TWI552377B - Method for fabricating a resonant cavity light emitting diode using a metal thin film to form a mirror - Google Patents

Method for fabricating a resonant cavity light emitting diode using a metal thin film to form a mirror Download PDF

Info

Publication number
TWI552377B
TWI552377B TW101127932A TW101127932A TWI552377B TW I552377 B TWI552377 B TW I552377B TW 101127932 A TW101127932 A TW 101127932A TW 101127932 A TW101127932 A TW 101127932A TW I552377 B TWI552377 B TW I552377B
Authority
TW
Taiwan
Prior art keywords
layer
light
metal
emitting diode
mirror
Prior art date
Application number
TW101127932A
Other languages
Chinese (zh)
Other versions
TW201407819A (en
Inventor
Sun-Jian Ke
jia-long Cai
Original Assignee
Chunghwa Telecom Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chunghwa Telecom Co Ltd filed Critical Chunghwa Telecom Co Ltd
Priority to TW101127932A priority Critical patent/TWI552377B/en
Publication of TW201407819A publication Critical patent/TW201407819A/en
Application granted granted Critical
Publication of TWI552377B publication Critical patent/TWI552377B/en

Links

Landscapes

  • Led Devices (AREA)
  • Semiconductor Lasers (AREA)
  • Led Device Packages (AREA)

Description

利用金屬薄膜形成反射鏡的共振腔發光二極體之製作方法 Resonant cavity light-emitting diode using mirror formed by metal film

本發明係關於一種利用金屬薄膜所形成共振腔的發光二極體,尤其是關於一種以金屬來作為共振腔發光二極體結構所需之上、下反射鏡,具有簡化反射鏡的製作及改善發光二極體的發光效率的優點。 The invention relates to a light-emitting diode formed by using a metal film to form a resonant cavity, in particular to a top and a bottom mirror required for using a metal as a resonant cavity light-emitting diode structure, and having a simplified mirror fabrication and improvement The advantage of the luminous efficiency of the light-emitting diode.

發光二極體(Light Emitting Diode,LED)是一種可廣泛應用於照明、顯示、及光通訊上的人造光源,相較於傳統光源,其具有體積小、反應速度快、長壽命和電力消耗少等優點。若在LED結構的發光層上、下加入反射鏡以形成共振腔結構變成所謂共振腔發光二極體(Resonant Cavity Light Emitting Diode,RCLED),則除了可以進一步改變光由發光層射出的角度分佈,讓大部分光落在逃脫角錐內而離開半導體表面,藉此增加光的取出率並提升發光二極體的發光效率之外,其共振結構也會對發光二極體所發出的光進行篩選作用,只有特定的波段的光可存留下來而對外發出,因此可以有效地窄化發光頻譜,減少因光纖傳輸所產生色散現象,進而改善信號傳輸品質。RCLED對反射鏡反射率的設計通常在下反射鏡為(90%-99%),上反射鏡為(<90%),發光層產生的光會在兩個鏡面間經多次來回反射來改變發射角度及篩選波長,最後由上反射鏡將光發射出去。RCLED的反射鏡可以選擇兩種不同折射率材料(厚度均為λ/n×1/4)交替多重堆疊的布拉格反射鏡(Distributed Bragg Reflector,DBR),透過磊晶方式直接成長於LED發光層的上、下方。其藉由材料間彼此折射係數高低的差異及四分之一有效發 光波長(λ/n)的特定厚度的組合之下(λ為發光波長;n為材料的折射係數),使得由發光層所產生的光在經過每對材料的界面時皆能產生建設性干涉,因而經多次干涉的累積讓布拉格反射鏡達到最大的反射作用,其反射率可以由矩陣法(matrix method)簡單求得: Light Emitting Diode (LED) is an artificial light source that can be widely used in lighting, display, and optical communication. Compared with traditional light sources, it has small volume, fast response, long life and low power consumption. Etc. If a mirror is added to the luminescent layer of the LED structure to form a resonant cavity structure and becomes a so-called Resonant Cavity Light Emitting Diode (RCLED), the angular distribution of light emitted from the luminescent layer can be further changed. The majority of the light falls within the escape pyramid and leaves the semiconductor surface, thereby increasing the light extraction rate and improving the luminous efficiency of the light-emitting diode. The resonance structure also filters the light emitted by the light-emitting diode. Only the light of a specific band can be left and released, so that the illuminating spectrum can be effectively narrowed, the dispersion phenomenon caused by the optical fiber transmission can be reduced, and the signal transmission quality can be improved. The design of the reflector reflectivity of the RCLED is usually (90%-99%) in the lower mirror and (<90%) in the upper mirror. The light generated by the illuminating layer will be reflected back and forth between the two mirrors to change the emission. Angle and screening wavelength, and finally the light is emitted by the upper mirror. RCLED mirrors can be selected from two different refractive index materials (thickness λ/n × 1/4) alternately stacked Bragg reflectors (DBR), directly grown in the LED luminescent layer by epitaxy Up and down. It consists of a combination of the difference in refractive index between materials and a specific thickness of a quarter effective illuminating wavelength ( λ/n ) ( λ is the illuminating wavelength; n is the refractive index of the material), so that the luminescent layer The generated light can produce constructive interference when passing through the interface of each pair of materials. Therefore, the accumulation of multiple interferences allows the Bragg mirror to achieve maximum reflection. The reflectivity can be simply obtained by the matrix method:

DBR在多層反射波的建設性干涉影響下,隨著堆疊層數的增加,反射率也跟著提高,DBR的反射率值與兩個組成材料的折射率差△n有關,若DBR的層數提高則可以增加反射率值,若組成物質的折射率差越大,則較少的層數即可達到高的反射率。然而材料的選擇受限於基材的晶格常數,必需符合方能順利磊晶成長於基材上,若藉由增加堆疊層數以達到所需反射率也要考慮多層堆疊所產生應力是否會造成堆疊結構本身的崩解。 Under the influence of constructive interference of multi-layer reflected waves, the reflectivity increases with the increase of the number of stacked layers. The reflectivity of DBR is related to the refractive index difference Δn of two constituent materials. If the number of layers of DBR is increased, Then, the reflectance value can be increased, and if the refractive index difference of the constituent materials is larger, a smaller number of layers can achieve a high reflectance. However, the choice of materials is limited by the lattice constant of the substrate, and it must be consistently grown on the substrate. If the number of stacked layers is increased to achieve the desired reflectivity, it is also considered whether the stress generated by the multilayer stack will be Causes disintegration of the stack structure itself.

通常影響LED特性優劣在於能否有效移除元件運作時由發光層所產生的焦耳熱,而傳統RCLED在發光層的上、下方使用由材料多重堆疊所形成布拉格反射鏡會阻礙焦耳熱的導出,再者為了在特定波長達到一定反射率的要求對堆疊層材料厚度也需要精密的控制,因此布拉格反射鏡的使用對RCLED而言不但會影響元件特性也會增加其製程的困難度,實非一良善之設計而亟待加以改良。C.L Tsai等人所發表於2009年4月”Journal of Vacuum Science & Technology B”卷27第3號第1080-1085頁”Fabrication and characterization of the substrate-free InGaN-based resonant-cavity light-emitting diodes for plastic optical fiber communications”提到一種薄膜型RCLED結構(Thin-film RCLED),其上反射鏡是採用3對Ta2O5/SiO2介 電質材料組所構成的布拉格反射鏡,下反射鏡則使用雷射剝離技術(LLO)將LED的基材剝離,再將金屬蒸鍍其上作為反射鏡以形成共振腔結構,此外藉由金屬優良的導熱性可較易將熱導出來以解決LED元件散熱問題,使其Thin-film RCLED具有優良的發光特性。通常金屬會吸收光使得穿透率降低因此不適合作為上反射鏡,然而在圖1繪示銀金屬在不同厚度下其反射及穿透率頻譜圖,發現其除了可隨著鍍層厚度的變化可達到所需之反射率外,穿透率也隨著鍍層厚度的減少而逐漸增加。 The general influence of LED characteristics is whether the Joule heat generated by the luminescent layer during the operation of the component can be effectively removed. However, the conventional RCLED uses a Bragg mirror formed by multiple stacking of materials above and below the luminescent layer to hinder the extraction of Joule heat. In addition, in order to achieve a certain reflectance at a specific wavelength, the thickness of the material of the stacked layer needs to be precisely controlled. Therefore, the use of the Bragg mirror not only affects the characteristics of the element but also increases the difficulty of the process. The design of goodness needs to be improved. CL Tsai et al., April 2009, "Journal of Vacuum Science & Technology B", Vol. 27, No. 3, 1080-1085, "Fabrication and characterization of the substrate-free InGaN-based resonant-cavity light-emitting diodes for Plastic optical fiber communications" refers to a thin film RCLED structure (Thin-film RCLED) with an upper mirror using three pairs of Ta2O5/SiO2 a Bragg mirror composed of an electro-mechanical material group, and a lower mirror uses a laser lift-off technique (LLO) to peel off the substrate of the LED, and then vapor-deposits the metal as a mirror to form a resonant cavity structure, and further by metal Excellent thermal conductivity makes it easier to derive heat to solve the heat dissipation problem of LED components, making its Thin-film RCLEDs have excellent luminescent properties. Usually, the metal absorbs light so that the transmittance is lowered, so it is not suitable as an upper mirror. However, the reflectance and transmittance spectrum of silver metal at different thicknesses are shown in Fig. 1, and it is found that it can be changed in addition to the thickness of the plating layer. In addition to the required reflectivity, the penetration rate also increases as the thickness of the coating decreases.

鑒於以上習知技術以金屬作為反射鏡有助於解決RCLED元件散熱問題及銀薄膜的厚度減少對光的穿透率有明顯促進的效益,本案發明人乃亟思加以改良創新,提出一種利用金屬薄膜形成反射鏡的共振腔發光二極體,以金屬分別作為RCLED的上、下反射鏡的共振腔結構,除了可更促進導出RCLED操作時所產生的焦耳熱之外,金屬反射鏡也較布拉格反射鏡的製作簡單。 In view of the above-mentioned prior art, the use of metal as a mirror helps to solve the heat dissipation problem of the RCLED element and the thickness reduction of the silver film has a significant effect on the light transmittance. The inventor of the present invention has improved and innovated and proposed to utilize a metal. The thin film forms the resonant cavity light-emitting diode of the mirror, and the metal is used as the resonant cavity structure of the upper and lower mirrors of the RCLED respectively. In addition to the Joule heat generated when the RCLED operation is derived, the metal mirror is also better than the Prague mirror. The mirror is simple to make.

本發明之主要目的即在於提供一種利用金屬薄膜所形成之共振腔發光二極體,以金屬作為其共振腔結構所需的反射鏡,來簡化共振腔發光二極體的製程並維持其元件特性的穩定。 The main object of the present invention is to provide a resonant cavity light-emitting diode formed by using a metal thin film, and a metal as a mirror required for the resonant cavity structure, thereby simplifying the process of the resonant cavity light-emitting diode and maintaining its component characteristics. Stable.

可達成上述發明目的之一種利用金屬薄膜所形成反射鏡之共振腔發光二極體,係利用調整金屬的厚度來改變其對光的反射率與穿透率,以分別符合共振腔發光二極體其上、下反射鏡的特性需求。其基本的結構是在一磊晶基板上依序磊晶成長一N型披覆層、一發光層及一P型披覆層。在P 型披覆層表面首先製備一層預先決定厚度的薄膜金屬作為反射鏡,然後再利用剝離技術將磊晶基板給予剝除,最後在剝除的表面(N型披覆層)則形成另一層金屬反射鏡,藉由上、下金屬反射鏡與發光層構成本發明一種利用金屬薄膜形成反射鏡的共振腔發光二極體。圖2A為依據本發明之一種利用金屬薄膜形成反射鏡的共振腔發光二極體,如圖所示其各層結構為上金屬反射鏡204、P型披覆層201、發光層202、N型披覆層203、下金屬反射鏡205,與圖2B利用布拉格反射鏡所形成之共振腔發光二極體結構,如圖所示其各層結構為上布拉格反射鏡206、P型披覆層201、發光層202、N型披覆層203、下布拉格反射鏡207,這兩個圖顯示出以薄膜金屬作為反射鏡來取代多對材料組所形成布拉格反射鏡具有結構簡易的優點,另外藉由反射鏡金屬的優異導電/熱特性可將灌注入於共振腔發光二極體的電流均勻分佈於發光層進行光電轉換,減少因電流擁擠效應所造成元件發光特性不佳的問題,而在發光層所產生的焦耳熱也可分別從上、下金屬反射鏡迅速導出以維持元件特性的穩定。 The resonant cavity light-emitting diode of the mirror formed by the metal film can achieve the above object, and the reflectivity and the transmittance of the light are changed by adjusting the thickness of the metal to respectively conform to the resonant cavity light-emitting diode. The characteristics of the upper and lower mirrors are required. The basic structure is to sequentially epitaxially grow an N-type cladding layer, a light-emitting layer and a P-type cladding layer on an epitaxial substrate. In P Firstly, a layer of film metal with a predetermined thickness is prepared as a mirror, and then the epitaxial substrate is stripped by a lift-off technique, and finally another metal reflection is formed on the stripped surface (N-type cladding layer). The mirror is composed of an upper and lower metal mirror and a light-emitting layer. The resonant cavity light-emitting diode of the present invention is formed by using a metal film to form a mirror. 2A is a resonant cavity light-emitting diode for forming a mirror by using a metal thin film according to the present invention. As shown in the figure, the layers of the structure are an upper metal mirror 204, a P-type cladding layer 201, a light-emitting layer 202, and an N-type coating. The cladding layer 203, the lower metal mirror 205, and the resonant cavity light-emitting diode structure formed by the Bragg mirror in FIG. 2B, as shown in the figure, each layer structure is an upper Bragg mirror 206, a P-type cladding layer 201, and a light-emitting layer. Layer 202, N-type cladding layer 203, and lower Bragg reflector 207, these two figures show the advantage that the Bragg mirror formed by replacing the pair of material groups with the thin film metal as a mirror has the advantages of simple structure, and by the mirror The excellent electrical/thermal characteristics of the metal can uniformly distribute the current perfused into the cavity of the resonant cavity to the luminescent layer for photoelectric conversion, thereby reducing the problem of poor luminescence properties of the device caused by the current crowding effect, and is generated in the luminescent layer. The Joule heat can also be quickly derived from the upper and lower metal mirrors respectively to maintain the stability of the device characteristics.

綜上所述,本發明歸納如下:一種利用金屬薄膜形成反射鏡的共振腔發光二極體,其包含:一磊晶基板,其上依序磊晶成長一成核層、一緩衝層、一N型披覆層、一發光層及一P型披覆層;一上反射鏡,於該P型披覆層表面形成一薄金屬層作為該上反射鏡,並於該上反射鏡表面再覆蓋一層透明之一介電質材料層作為保護;以及一下反射鏡,利用剝離技術將該磊晶基板給予剝除,並於剝除後之表面形成一高反射率之金屬層作為該下反射鏡。 In summary, the present invention is summarized as follows: a resonant cavity light-emitting diode using a metal film to form a mirror, comprising: an epitaxial substrate on which a nucleation layer, a buffer layer, and a buffer layer are sequentially grown. An N-type cladding layer, a light-emitting layer and a P-type cladding layer; an upper mirror forming a thin metal layer on the surface of the P-type cladding layer as the upper mirror, and covering the surface of the upper mirror A layer of transparent dielectric material is used as a protection; and a lower mirror is used to strip the epitaxial substrate by a lift-off technique, and a high-reflectivity metal layer is formed on the surface after stripping as the lower mirror.

在本發明中,其中該磊晶基板係為藍寶石(sapphire)基板,而該緩衝層 係為無摻雜之氮化鎵(GaN)。 In the present invention, the epitaxial substrate is a sapphire substrate, and the buffer layer It is undoped gallium nitride (GaN).

在本發明中,其中該薄金屬層係為銀金屬,其厚度決定可依該上反射鏡所需之反射率與穿透率決定。 In the present invention, wherein the thin metal layer is silver metal, the thickness thereof is determined by the reflectance and transmittance required for the upper mirror.

在本發明中,其中該高反射率之金屬層係為鎳(Ni)/銀(Ag)/鈦(Ti)/金(Au)金屬或銀(Ag)/鉻(Cr)/金(Au)金屬,兼具該下反射鏡及歐姆接觸電極功能。 In the present invention, the high reflectivity metal layer is nickel (Ni) / silver (Ag) / titanium (Ti) / gold (Au) metal or silver (Ag) / chromium (Cr) / gold (Au) The metal has both the lower mirror and the ohmic contact electrode function.

一種利用金屬薄膜形成反射鏡的共振腔發光二極體,其主要結構包含:一磊晶基板,其上依序磊晶成長一成核層、一緩衝層、一N型披覆層、一發光層及一P型披覆層;一下反射鏡,於該P型披覆層表面形成一高反射率之金屬層為該下反射鏡;以及一上反射鏡,利用剝離技術將該磊晶基板給予剝除,並於剝除之表面形成一指叉形狀金屬層,該指叉形狀金屬層間隙之表面區域則形成作為該上反射鏡所需之一薄金屬層,最後於該上反射鏡表面再覆蓋一層透明之一介電質材料層作為保護。 A resonant cavity light-emitting diode using a metal film to form a mirror, the main structure comprising: an epitaxial substrate, which is sequentially epitaxially grown to form a nucleation layer, a buffer layer, an N-type cladding layer, and a light-emitting layer a layer and a P-type cladding layer; a lower mirror forming a high reflectivity metal layer on the surface of the P-type cladding layer as the lower mirror; and an upper mirror for imparting the epitaxial substrate by a lift-off technique Stripping, and forming an interdigitated metal layer on the stripped surface, the surface area of the interdigitated metal layer gap forming a thin metal layer required as the upper mirror, and finally on the surface of the upper mirror Covered with a layer of transparent dielectric material for protection.

在本發明中,其中該磊晶基板係為藍寶石(sapphire)基板,而該緩衝層係為無摻雜之氮化鎵(GaN)。 In the present invention, the epitaxial substrate is a sapphire substrate, and the buffer layer is undoped gallium nitride (GaN).

在本發明中,其中該薄金屬層係為銀金屬,其厚度決定可依該上反射鏡所需之反射率與穿透率決定。 In the present invention, wherein the thin metal layer is silver metal, the thickness thereof is determined by the reflectance and transmittance required for the upper mirror.

在本發明中,其中該高反射率之金屬層係為鎳(Ni)/銀(Ag)/鈦(Ti)/金(Au)金屬或銀(Ag)/鉻(Cr)/金(Au)金屬,兼具該下反射鏡及歐姆接觸電極功能。 In the present invention, the high reflectivity metal layer is nickel (Ni) / silver (Ag) / titanium (Ti) / gold (Au) metal or silver (Ag) / chromium (Cr) / gold (Au) The metal has both the lower mirror and the ohmic contact electrode function.

一種利用金屬薄膜形成反射鏡的共振腔發光二極體之製作方法,其至少包含下列步驟:於一發光二極體結構之一P型披覆層表面利用半導體製程技術定義出一出光區域及一P型接觸電極區域;然後在該出光區域依序形成一透明導電層及一薄銀金屬,該薄銀金屬層的表面再覆蓋一層透明之 一介電質材料層作為保護;接著在該P型接觸電極區域依序形成一二氧化矽層及一金屬層,其中該金屬層需確認與該透明導電層保持良好電性連接;將該發光二極體之一正面利用蠟(wax)黏貼於一玻璃暫時基板上,並將該發光二極體之一背面之一磊晶基板磨薄,再選擇一適當波長之雷射將其照射於該磊晶基板,進行該磊晶基板之剝離;以及於一N型披覆層表面形成高反射率之一銀(Ag)/鉻(Cr)金屬層,以作為該N型披覆層之歐姆電極並兼具該下反射鏡功能,該銀(Ag)/鉻(Cr)金屬層表面則再覆蓋一金(Au)金屬,以便透過焊料和鍍金的永久基板結合並移除該玻璃暫時基板。 A method for fabricating a resonant cavity light-emitting diode using a metal film to form a mirror, comprising at least the following steps: defining a light-emitting region and a light-emitting region by using a semiconductor process technology on a surface of a P-type cladding layer of a light-emitting diode structure a P-type contact electrode region; then a transparent conductive layer and a thin silver metal are sequentially formed in the light-emitting region, and the surface of the thin silver metal layer is covered with a transparent layer a dielectric material layer is used as a protection; then a cerium oxide layer and a metal layer are sequentially formed in the P-type contact electrode region, wherein the metal layer needs to be confirmed to maintain a good electrical connection with the transparent conductive layer; One of the diodes is adhered to a glass temporary substrate by a wax, and an epitaxial substrate of one of the back surfaces of the LED is thinned, and then a laser of a suitable wavelength is selected to irradiate the light. Epitaxial substrate, performing stripping of the epitaxial substrate; and forming a silver (Ag)/chromium (Cr) metal layer with high reflectivity on the surface of an N-type cladding layer as an ohmic electrode of the N-type cladding layer And the lower mirror function, the surface of the silver (Ag) / chromium (Cr) metal layer is covered with a gold (Au) metal to bond and remove the glass temporary substrate through the solder and the gold plated permanent substrate.

在本發明中,其中該透明導電層係為銦錫氧化物(Indium Tin Oxide,ITO)或摻鋁氧化鋅(Al-doped ZnO,AZO),使灌注電流可均勻分佈於共振腔之該發光二極體之發光層,減少因電流擁擠效應所產生元件發光特性不佳的問題。 In the present invention, the transparent conductive layer is Indium Tin Oxide (ITO) or Al-doped ZnO (AZO), so that the perfusion current can be uniformly distributed in the resonant cavity. The luminescent layer of the polar body reduces the problem of poor light-emitting characteristics of the components due to the current crowding effect.

在本發明中,其中該適當波長之雷射係為波長248nm KrF準分子雷射,其係利用光與物質交互作用的原理,讓藍寶石基板無法吸收此一能量的光子,可是卻可以被GaN成核層吸收的特性來進行該磊晶基板剝離。 In the present invention, the laser of the appropriate wavelength is a KrF excimer laser with a wavelength of 248 nm, which utilizes the principle of interaction between light and matter, so that the sapphire substrate cannot absorb the photon of the energy, but can be formed by GaN. The epitaxial substrate is peeled off by the characteristics of the core layer absorption.

一種利用金屬薄膜形成反射鏡的共振腔發光二極體之製作方法,其步驟包含:於一發光二極體結構之一P型披覆層表面形成高反射率之一鎳(Ni)/銀(Ag)金屬層,再於該鎳(Ni)/銀(Ag)金屬層表面形成一鈦(Ti)/金(Au)金屬層,以便與鍍金之永久基板結合;將該發光二極體之一正面利用蠟(wax)黏貼於一玻璃暫時基板上,並將該發光二極體之一背面之一磊晶基板磨薄,再選擇一適當波長之雷射將其照射於該發光二極體之該磊晶基板,進行該磊晶基板之剝離;剝離後之一N型披覆層表面則依序形成指叉形狀之一鉻 (Cr)金屬層與一金(Au)金屬層,分別作為該N型披覆層之歐姆電極與元件封裝處理之接觸電極;以及最後再覆蓋一銀(Ag)金屬層作為保護之一透明介電質材料層。 A method for fabricating a resonant cavity light-emitting diode using a metal film to form a mirror, the method comprising: forming one of high reflectivity nickel (Ni)/silver on a surface of a P-type cladding layer of a light-emitting diode structure ( a metal layer, and a titanium (Ti)/gold (Au) metal layer is formed on the surface of the nickel (Ni)/silver (Ag) metal layer to bond with the gold plated permanent substrate; one of the light emitting diodes The front side is adhered to a glass temporary substrate by using a wax, and an epitaxial substrate of one of the back surfaces of the light-emitting diode is thinned, and then a laser of a suitable wavelength is selected to irradiate the light-emitting diode. The epitaxial substrate is subjected to stripping of the epitaxial substrate; and one of the N-type cladding layers after peeling is sequentially formed into one of the fingers a (Cr) metal layer and a gold (Au) metal layer respectively serving as contact electrodes for the ohmic electrode and the component packaging treatment of the N-type cladding layer; and finally covering a silver (Ag) metal layer as a protective transparent layer A layer of electrical material.

在本發明中,其中該適當波長之雷射係為波長248nm KrF準分子雷射,其係利用光與物質交互作用的原理,讓藍寶石基板無法吸收此一能量的光子,可是卻可以被GaN成核層吸收的特性來進行該磊晶基板剝離。 In the present invention, the laser of the appropriate wavelength is a KrF excimer laser with a wavelength of 248 nm, which utilizes the principle of interaction between light and matter, so that the sapphire substrate cannot absorb the photon of the energy, but can be formed by GaN. The epitaxial substrate is peeled off by the characteristics of the core layer absorption.

在本發明中,其中指叉形狀之該接觸電極之間隙之出光區域表面形成作為該上反射鏡所需薄銀(Ag)金屬層,其厚度依照反射率的要求決定。 In the present invention, the surface of the light-emitting region of the gap of the contact electrode in the shape of the interdigitation forms a thin silver (Ag) metal layer required as the upper mirror, and the thickness thereof is determined in accordance with the reflectance.

本發明所提供之一種利用金屬薄膜形成反射鏡的共振腔發光二極體,與前述引證案及其他習用技術相互比較時,更具有下列優點: The resonant cavity light-emitting diode provided by the invention for forming a mirror by using a metal film has the following advantages when compared with the above cited documents and other conventional techniques:

1.本發明所提供之一種利用金屬薄膜形成反射鏡的共振腔發光二極體,利用調整金屬的厚度來改變其對光的反射率與穿透率,以作為共振腔發光二極體所需之反射鏡,具有配合共振腔設計彈性運用及簡化反射鏡製造優點。 1. The present invention provides a resonant cavity light-emitting diode using a metal film to form a mirror, and the thickness and the transmittance of the metal are adjusted to adjust the reflectance and transmittance of the light to be used as a resonant cavity light-emitting diode. The mirror has the advantages of elastic design in conjunction with the resonant cavity design and simplified mirror manufacturing.

2.本發明所提供之一種利用金屬薄膜形成反射鏡的共振腔發光二極體,可以藉由金屬優良導熱性將發光二極體所產生的焦耳熱分別由上、下兩個金屬反射鏡迅速導出,以提高元件的散熱性並改善元件因熱效應導致發光效率衰退的現象。 2. The invention provides a resonant cavity light-emitting diode using a metal film to form a mirror, and the Joule heat generated by the light-emitting diode can be rapidly separated from the upper and lower metal mirrors by the excellent thermal conductivity of the metal. Derived to improve the heat dissipation of the component and improve the degradation of the luminous efficiency of the component due to thermal effects.

3.本發明所提供之一種利用金屬薄膜形成反射鏡的共振腔發光二極體,以金屬所形成反射鏡可以兼作歐姆接觸電極,使其電流可以均勻灌注於發光層而避免因電流擁擠效應所元件發光特性不佳的問題。 3. The invention provides a resonant cavity light-emitting diode using a metal film to form a mirror. The mirror formed by metal can also serve as an ohmic contact electrode, so that the current can be uniformly poured into the light-emitting layer to avoid the current crowding effect. The problem of poor light-emitting characteristics of components.

惟以上所述者,僅為本發明之較佳實施例而已,當不能以此限定本發 明實施之範圍,即大凡依本發明申請專利範圍及發明說明書內容所作之簡單的等效變化與修飾,皆應仍屬本發明專利涵蓋之範圍內。 However, the above description is only a preferred embodiment of the present invention, and the present invention cannot be limited thereto. The scope of the invention, that is, the simple equivalent changes and modifications made by the present invention in the scope of the invention and the scope of the invention are still within the scope of the invention.

為了使本發明的目的、技術方案及優點更加清楚明白,下面結合附圖及實施例,對本發明進行進一步詳細說明。應當理解,此處所描述的具體實施例僅用以解釋本發明,但並不用於限定本發明。以下,結合附圖對本發明進一步說明:本發明主要係應用金屬薄膜來形成共振腔發光二極體所需之反射鏡,藉以簡化共振腔發光二極體的製程並獲得穩定的元件特性,其係利用改變金屬厚度以調整其對發光波長的反射率與穿透率,此外金屬對電及熱的優良傳導特性可進一步增加元件在高電流密度下之操作能力。在本發明之實施例中,金屬鍍膜可以使用如銀(Ag)金屬,它在厚度10nm至30nm之間對400nm至900nm波長範圍具有較大反射率與穿透率變化,可以作為共振腔發光二極體的上反射鏡,而大於40nm厚度的銀則因其具有較大反射率與較小穿透率,則適合作為下反射鏡。接著以二種實施例來說明本發明方法之實現步驟及其優點。但非用來限制本發明之範圍。 The present invention will be further described in detail below with reference to the accompanying drawings and embodiments. It is understood that the specific embodiments described herein are merely illustrative of the invention and are not intended to limit the invention. Hereinafter, the present invention will be further described with reference to the accompanying drawings: the present invention mainly uses a metal film to form a mirror required for a resonant cavity light-emitting diode, thereby simplifying the process of the resonant cavity light-emitting diode and obtaining stable component characteristics. By varying the thickness of the metal to adjust its reflectance and transmittance to the wavelength of the light, in addition, the excellent electrical conductivity of the metal to electricity and heat can further increase the ability of the component to operate at high current densities. In the embodiment of the present invention, the metal plating film may use, for example, a silver (Ag) metal, which has a large reflectance and transmittance change in a wavelength range of 400 nm to 900 nm between 10 nm and 30 nm in thickness, and can be used as a resonant cavity. The upper mirror of the polar body, while the silver of thickness greater than 40 nm is suitable as a lower mirror because of its large reflectivity and small transmittance. The implementation steps of the method of the invention and its advantages are next illustrated in two embodiments. However, it is not intended to limit the scope of the invention.

第一實施例:First embodiment:

請參考圖3係為本發明之一種利用金屬薄膜形成反射鏡的共振腔發光二極體之結構,發光二極體結構300為具有P型披覆層306、發光層305、N型披覆層304、緩衝層303、成核層302及磊晶基板301所組成。其中磊晶基板301為藍寶石(sapphire)基板,成核層302為氮化鎵(GaN)可作為幫助 磊晶成長氮化物材料之用,緩衝層303為無摻雜之氮化鎵(GaN),發光層305為多重量子井(Quantum Well)由無摻雜InGaN及GaN材料所構成,P型披覆層306與N型披覆層304則分別由Mg摻雜(Mg-doped)與Si摻雜(Si-doped)之GaN材料所構成。圖4則為本發明之一種利用金屬薄膜形成反射鏡的共振腔發光二極體製造流程圖,圖5至圖8為依照圖4之製造流程所對應之的第一實施例產物結構圖。首先如圖5所示進行步驟401,在P型披覆層306表面利用半導體製程技術定義出光區域501及P型接觸電極區域502,然後在其發光區域501依序形成透明導電層503及薄銀(Ag)金屬504,其中透明導電層503可為銦錫氧化物(Indium Tin Oxide;ITO)或摻鋁氧化鋅(Al-doped ZnO;AZO),以促進灌注電流可均勻分佈於共振腔發光二極體的發光層305,減少因電流擁擠效應所產生元件發光特性不佳的問題;薄銀金屬層504則作為上金屬反射鏡其厚度決定於對反射率的要求,薄銀金屬層(上金屬反射鏡)504的表面再覆蓋一層透明的介電質材料層505作為保護。接著進行步驟402在P型接觸電極區域502依序形成二氧化矽層601及鉻(Cr)/金(Au)金屬層602,其中二氧化矽層601是作為P型接觸電極下的電流阻障層,可減少電極下方產生光放射並被金屬電極吸收的問題。此外,金屬層602需確認與透明導電層503保持良好電性連接,並可作為元件封裝處理的接觸電極,如圖6所示。然後進行步驟403,如圖7所示將完成上述製程步驟之發光二極體的正面利用蠟(wax)黏貼於玻璃暫時基板701上,並將其背面磊晶基板(藍寶石基板)301磨薄,再選擇適當波長的雷射將其照射於發光二極體的背面,利用光與物質交互作用的原理,讓藍寶石基板301無法吸收此一能量的光子,可是卻可以被GaN成核層302吸收的特性來進 行磊晶基板剝離。其中雷射可以使用波長為248nm KrF準分子雷射,其能量可被GaN成核層302所吸收而汽化分解來達到GaN緩衝層303與基材(藍寶石基板)301分離的目的,剝離的表面通常會佈滿鎵(Ga)金屬,可用鹽酸水溶液(鹽酸比水1:1)清洗移除,此外,為了在N型披覆層304上形成歐姆電極,可再利用感應耦合電漿活性離子蝕刻(ICP-RIE)將未摻雜之GaN緩衝層303去除。最後進行步驟404,在乾淨的N型披覆層304表面形成高反射率的銀(Ag)/鉻(Cr)金屬層801以作為N型披覆層304的歐姆電極並兼具下反射鏡功能,銀(Ag)/鉻(Cr)金屬層801表面則再覆蓋金(Au)金屬802,以便透過焊料和鍍金的永久基板803結合並移除玻璃暫時基板701,如圖8所示,即完成本發明之一種利用金屬薄膜形成反射鏡的共振腔發光二極體的第一實施例。 Please refer to FIG. 3 , which is a structure of a resonant cavity light-emitting diode using a metal film to form a mirror. The light-emitting diode structure 300 has a P-type cladding layer 306 , a light-emitting layer 305 , and an N-type cladding layer . 304, buffer layer 303, nucleation layer 302 and epitaxial substrate 301. The epitaxial substrate 301 is a sapphire substrate, and the nucleation layer 302 is gallium nitride (GaN). For epitaxial growth of a nitride material, the buffer layer 303 is undoped gallium nitride (GaN), and the light-emitting layer 305 is a multi-quantum well (Quantum Well) composed of undoped InGaN and GaN materials, P-type cladding The layer 306 and the N-type cladding layer 304 are respectively composed of Mg-doped and Si-doped GaN materials. 4 is a flow chart of manufacturing a resonant cavity light-emitting diode using a metal film to form a mirror according to the present invention, and FIGS. 5 to 8 are product structure diagrams of the first embodiment corresponding to the manufacturing flow of FIG. First, step 401 is performed as shown in FIG. 5, and the light-emitting region 501 and the P-type contact electrode region 502 are defined on the surface of the P-type cladding layer 306 by using a semiconductor process technology, and then the transparent conductive layer 503 and the thin silver are sequentially formed in the light-emitting region 501. (Ag) metal 504, wherein the transparent conductive layer 503 can be Indium Tin Oxide (ITO) or Al-doped ZnO (AZO) to promote uniform distribution of the perfusion current in the resonant cavity. The luminescent layer 305 of the polar body reduces the problem of poor light-emitting characteristics of the element due to the current crowding effect; the thickness of the thin silver metal layer 504 as the upper metal mirror depends on the reflectivity requirement, and the thin silver metal layer (upper metal) The surface of the mirror 504 is further covered with a layer of transparent dielectric material 505 for protection. Next, in step 402, a ceria layer 601 and a chromium (Cr)/gold (Au) metal layer 602 are sequentially formed in the P-type contact electrode region 502, wherein the ceria layer 601 functions as a current barrier under the P-type contact electrode. The layer can reduce the problem of light emission under the electrode and absorption by the metal electrode. In addition, the metal layer 602 needs to be confirmed to be in good electrical connection with the transparent conductive layer 503, and can be used as a contact electrode for component packaging processing, as shown in FIG. Then, in step 403, the front surface of the light-emitting diode in which the above-mentioned process steps are completed is adhered to the glass temporary substrate 701 by a wax as shown in FIG. 7, and the back surface epitaxial substrate (sapphire substrate) 301 is thinned. The laser of the appropriate wavelength is selected to illuminate the back surface of the light-emitting diode, and the sapphire substrate 301 can not absorb the photon of the energy by the principle of interaction between the light and the substance, but can be absorbed by the GaN nucleation layer 302. Features come in The epitaxial substrate is peeled off. The laser can use a KrF excimer laser with a wavelength of 248 nm, and the energy can be absorbed by the GaN nucleation layer 302 to be vaporized and decomposed to achieve the separation of the GaN buffer layer 303 from the substrate (sapphire substrate) 301. The stripped surface is usually It will be covered with gallium (Ga) metal, which can be cleaned and removed with an aqueous hydrochloric acid solution (hydrochloric acid ratio of 1:1). In addition, in order to form an ohmic electrode on the N-type cladding layer 304, inductively coupled plasma reactive ion etching can be reused ( The undoped GaN buffer layer 303 is removed by ICP-RIE. Finally, in step 404, a high reflectivity silver (Ag)/chromium (Cr) metal layer 801 is formed on the surface of the clean N-type cladding layer 304 as an ohmic electrode of the N-type cladding layer 304 and has a lower mirror function. The surface of the silver (Ag)/chromium (Cr) metal layer 801 is then covered with gold (Au) metal 802 to bond and remove the glass temporary substrate 701 through the solder and the gold plated permanent substrate 803, as shown in FIG. A first embodiment of a resonant cavity light-emitting diode of the present invention which utilizes a metal thin film to form a mirror.

第二實施例:Second embodiment:

而,本發明一種利用金屬薄膜形成反射鏡的共振腔發光二極體之第二實施例,其製作流程與該第一實施例相似,其不同處在於所出光方向相反,因此其上、下金屬反射鏡形成順序有所不同,今僅就本第二實施例中形成金屬反射鏡的步驟401與步驟404詳加說明。 However, the second embodiment of the present invention is a resonant cavity light-emitting diode using a metal film to form a mirror. The manufacturing process is similar to that of the first embodiment. The difference is that the light is emitted in the opposite direction, so the upper and lower metals are The order in which the mirrors are formed differs, and only the steps 401 and 404 of forming the metal mirror in the second embodiment will be described in detail.

參閱圖9,進行步驟401於一發光二極體結構300之P型披覆層306表面形成高反射率的鎳(Ni)/銀(Ag)金屬層901,鎳(Ni)/銀(Ag)金屬層901表面則再形成鈦(Ti)/金(Au)金屬層902以便與鍍金的永久基板903結合。由於金屬層901兼具與P型披覆層306形成歐姆電極及下反射鏡功能,因此可以省略步驟402直接依照第一實施例步驟403進行將基材給予剝離。剝離後乾淨N型披覆層304表面則進行步驟404依序形成指叉形狀的鉻(Cr)金屬 層1001與金(Au)金屬層1002,分別作為N型披覆層304的歐姆電極與元件封裝處理的接觸電極,其中指叉形狀電極是為方便電子能夠均勻灌注入於共振腔發光二極體的發光層305。指叉形狀電極間隙的出光區域表面則形成作為上反射鏡所需薄銀(Ag)金屬層1003,其厚度依照反射率的要求決定,最後銀(Ag)金屬層1003再覆蓋作為保護的透明介電質材料層1004,如圖10所示,即完成本發明之一種利用金屬薄膜形成反射鏡的共振腔發光二極體第二實施例。 Referring to FIG. 9, step 401 is performed to form a high reflectivity nickel (Ni)/silver (Ag) metal layer 901 on the surface of the P-type cladding layer 306 of a light-emitting diode structure 300, and nickel (Ni)/silver (Ag). A surface of the metal layer 901 is further formed with a titanium (Ti)/gold (Au) metal layer 902 for bonding with the gold plated permanent substrate 903. Since the metal layer 901 has the function of forming the ohmic electrode and the lower mirror together with the P-type cladding layer 306, the step 402 can be omitted, and the substrate can be directly peeled off according to the step 403 of the first embodiment. After peeling off the surface of the N-type cladding layer 304, step 404 is sequentially formed to form the interdigitated chromium (Cr) metal. The layer 1001 and the gold (Au) metal layer 1002 are respectively used as the ohmic electrode of the N-type cladding layer 304 and the contact electrode of the component packaging process, wherein the interdigitated electrode is capable of uniformly infiltrating the cavity into the resonant cavity light-emitting diode Light-emitting layer 305. The surface of the light exiting region of the interdigitated electrode gap forms a thin silver (Ag) metal layer 1003 as an upper mirror, the thickness of which is determined according to the reflectivity requirement, and finally the silver (Ag) metal layer 1003 is further covered as a transparent transparent layer. The electro-chemical material layer 1004, as shown in Fig. 10, is a second embodiment of a resonant cavity light-emitting diode of the present invention which uses a metal thin film to form a mirror.

以上該僅為本發明之較佳實施例,並非用來限定本發明之實施範圍;如果不脫離本發明之精神和範圍,對本發明進行修改或者等同替換,均應涵蓋在本發明申請專利範圍的保護範圍當中。 The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention; the modifications and equivalents of the present invention are intended to be included in the scope of the present invention without departing from the spirit and scope of the invention. Within the scope of protection.

101‧‧‧厚度為30nm的薄銀金屬在各種波長下反射率曲線 101‧‧ ‧ reflectance curve of thin silver metal with thickness of 30 nm at various wavelengths

102‧‧‧厚度為20nm的薄銀金屬在各種波長下反射率曲線 102‧‧ ‧ reflectance curve of thin silver metal with a thickness of 20 nm at various wavelengths

103‧‧‧厚度為10nm的薄銀金屬在各種波長下反射率曲線 103‧‧‧ Reflectance curve of thin silver metal with a thickness of 10 nm at various wavelengths

104‧‧‧厚度為10nm的薄銀金屬在各種波長下穿透率曲線 104‧‧‧Transmission curve of thin silver metal with a thickness of 10 nm at various wavelengths

105‧‧‧厚度為20nm的薄銀金屬在各種波長下穿透率曲線 105‧‧‧Transmission curve of thin silver metal with a thickness of 20nm at various wavelengths

106‧‧‧厚度為30nm的薄銀金屬在各種波長下穿透率曲線 106‧‧‧Transmission curve of thin silver metal with thickness of 30nm at various wavelengths

201‧‧‧P型披覆層 201‧‧‧P type coating

202‧‧‧發光層 202‧‧‧Lighting layer

203‧‧‧N型披覆層 203‧‧‧N type coating

204‧‧‧上金屬反射鏡 204‧‧‧Upper metal mirror

205‧‧‧下金屬反射鏡 205‧‧‧Under metal mirror

206‧‧‧上布拉格反射鏡 206‧‧‧Upper Bragg reflector

207‧‧‧下布拉格反射鏡 207‧‧‧ Lower Bragg reflector

300‧‧‧發光二極體結構 300‧‧‧Lighting diode structure

301‧‧‧磊晶基板 301‧‧‧ epitaxial substrate

302‧‧‧成核層 302‧‧‧ nucleation layer

303‧‧‧緩衝層 303‧‧‧buffer layer

304‧‧‧N型披覆層 304‧‧‧N type coating

305‧‧‧發光層 305‧‧‧Lighting layer

306‧‧‧P型披覆層 306‧‧‧P type coating

401‧‧‧步驟 401‧‧‧ steps

402‧‧‧步驟 402‧‧‧Steps

403‧‧‧步驟 403‧‧‧Steps

404‧‧‧步驟 404‧‧‧Steps

501‧‧‧出光區域 501‧‧‧Lighting area

502‧‧‧P型接觸電極區域 502‧‧‧P type contact electrode area

503‧‧‧透明導電層 503‧‧‧Transparent conductive layer

504‧‧‧銀(Ag)金屬層(上金屬反射鏡) 504‧‧‧Silver (Ag) metal layer (upper metal mirror)

505‧‧‧介電質材料層 505‧‧‧ dielectric material layer

601‧‧‧二氧化矽(SiO2)層 601‧‧‧ cerium oxide (SiO 2 ) layer

602‧‧‧鉻(Cr)/金(Au)金屬層 602‧‧‧Chromium (Cr)/gold (Au) metal layer

701‧‧‧玻璃暫時基板 701‧‧‧glass temporary substrate

801‧‧‧銀(Ag)/鉻(Cr)金屬層 801‧‧‧Silver (Ag)/chromium (Cr) metal layer

802‧‧‧金(Au)金屬層 802‧‧‧ gold (Au) metal layer

803‧‧‧鍍金永久基板 803‧‧‧ gold plated permanent substrate

901‧‧‧鎳(Ni)/銀(Ag)金屬層(下金屬反射鏡) 901‧‧‧ Nickel (Ni) / Silver (Ag) metal layer (lower metal mirror)

902‧‧‧鈦(Ti)/金(Au)金屬層 902‧‧‧Titanium (Ti)/gold (Au) metal layer

903‧‧‧鍍金永久基板 903‧‧‧ Gold plated permanent substrate

1001‧‧‧鉻(Cr)金屬層 1001‧‧‧Chromium (Cr) metal layer

1002‧‧‧金(Au)金屬層 1002‧‧‧ gold (Au) metal layer

1003‧‧‧銀(Ag)金屬層(上金屬反射鏡) 1003‧‧‧Silver (Ag) metal layer (upper metal mirror)

1004‧‧‧介電質材料層 1004‧‧‧ dielectric material layer

圖1 係為銀金屬在不同厚度下各種波長下反射率曲線及穿透率曲線;圖2A 係為金屬薄膜反射鏡所形成共振腔的發光二極體;圖2B 係為布拉格反射鏡所形成共振腔的發光二極體;圖3 係為本發明之發光二極體結構;圖4 係為本發明之一種利用金屬薄膜形成反射鏡的共振腔發光二極體的製造流程圖;圖5 係為本發明之一種利用金屬薄膜形成反射鏡的共振腔發光二極體之製造流程,進行步驟401後對應之的第一實施例的產物結構圖;圖6 係為本發明之一種利用金屬薄膜形成反射鏡的共振腔發光二極體之製造流程,進行步驟402後對應之的第一實施例的產物結構圖; 圖7 係為本發明之一種利用金屬薄膜形成反射鏡的共振腔發光二極體之製造流程,進行步驟403後對應之的第一實施例的產物結構圖;圖8 係為本發明之一種利用金屬薄膜形成反射鏡的共振腔發光二極體之製造流程,進行步驟404後對應之的第一實施例的產物結構圖;圖9 係為本發明之一種利用金屬薄膜形成反射鏡的共振腔發光二極體之製造流程,進行步驟401後對應之的第二實施例的產物結構圖;圖10 係為本發明之一種利用金屬薄膜形成反射鏡的共振腔發光二極體之製造流程,進行步驟404後對應之的第二實施例的產物結構圖; Figure 1 shows the reflectance curve and transmittance curve of silver metal at various wavelengths at different thicknesses; Figure 2A shows the light-emitting diode of the resonant cavity formed by the metal film mirror; Figure 2B shows the resonance of the Bragg mirror. The light-emitting diode of the cavity; FIG. 3 is a structure of the light-emitting diode of the present invention; FIG. 4 is a flow chart of manufacturing a resonant cavity light-emitting diode using a metal film to form a mirror; The manufacturing process of the resonant cavity light-emitting diode using the metal film to form the mirror, the product structure diagram of the first embodiment corresponding to the step 401 is performed; FIG. 6 is a reflection of the metal film according to the present invention. a manufacturing process of the resonant cavity light-emitting diode of the mirror, and a product structure diagram of the first embodiment corresponding to the step 402; 7 is a manufacturing process diagram of a resonant cavity light-emitting diode using a metal thin film to form a mirror according to the present invention, and a product structure diagram of the first embodiment corresponding to step 403 is performed; FIG. 8 is a use of the present invention. The manufacturing process of the resonant cavity light-emitting diode forming the mirror of the metal film, the product structure diagram of the first embodiment corresponding to the step 404 is performed; FIG. 9 is a resonant cavity light-emitting of the mirror formed by the metal film of the present invention. The manufacturing process of the diode, the product structure diagram of the second embodiment corresponding to the step 401; FIG. 10 is a manufacturing process of the resonant cavity light-emitting diode using the metal film to form the mirror, and the steps are performed. a product structure diagram of the second embodiment corresponding to 404;

步驟401~步驟404 Step 401 to step 404

Claims (6)

一種利用金屬薄膜形成反射鏡的共振腔發光二極體之製作方法,其至少包含下列步驟:(1)於一發光二極體結構之一P型披覆層表面利用半導體製程技術定義出一出光區域及一P型接觸電極區域;(2)然後在該出光區域依序形成一透明導電層及一薄銀金屬,該薄銀金屬層的表面再覆蓋一層透明之一介電質材料層作為保護;(3)接著在該P型接觸電極區域依序形成一二氧化矽層及一金屬層,其中該金屬層需確認與該透明導電層保持良好電性連接;(4)將該發光二極體之一正面利用蠟(wax)黏貼於一玻璃暫時基板上,並將該發光二極體之一背面之一磊晶基板磨薄,再選擇一適當波長之雷射將其照射於該磊晶基板,進行該磊晶基板之剝離;以及(5)於一N型披覆層表面形成高反射率之一銀(Ag)/鉻(Cr)金屬層,以作為該N型披覆層之歐姆電極並兼具該下反射鏡功能,該銀(Ag)/鉻(Cr)金屬層表面則再覆蓋一金(Au)金屬,以便透過焊料和鍍金的永久基板結合並移除該玻璃暫時基板。 A method for fabricating a resonant cavity light-emitting diode using a metal film to form a mirror, comprising at least the following steps: (1) defining a light using a semiconductor process technology on a surface of a P-type cladding layer of a light-emitting diode structure a region and a P-type contact electrode region; (2) then sequentially forming a transparent conductive layer and a thin silver metal in the light-emitting region, the surface of the thin silver metal layer being covered with a transparent layer of dielectric material as protection (3) sequentially forming a ruthenium dioxide layer and a metal layer in the P-type contact electrode region, wherein the metal layer needs to be confirmed to maintain a good electrical connection with the transparent conductive layer; (4) the light-emitting diode One of the bodies is adhered to a glass temporary substrate by a wax, and an epitaxial substrate of one of the back surfaces of the light-emitting diode is thinned, and then a laser of appropriate wavelength is irradiated to the epitaxial layer. Substrate, performing stripping of the epitaxial substrate; and (5) forming a silver (Ag)/chromium (Cr) metal layer of high reflectivity on the surface of an N-type cladding layer as an ohmic layer of the N-type cladding layer Electrode and the function of the lower mirror, the silver (Ag) / chromium (Cr) The surface of the metal layer is then covered with a gold (Au) metal to bond and remove the glass temporary substrate through the solder and the gold plated permanent substrate. 如申請專利範圍第1項所述之一種利用金屬薄膜形成反射鏡的共振腔發光二極體之製作方法,其中該透明導電層係為銦錫氧化物(Indium Tin Oxide,ITO)或摻鋁氧化鋅(Al-doped ZnO,AZO),使灌注電流可均勻分佈於共振腔之該發光二極體之發光層,減少因電流擁擠效應所產生元件發光特性不佳的問題。 The method for fabricating a resonant cavity light-emitting diode using a metal thin film forming mirror according to claim 1, wherein the transparent conductive layer is indium tin oxide (ITO) or aluminum-doped oxide. Zinc (Al-doped ZnO, AZO) allows the perfusion current to be evenly distributed in the light-emitting layer of the light-emitting diode of the resonant cavity, thereby reducing the problem of poor light-emitting characteristics of the device due to the current crowding effect. 如申請專利範圍第1項所述之一種利用金屬薄膜形成反射鏡的共振腔發光二極體之製作方法,其中該適當波長之雷射係為波長248nm KrF準分子雷射,其係利用光與物質交互作用的原理,讓藍寶石基板無法吸收此一能量的光子,可是卻可以被GaN成核層吸收的特性來進行該磊晶基板剝離。 A method for fabricating a resonant cavity light-emitting diode using a metal thin film to form a mirror according to the first aspect of the invention, wherein the laser of the appropriate wavelength is a wavelength 248 nm KrF excimer laser, which utilizes light and The principle of material interaction makes the sapphire substrate unable to absorb photons of this energy, but the epitaxial substrate can be peeled off by the absorbing properties of the GaN nucleation layer. 一種利用金屬薄膜形成反射鏡的共振腔發光二極體之製作方法,其步驟包含:(1)於一發光二極體結構之一P型披覆層表面形成高反射率之一鎳(Ni)/銀(Ag)金屬層,再於該鎳(Ni)/銀(Ag)金屬層表面形成一鈦(Ti)/金(Au)金屬層,以便與鍍金之永久基板結合;(2)將該發光二極體之一正面利用蠟(wax)黏貼於一玻璃暫時基板上,並將該發光二極體之一背面之一磊晶基板磨薄,再選擇一適當波長之雷射將其照射於該發光二極體之該磊晶基板,進行該磊晶基板之剝離;(3)剝離後之一N型披覆層表面則依序形成指叉形狀之一鉻(Cr)金屬層與一金(Au)金屬層,分別作為該N型披覆層之歐姆電極與元件封裝處理之接觸電極;以及(4)最後再覆蓋一銀(Ag)金屬層作為保護之一透明介電質材料層。 A method for fabricating a resonant cavity light-emitting diode using a metal film to form a mirror, the steps comprising: (1) forming a high reflectivity nickel (Ni) on a surface of a P-type cladding layer of a light-emitting diode structure a /Silver (Ag) metal layer, and then forming a titanium (Ti) / gold (Au) metal layer on the surface of the nickel (Ni) / silver (Ag) metal layer for bonding with the gold plated permanent substrate; (2) One of the light-emitting diodes is adhered to a glass temporary substrate by a wax, and an epitaxial substrate of one of the back surfaces of the light-emitting diode is thinned, and then a laser of a suitable wavelength is selected to illuminate the light-emitting diode. The epitaxial substrate of the light-emitting diode performs stripping of the epitaxial substrate; (3) one surface of the N-type cladding layer after peeling sequentially forms a chromium (Cr) metal layer and a gold layer (Au) a metal layer respectively serving as a contact electrode for the ohmic electrode and the component packaging process of the N-type cladding layer; and (4) finally covering a silver (Ag) metal layer as a protective transparent material layer. 如申請專利範圍第4項所述之一種利用金屬薄膜形成反射鏡的共振腔發光二極體之製作方法,其中該適當波長之雷射係為波長248nm KrF準分子雷射,其係利用光與物質交互作用的原理,讓藍寶石基板無法吸收此一能量的光子,可是卻可以被GaN成核層吸收的特性來進行該磊晶基板 剝離。 A method for fabricating a resonant cavity light-emitting diode using a metal thin film to form a mirror according to the fourth aspect of the invention, wherein the laser of the appropriate wavelength is a wavelength 248 nm KrF excimer laser, which utilizes light and The principle of material interaction makes the sapphire substrate unable to absorb photons of this energy, but can be absorbed by the GaN nucleation layer to perform the epitaxial substrate. Stripped. 如申請專利範圍第4項所述之一種利用金屬薄膜形成反射鏡的共振腔發光二極體之製作方法,其中指叉形狀之該接觸電極之間隙之出光區域表面形成作為該上反射鏡所需薄銀(Ag)金屬層,其厚度依照反射率的要求決定。 A method for fabricating a resonant cavity light-emitting diode using a metal thin film to form a mirror according to the fourth aspect of the invention, wherein a surface of the light exiting region of the gap of the contact electrode in the shape of a fork is formed as the upper mirror The thickness of the thin silver (Ag) metal layer is determined by the reflectance requirements.
TW101127932A 2012-08-03 2012-08-03 Method for fabricating a resonant cavity light emitting diode using a metal thin film to form a mirror TWI552377B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101127932A TWI552377B (en) 2012-08-03 2012-08-03 Method for fabricating a resonant cavity light emitting diode using a metal thin film to form a mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101127932A TWI552377B (en) 2012-08-03 2012-08-03 Method for fabricating a resonant cavity light emitting diode using a metal thin film to form a mirror

Publications (2)

Publication Number Publication Date
TW201407819A TW201407819A (en) 2014-02-16
TWI552377B true TWI552377B (en) 2016-10-01

Family

ID=50550595

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101127932A TWI552377B (en) 2012-08-03 2012-08-03 Method for fabricating a resonant cavity light emitting diode using a metal thin film to form a mirror

Country Status (1)

Country Link
TW (1) TWI552377B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11049720B2 (en) * 2018-10-19 2021-06-29 Kla Corporation Removable opaque coating for accurate optical topography measurements on top surfaces of transparent films
CN116438667A (en) * 2020-11-18 2023-07-14 苏州晶湛半导体有限公司 Light emitting device and method of manufacturing the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201131750A (en) * 2010-03-15 2011-09-16 Genesis Photonics Inc Light emitting diode having a plurality of independent electrodes
TW201135965A (en) * 2011-06-21 2011-10-16 Univ Chang Gung Fabrication process for vertical dicing-free light-emitting diodes with metal substrate
TW201203621A (en) * 2010-05-06 2012-01-16 Koninkl Philips Electronics Nv Light emitting device grown on wavelength converting substrate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201131750A (en) * 2010-03-15 2011-09-16 Genesis Photonics Inc Light emitting diode having a plurality of independent electrodes
TW201203621A (en) * 2010-05-06 2012-01-16 Koninkl Philips Electronics Nv Light emitting device grown on wavelength converting substrate
TW201135965A (en) * 2011-06-21 2011-10-16 Univ Chang Gung Fabrication process for vertical dicing-free light-emitting diodes with metal substrate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
1、Chia-Lung Tsai, Jia-Qing Lin and Ju-Ping Huang, "Fabrication and characterization of the substrate-free InGaN-based resonant-cavity light-emitting diodes for plastic optical fiber communications", J. Vac. Sci. Technol. B 27(3), pp. 1080-1085 (2009) *

Also Published As

Publication number Publication date
TW201407819A (en) 2014-02-16

Similar Documents

Publication Publication Date Title
US7781780B2 (en) Light emitting diodes with smooth surface for reflective electrode
US8895332B2 (en) Light-emitting diode chip with high light extraction and method for manufacturing the same
US8525204B2 (en) Semiconductor light emitting element and illuminating apparatus using the same
US20090127575A1 (en) Light-Emitting Diode Chip With High Light Extraction And Method For Manufacturing The Same
CN103325913B (en) Light emitting diode with composite transparent conductive layer and preparation method thereof
GB2542542A (en) Vertical LED chip structure and manufacturing method therefor
KR20100050430A (en) Light emitting device with fine pattern
KR20100095134A (en) Light emitting device and method for fabricating the same
US20230317888A1 (en) Light emitting device and light emitting apparatus having the same
KR20150138977A (en) Light emitting device and method for fabrication the same
TW201521226A (en) Light emitting device
US20140217355A1 (en) Semiconductor light emitting device
CN101859828A (en) Manufacturing method of light-emitting diode (LED)
JP5116291B2 (en) LIGHT EMITTING ELEMENT AND LIGHTING DEVICE
TWI552377B (en) Method for fabricating a resonant cavity light emitting diode using a metal thin film to form a mirror
JP2009032958A (en) Light-emitting element and illuminator
JP2012178453A (en) GaN-BASED LED ELEMENT
KR100965242B1 (en) Light emitting diode with a plurality of insulator layers and fabrication method of the same
CN107591463B (en) Light emitting module and method for manufacturing light emitting module
TWI642204B (en) Light emitting diode device
TW201006003A (en) A LED that can increase light extraction yield
JP2009289947A (en) Light emitting element, and lighting apparatus
JP5037980B2 (en) Method for manufacturing gallium nitride compound semiconductor light emitting device
JP2007250714A (en) Light emitting element
CN220456887U (en) Resonant cavity light-emitting device based on nitride semiconductor

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees