行失效位址F-CA的狀態以對其進行驗證,且經由資料插腳DQ0、DQ1以及DQ2而將所得驗證結果傳輸至測試元件100。舉例而言,經由資料插腳DQ0、DQ1以及DQ2而並列傳輸邏輯低(「L」)的驗證結果。傳輸至其他資料插腳DQ3、……、DQ7的值未由記憶體控制器辨識。 Referring to FIG. 12, when the mode register setting command MRS, the action command ACT, and the write command WR are input via the command line CMD, the column fail address F-RA and the row fail address F-CA are stored in the anti-fuse. Array (which is a non-volatile memory element). Then, by checking the column fail address F-RA and the row fail address F-CA, the stored column fail address F-RA and the row fail address F-CA are checked to verify the state, and The resulting verification results are transmitted to the test element 100 via data pins DQ0, DQ1, and DQ2. For example, the logic low ("L") verification result is transmitted in parallel via data pins DQ0, DQ1, and DQ2. The values transferred to other data pins DQ3, ..., DQ7 are not recognized by the memory controller.
圖13為說明根據本發明概念的例示性實施例待並列傳輸的(be transmitted in parallel)驗證結果的表格。 FIG. 13 is a table illustrating a result of be transmitted in parallel verification according to an exemplary embodiment of the inventive concept.
參看圖13,藉由讀取儲存於反熔絲陣列(其為非揮發性 記憶體)中的驗證結果而檢查驗證結果的狀態。經由資料插腳DQ0、DQ1以及DQ2而傳輸的驗證結果全部為邏輯低(狀況1)意謂程式化正常完成且失效位元替換為列冗餘記憶胞。經由資料插腳DQ0、DQ1以及DQ2而傳輸的驗證結果分別為邏輯低、低以及高(狀況2)意謂程式化正常完成且失效位元替換為行冗餘記憶胞。經由資料插腳DQ0、DQ1以及DQ2而傳輸的驗證結果分別為邏輯低、高以及低(狀況3)意謂程式化正常完成且失效位元替換為單個冗餘記憶胞。經由資料插腳DQ0、DQ1以及DQ2而傳輸的驗證結果分別為邏輯低、高以及高(狀況4)意謂未針對未來使用給出具體含義。狀況5至8各自表示不完全地執行程式化。經由資料插腳DQ0、DQ1以及DQ2而傳輸的驗證結果分別為邏輯高、低以及低(狀況5)意謂對記憶胞執行的破裂(rupture)程序有問題。經由資料插腳DQ0、DQ1以及DQ2而傳輸的驗證結果分別為邏輯高、低以及高(狀況6)意謂破裂程序仍在進行中。在此狀況下,可暫時延遲驗證,且接著根據讀取命令RD而請求驗證。經由資料插腳DQ0、DQ1以及DQ2而傳輸的驗證結果分別為邏輯高、高以及低(狀況7)意謂無可用冗餘記憶胞。因此,失效位元無法修復,且因此應替換為另一記憶胞。經由資料插腳DQ0、DQ1以及DQ2而傳輸的驗證結果全部為邏輯高(狀況8)意謂未選擇當前晶片。經由資料插腳DQ0、DQ1以及DQ2而將驗證結果並列傳輸至測試元件100。 Referring to Figure 13, the storage is stored in an anti-fuse array (which is non-volatile) Check the result of the verification result in the memory). The verification results transmitted via data pins DQ0, DQ1, and DQ2 are all logic low (status 1), meaning that the stylization is normally completed and the failed bit is replaced with a column redundant memory cell. The verification results transmitted via data pins DQ0, DQ1, and DQ2 are logic low, low, and high, respectively (status 2), meaning that the stylization is normally completed and the failed bit is replaced with a row redundant memory cell. The verification results transmitted via data pins DQ0, DQ1, and DQ2 are logic low, high, and low, respectively (status 3), meaning that the stylization is normally completed and the failed bit is replaced with a single redundant memory cell. The verification results transmitted via data pins DQ0, DQ1, and DQ2 are logic low, high, and high (state 4), respectively, meaning that no specific meaning is given for future use. The conditions 5 to 8 each indicate that the stylization is not completely performed. The verification results transmitted via data pins DQ0, DQ1, and DQ2 are logic high, low, and low (condition 5), respectively, indicating a problem with the rupture procedure performed on the memory cell. The verification results transmitted via data pins DQ0, DQ1, and DQ2 are logic high, low, and high, respectively (status 6), meaning that the rupture procedure is still in progress. In this case, the verification can be temporarily delayed, and then the verification is requested according to the read command RD. The verification results transmitted via data pins DQ0, DQ1, and DQ2 are logic high, high, and low (status 7), meaning that no redundant memory cells are available. Therefore, the failing bit cannot be repaired and should therefore be replaced with another memory cell. The verification results transmitted via data pins DQ0, DQ1, and DQ2 are all logic high (state 8) meaning that the current wafer is not selected. The verification results are transmitted side by side to the test element 100 via data pins DQ0, DQ1, and DQ2.
圖14為說明根據本發明概念的例示性實施例在傳輸驗證 結果時的時序的時序圖。 FIG. 14 is a diagram illustrating transmission verification in accordance with an exemplary embodiment of the inventive concept Timing diagram of the timing at the time of the result.
參看圖14,串列傳輸圖13所說明的驗證結果。舉例而言,經由資料插腳DQ0而串列傳輸3位元驗證結果。可經由資料插腳DQ7而將相同3位元驗證結果傳輸至測試元件100。 Referring to Figure 14, the verification results illustrated in Figure 13 are transmitted in series. For example, the 3-bit verification result is transmitted in series via the data pin DQ0. The same 3-bit verification result can be transmitted to the test element 100 via the data pin DQ7.
圖15為說明根據本發明概念的例示性實施例待串列傳輸的(be transmitted in series)驗證結果的表格。 15 is a table illustrating a be transmitted in series verification result in accordance with an exemplary embodiment of the inventive concept.
參看圖15,狀況1(LLL)表示失效位元替換為列冗餘記憶胞。舉例而言,經由一個資料插腳DQ而將3位元驗證結果串列傳輸至測試元件100。狀況6(HLH)表示破裂程序仍在進行中,其中經由資料插腳DQ0、DQ1、DQ2以及DQ3而將3位元驗證結果串列傳輸至測試元件100。 Referring to Figure 15, Condition 1 (LLL) indicates that the failed bit is replaced with a column redundant memory cell. For example, the 3-bit verification result is serially transmitted to the test component 100 via a data pin DQ. Condition 6 (HLH) indicates that the rupture procedure is still in progress, with the 3-bit verification result serially transmitted to test element 100 via data pins DQ0, DQ1, DQ2, and DQ3.
圖16及圖17為說明根據本發明概念的例示性實施例的操作測試元件的方法的時序圖。 16 and 17 are timing diagrams illustrating a method of operating a test element in accordance with an illustrative embodiment of the inventive concept.
參看圖16,測試元件如下所述而執行失效位址偵測以及傳輸。首先,使用ECC引擎或BIST單元來偵測失效位址(操作S100)。接著,將所偵測的失效位址儲存於失效位址記憶體(FAM)中(操作S105)。接著,根據自CPU給出的測試命令而進入失效位址傳輸模式(操作S110)。測試命令包含測試開始命令、測試退出命令、指示開始失效位址的傳輸的命令以及指示結束失效位址的傳輸的命令。接著,傳輸模式暫存器設定命令、晶片選擇信號以及失效位址(操作S120)。 Referring to Figure 16, the test elements perform fail address detection and transmission as described below. First, the ECC engine or the BIST unit is used to detect the invalidation address (operation S100). Next, the detected invalidation address is stored in the failed address memory (FAM) (operation S105). Next, the fail address transmission mode is entered in accordance with the test command given from the CPU (operation S110). The test command includes a test start command, a test exit command, a command indicating the start of transmission of the invalidation address, and a command indicating the end of the transmission of the invalidation address. Next, the mode register setting command, the wafer selection signal, and the fail address are transmitted (operation S120).
參看圖17,記憶體元件接收模式暫存器設定命令、寫入 命令、晶片選擇信號以及失效位址(操作S130)。接著,將失效位址儲存於暫時失效位址儲存器中(操作S140)。接著,進入對非揮發性儲存元件進行程式化的模式(操作S150)。接著,檢查反熔絲陣列(其為非揮發性儲存元件)的儲存空間(操作S160)。接著,對反熔絲陣列(其為非揮發性儲存元件)進行程式化(操作S170)。接著,讀取經程式化的資料以驗證所儲存的失效位址(操作S180)。接著,檢查所儲存的資料的狀態,且接著將驗證結果傳輸至外部(操作S190)。最終,將失效位元替換為另一記憶胞(操作S200)。 Referring to FIG. 17, the memory component receives the mode register setting command and writes. The command, the wafer selection signal, and the failed address (operation S130). Next, the failed address is stored in the temporary invalidated address storage (operation S140). Next, the mode of programming the non-volatile storage element is entered (operation S150). Next, the storage space of the anti-fuse array, which is a non-volatile storage element, is inspected (operation S160). Next, the antifuse array, which is a non-volatile storage element, is programmed (operation S170). Next, the stylized data is read to verify the stored invalidation address (operation S180). Next, the status of the stored material is checked, and then the verification result is transmitted to the outside (operation S190). Finally, the invalid bit is replaced with another memory cell (operation S200).
圖18為根據本發明概念的另一例示性實施例的記憶體系統的概念圖。 FIG. 18 is a conceptual diagram of a memory system in accordance with another exemplary embodiment of the inventive concept.
參看圖18,記憶體系統包含測試元件100以及記憶體元件200。測試元件100傳輸失效位址、控制信號以及資料DQ。記憶體元件200包含BIST單元以及反熔絲陣列(其為非揮發性記憶體元件)。BIST單元經由測試元件100根據自測試元件100接收的測試命令來測試記憶體元件200,且將失效位址儲存於反熔絲陣列(其為非揮發性記憶體元件)中。 Referring to Figure 18, the memory system includes test component 100 and memory component 200. Test component 100 transmits a failed address, a control signal, and a data DQ. Memory component 200 includes a BIST cell and an anti-fuse array (which is a non-volatile memory component). The BIST unit tests the memory element 200 via the test element 100 based on test commands received from the test element 100 and stores the failed address in an anti-fuse array (which is a non-volatile memory element).
圖19說明根據本發明概念的另一例示性實施例的記憶體元件300的電路方塊圖。 FIG. 19 illustrates a circuit block diagram of a memory device 300 in accordance with another exemplary embodiment of the inventive concept.
參看圖19,記憶體元件300包含:熔絲陣列340,其為經建構以將失效位址作為程式化資料來儲存的非揮發性記憶體;暫時失效位址記憶體(FAM)330;熔絲陣列資訊儲存器350,其 經組態以儲存關於熔絲的資訊;控制單元360,其經組態以控制熔絲陣列340以及熔絲陣列資訊儲存器350;BIST單元310,其經組態以偵測失效位址;以及記憶胞陣列320。BIST單元310自測試元件接收測試命令Control以及測試資料DQ,且藉由以下方式來偵測失效位址:將測試資料DQ寫入至記憶胞陣列320且接著自記憶胞陣列320讀取測試資料DQ。在出現失效位元時,對應於失效位元的失效旗標以及失效位址傳輸至FAM 330。FAM 330可被實施為包含多個失效位址陣列FAM1、……、FAMn的暫存器。控制單元360可使用熔絲陣列資訊儲存器350來檢查熔絲陣列340的空間。控制單元360亦可控制待儲存於熔絲陣列340(其為非揮發性儲存元件)中的程式化命令以及程式化位址。根據控制信號將測試命令供應至測試元件,且因此啟動BIST單元310。並且,根據控制信號將儲存於FAM 330中的失效位址傳輸至熔絲陣列340。 Referring to FIG. 19, the memory component 300 includes: a fuse array 340, which is a non-volatile memory constructed to store the failed address as stylized data; a temporary fail address memory (FAM) 330; a fuse Array information storage 350, Configuring to store information about the fuse; control unit 360 configured to control fuse array 340 and fuse array information store 350; BIST unit 310 configured to detect a failed address; Memory cell array 320. The BIST unit 310 receives the test command Control and the test data DQ from the test component, and detects the invalidation address by writing the test data DQ to the memory cell array 320 and then reading the test data DQ from the memory cell array 320. . When a fail bit occurs, the failure flag corresponding to the failed bit and the failed address are transmitted to the FAM 330. The FAM 330 can be implemented as a register containing a plurality of failed address arrays FAM1, ..., FAMn. Control unit 360 may use fuse array information store 350 to check the space of fuse array 340. Control unit 360 can also control the stylized commands and programmatic addresses to be stored in fuse array 340, which is a non-volatile storage element. The test command is supplied to the test component in accordance with the control signal, and thus the BIST unit 310 is activated. And, the failed address stored in the FAM 330 is transmitted to the fuse array 340 according to the control signal.
圖20及圖21為說明根據本發明概念的例示性實施例的記憶體元件的操作的時序圖。 20 and 21 are timing diagrams illustrating the operation of a memory element in accordance with an illustrative embodiment of the inventive concept.
參看圖20,經由命令線CMD而輸入作用命令ACT以及讀取命令RD。經由資料插腳DQ而輸入測試資料EDQ。將測試資料EDQ寫入至記憶胞陣列,且藉由根據讀取命令RD來讀取儲存於記憶胞陣列中的測試資料EDQ而產生讀取資料RDQ。在失效旗標信號自邏輯高改變至邏輯低時,將第N列位址寫入至失效位址記憶體FAM #1。在再次出現失效旗標時,將第N+1列位址寫入至 失效位址記憶體FAM #2。與時脈信號CLK同步而輸入此命令以及資料,且亦與時脈信號CLK同步而輸入時脈啟用信號CKE以及晶片選擇信號。 Referring to Fig. 20, an action command ACT and a read command RD are input via a command line CMD. The test data EDQ is input via the data pin DQ. The test data EDQ is written to the memory cell array, and the read data RDQ is generated by reading the test data EDQ stored in the memory cell array according to the read command RD. When the failure flag signal changes from logic high to logic low, the Nth column address is written to the failed address memory FAM #1. When the failure flag occurs again, the address of the N+1th column is written to Failed address memory FAM #2. The command and the data are input in synchronization with the clock signal CLK, and the clock enable signal CKE and the wafer selection signal are also input in synchronization with the clock signal CLK.
參看圖21,經由命令線CMD而輸入作用命令ACT、讀取命令RD以及預充電命令Pre。圖21的時序圖實質上類似於圖20的時序圖,不同之處在於,在輸入預充電命令Pre時,將第N列位址傳輸至失效位址記憶體FAM #1,且在再次輸入預充電命令Pre時,將第N+1列位址傳輸至失效位址記憶體FAM #2。圖19的FAM 330可被實施為暫存器、SRAM或其類似者。 Referring to FIG. 21, an action command ACT, a read command RD, and a precharge command Pre are input via the command line CMD. The timing diagram of FIG. 21 is substantially similar to the timing diagram of FIG. 20, except that when the precharge command Pre is input, the Nth column address is transferred to the failed address memory FAM #1, and the pre-input is again input. When the charging command Pre is performed, the N+1th column address is transmitted to the failed address memory FAM #2. The FAM 330 of Figure 19 can be implemented as a scratchpad, SRAM, or the like.
圖22為說明根據本發明概念的例示性實施例的操作記憶體元件的方法的流程圖。 FIG. 22 is a flowchart illustrating a method of operating a memory element in accordance with an exemplary embodiment of the inventive concept.
參看圖22,記憶體元件自測試元件接收作用命令、寫入命令以及讀取命令(操作S300)。接著,根據命令而啟動記憶體元件的BIST單元(操作S310)。接著,偵測失效位址,產生失效旗標或接收預充電命令(操作S320)。接著,根據失效旗標或預充電命令而將失效位址儲存於失效位址記憶體中(操作S330)。接著,熔絲陣列進入對失效位址進行程式化的程式化模式(操作S340)。接著,檢查熔絲記憶體的容量(操作S350)。接著,對熔絲陣列進行程式化(操作S360)。此後,修復失效位元(操作S370)。 Referring to FIG. 22, the memory element receives an action command, a write command, and a read command from the test component (operation S300). Next, the BIST unit of the memory element is activated in accordance with the command (operation S310). Next, the failed address is detected, a failure flag is generated, or a precharge command is received (operation S320). Next, the failed address is stored in the failed address memory according to the failure flag or the precharge command (operation S330). Next, the fuse array enters a stylized mode that stylizes the failed address (operation S340). Next, the capacity of the fuse memory is checked (operation S350). Next, the fuse array is programmed (operation S360). Thereafter, the invalidation bit is repaired (operation S370).
圖23為說明根據本發明概念的例示性實施例的記憶體系統的光學鏈路的圖式。 23 is a diagram illustrating an optical link of a memory system in accordance with an illustrative embodiment of the inventive concept.
參看圖23,記憶體系統包含控制器8100以及記憶體元件 8200。控制器8100包含控制單元8110、控制器傳輸器8121以及控制器接收器8122。控制單元8110包含ECC引擎或BIST單元。控制器傳輸器8121包含將電信號轉換為光信號的元件E/O。控制器接收器8122包含將光信號轉換為電信號的元件O/E。記憶體元件8200包含反熔絲陣列8221(其為非揮發性儲存元件)、BIST單元8222、DRAM核心8223、傳輸器8312以及接收器8211。傳輸器8312包含將電信號轉換為光信號的元件E/O。接收器8211包含將光信號轉換為電信號的元件O/E。控制器8100以及記憶體元件8200經由光學鏈路8500以及光學鏈路8501而連接以傳輸且接收資料。根據本發明概念的另一例示性實施例,可經由一個光學鏈路來傳輸以及接收資料。控制器8100的I/O電路8120以及記憶體元件8200的I/O電路8210經由光學鏈路8500以及光學鏈路8501而連接。 Referring to Figure 23, the memory system includes a controller 8100 and a memory component. 8200. The controller 8100 includes a control unit 8110, a controller transmitter 8121, and a controller receiver 8122. Control unit 8110 includes an ECC engine or a BIST unit. The controller transmitter 8121 includes an element E/O that converts an electrical signal into an optical signal. Controller receiver 8122 includes an element O/E that converts the optical signal into an electrical signal. The memory element 8200 includes an anti-fuse array 8221 (which is a non-volatile storage element), a BIST unit 8222, a DRAM core 8223, a transmitter 8312, and a receiver 8211. Transmitter 8312 includes an element E/O that converts an electrical signal into an optical signal. The receiver 8211 includes an element O/E that converts an optical signal into an electrical signal. Controller 8100 and memory element 8200 are coupled via optical link 8500 and optical link 8501 to transmit and receive data. According to another exemplary embodiment of the inventive concept, data may be transmitted and received via an optical link. The I/O circuit 8120 of the controller 8100 and the I/O circuit 8210 of the memory element 8200 are connected via an optical link 8500 and an optical link 8501.
圖24說明根據本發明概念的例示性實施例的應用了記憶體系統的矽通孔(through-silicon-via;TSV)堆疊晶片。 24 illustrates a through-silicon-via (TSV) stacked wafer to which a memory system is applied, in accordance with an illustrative embodiment of the inventive concept.
參看圖24,介面晶片3100作為最下層而安置,且記憶體晶片3200、3300、3400以及3500依序安置於介面晶片3100上。介面晶片3100可包含ECC引擎或BIST單元、記憶體控制器以及CPU。記憶體晶片3200、3300、3400以及3500包含反熔絲陣列3601、3602、3603以及3604(其為非揮發性儲存元件)與BIST單元3801、3802、3803以及3804。記憶體晶片的失效位址是使用介面晶片3100的測試元件(未繪示)來偵測的,且儲存於記憶體 晶片的反熔絲陣列中。此等晶片經由其中形成的微凸塊uBump以及TSV(3701、3702、3703以及3704)而連接。舉例而言,堆疊晶片的數目可為一或多個。 Referring to FIG. 24, the interface wafer 3100 is disposed as the lowermost layer, and the memory wafers 3200, 3300, 3400, and 3500 are sequentially disposed on the interface wafer 3100. The interface chip 3100 can include an ECC engine or BIST unit, a memory controller, and a CPU. Memory wafers 3200, 3300, 3400, and 3500 include antifuse arrays 3601, 3602, 3603, and 3604, which are non-volatile storage elements, and BIST units 3801, 3802, 3803, and 3804. The failure address of the memory chip is detected by using a test component (not shown) of the interface chip 3100, and is stored in the memory. In the antifuse array of the wafer. These wafers are connected via microbumps uBump and TSVs (3701, 3702, 3703, and 3704) formed therein. For example, the number of stacked wafers can be one or more.
圖25(a)~圖25(d)說明根據本發明概念的例示性實施例的記憶體系統的各種介面。 25(a) to 25(d) illustrate various interfaces of a memory system in accordance with an exemplary embodiment of the inventive concept.
參看圖25(a),記憶體系統包含控制器4000以及記憶體元件5000。控制器4000包含控制單元4100以及I/O電路4200。控制單元4100可包含ECC引擎或BIST單元。記憶體元件5000包含DRAM核心5300、反熔絲陣列5100(其為非揮發性儲存元件)、BIST單元5400以及I/O電路5200。控制器4000的I/O電路4200包含藉以將命令、控制信號、位址以及資料選通DQS傳輸至記憶體元件5000且將資料DQ傳輸至記憶體元件5000以及自記憶體元件5000接收資料DQ的介面。失效位址是經由所述介面而傳輸。 Referring to Figure 25(a), the memory system includes a controller 4000 and a memory component 5000. The controller 4000 includes a control unit 4100 and an I/O circuit 4200. Control unit 4100 can include an ECC engine or a BIST unit. The memory component 5000 includes a DRAM core 5300, an antifuse array 5100 (which is a non-volatile storage element), a BIST cell 5400, and an I/O circuit 5200. The I/O circuit 4200 of the controller 4000 includes a command, control signal, address and data strobe DQS for transferring to the memory device 5000 and transferring the data DQ to the memory device 5000 and receiving the data DQ from the memory device 5000. interface. The failed address is transmitted via the interface.
參看圖25(b),控制器4000的I/O電路4200包含藉以使用一個封包而將晶片選擇信號CS以及位址傳輸至記憶體元件5000且將資料DQ傳輸至記憶體元件5000以及自記憶體元件5000接收資料DQ的介面。失效位址是經由所述介面而傳輸。 Referring to FIG. 25(b), the I/O circuit 4200 of the controller 4000 includes a wafer selection signal CS and an address transferred to the memory device 5000 and a data DQ to the memory device 5000 and self-memory using a packet. Element 5000 receives the interface of the material DQ. The failed address is transmitted via the interface.
參看圖25(c),控制器4000的I/O電路4200包含藉以使用一個封包而將晶片選擇信號CS、位址以及寫入資料wData傳輸至記憶體元件5000且自記憶體元件5000接收讀取資料rData的介面。失效位址是經由所述介面而傳輸。 Referring to FIG. 25(c), the I/O circuit 4200 of the controller 4000 includes a wafer selection signal CS, an address and a write data wData transmitted to the memory device 5000 and received from the memory device 5000 using a packet. The interface of the data rData. The failed address is transmitted via the interface.
參看圖25(d),控制器4000的I/O電路4200包含藉以將命令、位址以及資料DQ傳輸至記憶體元件5000以及自記憶體元件5000接收命令、位址以及資料DQ且自記憶體元件5000接收晶片選擇信號CS的介面。失效位址是經由所述介面而傳輸。 Referring to FIG. 25(d), the I/O circuit 4200 of the controller 4000 includes a command, address and data DQ for transmitting to the memory device 5000 and receiving commands, addresses and data DQ from the memory device 5000 and self-memory. Element 5000 receives the interface of wafer select signal CS. The failed address is transmitted via the interface.
圖26及圖27為說明根據本發明概念的例示性實施例的記憶體系統的系統連接的圖式。 26 and 27 are diagrams illustrating system connections of a memory system in accordance with an illustrative embodiment of the inventive concept.
參看圖26,記憶體7300包含反熔絲陣列7301(其為非揮發性記憶體)以及BIST單元730。CPU 7100包含BIST單元或ECC引擎7101。記憶體7300、CPU 7100以及使用者介面7200經由系統匯流排7110而連接。 Referring to Figure 26, memory 7300 includes an anti-fuse array 7301, which is a non-volatile memory, and a BIST unit 730. The CPU 7100 includes a BIST unit or an ECC engine 7101. The memory 7300, the CPU 7100, and the user interface 7200 are connected via the system bus 7110.
參看圖27,記憶體系統6500包含記憶體6520(其包含反熔絲陣列以及BIST單元)以及記憶體控制器6510(其包含BIST或ECC引擎)。記憶體系統6500、CPU 6100、隨機存取記憶體(RAM)6200、使用者介面6300以及數據機6400經由系統匯流排6110而連接。 Referring to Figure 27, memory system 6500 includes a memory 6520 (which includes an anti-fuse array and a BIST unit) and a memory controller 6510 (which includes a BIST or ECC engine). The memory system 6500, the CPU 6100, the random access memory (RAM) 6200, the user interface 6300, and the data machine 6400 are connected via the system bus 6110.
根據本發明概念的例示性實施例的記憶體測試元件、方法以及系統可偵測記憶體元件中所包含的失效記憶胞的失效位址且藉由修復所述失效記憶胞來修理所述失效記憶胞。即使在晶片的操作期間或在執行晶片封裝之後,亦可使用測試元件來測試並修復記憶體元件。因此,可減少因失效記憶胞所致的記憶體元件的故障,藉此改良記憶體元件的操作可靠性。 A memory test component, method, and system according to an exemplary embodiment of the inventive concept may detect a failed address of a failed memory cell included in a memory component and repair the failed memory by repairing the failed memory cell Cell. Test elements can be used to test and repair memory components even during operation of the wafer or after wafer encapsulation. Therefore, the failure of the memory element due to the failed memory cell can be reduced, thereby improving the operational reliability of the memory element.
前述內容說明實施例,且並不解釋為限制實施例。雖然, 已描述幾個實施例,但熟習此項技術者將容易瞭解,可對實施例進行許多修改,而不會實質上偏離新穎教示及優勢。因此,所有此等修改意欲包含於如申請專利範圍所界定的本發明概念的範疇內。在申請專利範圍中,構件加功能子句意欲涵蓋本文中描述為執行所述功能的結構,且不僅涵蓋結構等效物,亦涵蓋等效結構。因此,應理解,前述內容說明各種實施例,且並不解釋為限於所揭露的具體實施例,且對所揭露的實施例的修改以及其他實施例意欲包含於隨附申請專利範圍的範疇內。 The foregoing is illustrative of embodiments and is not to be construed as limiting. although, Having described several embodiments, it will be readily apparent to those skilled in the art that many modifications may be made to the embodiments without departing from the novel teachings and advantages. Accordingly, all such modifications are intended to be included within the scope of the inventive concepts as defined by the appended claims. In the context of the patent application, the component plus function clause is intended to cover the structures described herein as performing the described functions, and not only the structural equivalents but also equivalent structures. Therefore, the present invention is to be understood as being limited to the specific embodiments of the invention, and the modifications and other embodiments of the disclosed embodiments are intended to be included within the scope of the appended claims.
100‧‧‧測試元件 100‧‧‧Test components
200‧‧‧記憶體元件 200‧‧‧ memory components
Control‧‧‧測試命令 Control‧‧‧ test order
DQ‧‧‧測試資料 DQ‧‧‧ test data
Claims (20)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201261604570P | 2012-02-29 | 2012-02-29 | |
KR1020120117458A KR102076584B1 (en) | 2012-10-22 | 2012-10-22 | Device and method of repairing memory cell and memory system including the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201335938A TW201335938A (en) | 2013-09-01 |
TWI602181B true TWI602181B (en) | 2017-10-11 |
Family
ID=49096374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102106526A TWI602181B (en) | 2012-02-29 | 2013-02-25 | Memory system and method for operating test device to transmit fail address to memory device |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5875544B2 (en) |
CN (1) | CN103295648A (en) |
TW (1) | TWI602181B (en) |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101519615B1 (en) | 2013-10-30 | 2015-05-12 | 에스케이텔레콤 주식회사 | Method and apparatus for controlling data input of semiconductor memory device |
KR20150144147A (en) * | 2014-06-16 | 2015-12-24 | 에스케이하이닉스 주식회사 | Semiconductor device and operation method for the same |
KR102150477B1 (en) * | 2014-06-16 | 2020-09-01 | 에스케이하이닉스 주식회사 | Semiconductor device and operation method of the same |
KR20160046502A (en) * | 2014-10-21 | 2016-04-29 | 에스케이하이닉스 주식회사 | Memory device and memory system including the same |
US20160141020A1 (en) * | 2014-11-18 | 2016-05-19 | Mediatek Inc. | Static random access memory free from write disturb and testing method thereof |
KR20160125745A (en) * | 2015-04-22 | 2016-11-01 | 에스케이하이닉스 주식회사 | Semiconductor device |
KR20160138617A (en) * | 2015-05-26 | 2016-12-06 | 에스케이하이닉스 주식회사 | Smart self repair device and method |
KR20160148347A (en) * | 2015-06-16 | 2016-12-26 | 에스케이하이닉스 주식회사 | Self repair device and method |
CN106650923B (en) * | 2015-10-08 | 2019-04-09 | 上海兆芯集成电路有限公司 | Neural network unit with neural memory and neural processing unit and sequencer |
CN105702273B (en) * | 2016-02-29 | 2018-07-03 | 四川效率源信息安全技术股份有限公司 | The method of bad failure after being got well before a kind of reparation Hitachi hard disk |
KR102547713B1 (en) * | 2016-09-01 | 2023-06-26 | 삼성전자주식회사 | Semiconductor memory device and method of operating the same |
US10372566B2 (en) | 2016-09-16 | 2019-08-06 | Micron Technology, Inc. | Storing memory array operational information in nonvolatile subarrays |
CN108735268B (en) * | 2017-04-19 | 2024-01-30 | 恩智浦美国有限公司 | Nonvolatile memory repair circuit |
CN107452424B (en) * | 2017-07-03 | 2020-06-05 | 北京东土军悦科技有限公司 | Circuit for repairing memory and memory chip |
KR20190048132A (en) * | 2017-10-30 | 2019-05-09 | 삼성전자주식회사 | Memory device for preventing duplicate program of fail address and operating method thereof |
KR102406868B1 (en) * | 2017-11-23 | 2022-06-10 | 삼성전자주식회사 | Semiconductor memory device, memory system and method of operating the same |
KR20210000740A (en) | 2018-05-29 | 2021-01-05 | 마이크론 테크놀로지, 인크. | Apparatus and method for setting duty cycle adjuster for improving clock duty cycle |
CN110879761A (en) | 2018-09-05 | 2020-03-13 | 华为技术有限公司 | Hard disk fault processing method, array controller and hard disk |
KR102564774B1 (en) * | 2018-09-18 | 2023-08-09 | 에스케이하이닉스 주식회사 | Apparatus for diagnosing memory system or data processing system and operating method of memory system or data processing system based on diagnosis |
CN110968985B (en) * | 2018-09-30 | 2022-05-13 | 长鑫存储技术有限公司 | Method and device for determining integrated circuit repair algorithm, storage medium and electronic equipment |
JP6746659B2 (en) | 2018-11-09 | 2020-08-26 | 華邦電子股▲ふん▼有限公司Winbond Electronics Corp. | Memory device and built-in self-test method |
US10715127B2 (en) * | 2018-11-21 | 2020-07-14 | Micron Technology, Inc. | Apparatuses and methods for using look-ahead duty cycle correction to determine duty cycle adjustment values while a semiconductor device remains in operation |
US11189334B2 (en) | 2018-11-21 | 2021-11-30 | Micron Technology, Inc. | Apparatuses and methods for a multi-bit duty cycle monitor |
JP7083965B2 (en) * | 2018-12-29 | 2022-06-13 | 中芯集成電路(寧波)有限公司 | Microcontroller and its manufacturing method |
CN114187954B (en) * | 2020-09-15 | 2024-08-23 | 长鑫存储技术有限公司 | Memory device, testing method and using method thereof, and memory system |
EP4036917B1 (en) | 2020-09-15 | 2023-05-24 | Changxin Memory Technologies, Inc. | Memory device, testing method therefor and usage method therefor, and memory system |
JP2022154323A (en) * | 2021-03-30 | 2022-10-13 | キオクシア株式会社 | semiconductor storage device |
US11656796B2 (en) * | 2021-03-31 | 2023-05-23 | Advanced Micro Devices, Inc. | Adaptive memory consistency in disaggregated datacenters |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5313424A (en) * | 1992-03-17 | 1994-05-17 | International Business Machines Corporation | Module level electronic redundancy |
US6256237B1 (en) * | 1999-12-28 | 2001-07-03 | United Microelectronics Corp. | Semiconductor device and method for repairing failed memory cell by directly programming fuse memory cell |
US20020047181A1 (en) * | 2000-08-24 | 2002-04-25 | Kabushiki Kaisha Toshiba | Semiconductor integrated circuit device with electrically programmable fuse |
TW517376B (en) * | 2000-01-28 | 2003-01-11 | Hitachi Ltd | Semiconductor device system |
US20030084386A1 (en) * | 2001-10-25 | 2003-05-01 | Barth John E. | ECC Based system and method for repairing failed memory elements |
US20060064261A1 (en) * | 2004-08-31 | 2006-03-23 | Infineon Technologies Ag | Method for testing a memory using an external test chip, and apparatus for carrying out the method |
TWI258147B (en) * | 2003-11-14 | 2006-07-11 | Samsung Electronics Co Ltd | Semiconductor memory device and test pattern data generating method using the same |
JP2006186247A (en) * | 2004-12-28 | 2006-07-13 | Nec Electronics Corp | Semiconductor device |
US7174477B2 (en) * | 2003-02-04 | 2007-02-06 | Micron Technology, Inc. | ROM redundancy in ROM embedded DRAM |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4316085B2 (en) * | 1999-12-28 | 2009-08-19 | 株式会社東芝 | Semiconductor integrated circuit device and integrated circuit system |
JP2001352038A (en) * | 2000-06-06 | 2001-12-21 | Matsushita Electric Ind Co Ltd | Semiconductor integrated circuit device |
JP4761980B2 (en) * | 2005-09-13 | 2011-08-31 | 株式会社東芝 | Semiconductor integrated circuit device |
US8612809B2 (en) * | 2009-12-31 | 2013-12-17 | Intel Corporation | Systems, methods, and apparatuses for stacked memory |
-
2013
- 2013-02-25 TW TW102106526A patent/TWI602181B/en active
- 2013-02-27 JP JP2013036931A patent/JP5875544B2/en active Active
- 2013-02-28 CN CN 201310064093 patent/CN103295648A/en active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5313424A (en) * | 1992-03-17 | 1994-05-17 | International Business Machines Corporation | Module level electronic redundancy |
US6256237B1 (en) * | 1999-12-28 | 2001-07-03 | United Microelectronics Corp. | Semiconductor device and method for repairing failed memory cell by directly programming fuse memory cell |
TW517376B (en) * | 2000-01-28 | 2003-01-11 | Hitachi Ltd | Semiconductor device system |
US20020047181A1 (en) * | 2000-08-24 | 2002-04-25 | Kabushiki Kaisha Toshiba | Semiconductor integrated circuit device with electrically programmable fuse |
US6542419B2 (en) * | 2000-08-24 | 2003-04-01 | Kabushiki Kaisha Toshiba | Semiconductor integrated circuit device with electrically programmable fuse |
US20030084386A1 (en) * | 2001-10-25 | 2003-05-01 | Barth John E. | ECC Based system and method for repairing failed memory elements |
US7174477B2 (en) * | 2003-02-04 | 2007-02-06 | Micron Technology, Inc. | ROM redundancy in ROM embedded DRAM |
TWI258147B (en) * | 2003-11-14 | 2006-07-11 | Samsung Electronics Co Ltd | Semiconductor memory device and test pattern data generating method using the same |
US20060064261A1 (en) * | 2004-08-31 | 2006-03-23 | Infineon Technologies Ag | Method for testing a memory using an external test chip, and apparatus for carrying out the method |
JP2006186247A (en) * | 2004-12-28 | 2006-07-13 | Nec Electronics Corp | Semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
CN103295648A (en) | 2013-09-11 |
JP5875544B2 (en) | 2016-03-02 |
JP2013182659A (en) | 2013-09-12 |
TW201335938A (en) | 2013-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI602181B (en) | Memory system and method for operating test device to transmit fail address to memory device | |
US10347355B2 (en) | Device and method for repairing memory cell and memory system including the device | |
US9953725B2 (en) | Semiconductor memory devices and methods of operating the same | |
KR102076584B1 (en) | Device and method of repairing memory cell and memory system including the same | |
US7420860B2 (en) | Semiconductor memory having a dummy signal line connected to dummy memory cell | |
US10497460B2 (en) | Semiconductor memory devices, methods of operating semiconductor memory devices and memory systems | |
US9858981B2 (en) | Semiconductor memory devices including redundancy memory cells | |
KR102471608B1 (en) | Semiconductor memory device and operating method thereof | |
US11335431B2 (en) | Semiconductor memory devices, memory systems, and methods of operating semiconductor memory devices | |
CN109726141B (en) | Memory device for preventing re-programming of defective address and method of operating the same | |
US9697885B1 (en) | Semiconductor memory device and method for transferring weak cell information | |
US10083760B2 (en) | Semiconductor devices and semiconductor systems including the same | |
CN105938727B (en) | Semiconductor system and method for testing semiconductor device | |
US9786390B2 (en) | Memory device repairable by soft and hard repair operations and memory system including the same | |
WO2017218227A1 (en) | Shared error detection and correction memory | |
US11094390B2 (en) | Semiconductor memory devices and methods of operating semiconductor memory devices | |
US8270237B2 (en) | Semiconductor device, relief-address-information writing device, and relief-address-information writing method | |
US20210311821A1 (en) | Semiconductor memory devices |