TWI496651B - Detection apparatus and detection method by using the same - Google Patents
Detection apparatus and detection method by using the same Download PDFInfo
- Publication number
- TWI496651B TWI496651B TW102101546A TW102101546A TWI496651B TW I496651 B TWI496651 B TW I496651B TW 102101546 A TW102101546 A TW 102101546A TW 102101546 A TW102101546 A TW 102101546A TW I496651 B TWI496651 B TW I496651B
- Authority
- TW
- Taiwan
- Prior art keywords
- position sensor
- rotating shaft
- axis
- light beam
- disposed
- Prior art date
Links
Landscapes
- Machine Tool Sensing Apparatuses (AREA)
- Length Measuring Devices By Optical Means (AREA)
Description
本發明是有關於一種檢測裝置與檢測方法,且特別是有關於一種用於偵測多軸工具機的誤差與使用其之檢測方法。The present invention relates to a detecting device and a detecting method, and more particularly to an error for detecting a multi-axis machine tool and a detecting method using the same.
隨著工業技術不斷進步,產品可透過工具機被加工,以讓產品滿足高效率加工的需求。舉例而言,透過配設在三個線性軸上移動的機構可讓工具機成為三軸工具機。另外,透過既有的三個線性軸機構與兩個旋轉軸機構可讓工具機成為五軸工具機,其可應付日趨複雜的曲面加工或是結構更複雜的零件,如扇葉及引擎汽缸等。由於五軸工具機可具有五軸同動的特性,因此能讓產品大幅縮短被加工時間而增加生產效率,故五軸工具機已逐漸受到業界的重視與使用。As industrial technology continues to advance, products can be processed through machine tools to meet the needs of high-efficiency machining. For example, the machine tool can be made into a three-axis machine tool by means of a mechanism that is arranged to move on three linear axes. In addition, through the existing three linear axis mechanisms and two rotating shaft mechanisms, the machine tool can be used as a five-axis machine tool, which can cope with increasingly complex surface machining or more complex parts such as fan blades and engine cylinders. . Since the five-axis machine tool can have the characteristics of five axes, it can greatly shorten the processing time and increase the production efficiency. Therefore, the five-axis machine tool has gradually received attention and use in the industry.
對於提升上述多軸工具機的技術等級與加工精密度以滿足產品高品質的需求,可從兩方面進行改善。一種為改善工具機整體的結構精度,但此舉較為費時與費力花錢,無法快速解決目前業界迫切的需求。而另一種則是利用檢測裝置檢測出工具機的 誤差,並透過誤差補償方式還提升工具機的精度,此種方法不但快速且簡便。因此,目前業界大多朝向檢測工具機的誤差來提申工具機的技術等級與加工密度。In order to improve the technical grade and processing precision of the above multi-axis machine tool to meet the high quality requirements of the product, it can be improved in two aspects. One is to improve the structural accuracy of the overall machine tool, but this is more time-consuming and labor-intensive, and cannot quickly solve the urgent needs of the industry. The other is to detect the machine tool by using the detecting device. The error and the accuracy of the machine tool are also improved by the error compensation method. This method is not only fast and simple. Therefore, most of the industry currently refers to the error of the inspection machine tool to the technical level and processing density of the machine tool.
承上述,在習知檢測五軸工具機的誤差中可透過雙球桿桿循圓量測儀(Double Ball Bar,DBB)、雷射干涉儀、電子水平儀等裝置而達成。然而,該等裝置的檢測資訊僅能獲得單軸的誤差,而無法同時獲得多軸的誤差。故,對於五軸工具機的多軸同動之檢測,誠有加以改善之處。According to the above, in the conventional detection of the error of the five-axis machine tool, it can be achieved by means of a double ball bar (DBB), a laser interferometer, an electronic level device and the like. However, the detection information of these devices can only obtain single-axis errors, and it is not possible to obtain multi-axis errors at the same time. Therefore, the detection of multi-axis simultaneous motion of the five-axis machine tool has been improved.
本發明提供一種檢測裝置,其具有夾一銳角的兩道光束,且兩道光束分別入射於兩個位置感測器內以同時偵測多軸工具機的多軸誤差。The invention provides a detecting device having two beams with an acute angle, and two beams are respectively incident on two position sensors to simultaneously detect multi-axis errors of the multi-axis machine tool.
本發明提供一種檢測方法,其藉由上述檢測裝置以同時偵測多軸工具機的多軸誤差。The present invention provides a detection method for simultaneously detecting a multi-axis error of a multi-axis machine tool by the above-described detecting device.
本發明的檢測裝置用以檢測多軸工具機的誤差。多軸工具機具有轉軸與主軸。檢測裝置包括殼體、光源、光學鏡組、第一位置感測器、第二位置感測器與球透鏡。殼體設置於主軸上。光源設置於殼體內且發射光束。光學鏡組設置於殼體內。當光束通過光學鏡組時,第一光束與第二光束被產生。球透鏡設置於轉軸上且具有一反射層,且在球透鏡與光源之間具有一感測距離。第一位置感測器與第二感測器設置於光源的兩側。當轉軸旋轉且 主軸配合轉軸移動時,第一光束與第二光束分別入射至球透鏡並經由反射層被反射,第一光束與第二光束夾一銳角。第一光束與第二光束分別入射至第一位置感測器與第二位置感測器,且第一位置感測器與第二位置感測器能偵測感測距離是否被改變並分別產生一偵測結果。The detection device of the present invention is used to detect errors in a multi-axis machine tool. The multi-axis machine tool has a rotating shaft and a main shaft. The detecting device comprises a housing, a light source, an optical mirror, a first position sensor, a second position sensor and a ball lens. The housing is disposed on the main shaft. The light source is disposed within the housing and emits a light beam. The optical lens assembly is disposed in the housing. The first beam and the second beam are generated as the beam passes through the optics. The ball lens is disposed on the rotating shaft and has a reflective layer and has a sensing distance between the ball lens and the light source. The first position sensor and the second sensor are disposed on both sides of the light source. When the shaft rotates and When the main shaft cooperates with the rotating shaft, the first beam and the second beam are respectively incident on the ball lens and reflected by the reflecting layer, and the first beam and the second beam are at an acute angle. The first beam and the second beam are respectively incident on the first position sensor and the second position sensor, and the first position sensor and the second position sensor can detect whether the sensing distance is changed and respectively generate A detection result.
本發明的檢測方法適用於檢測裝置以檢測多軸工具機的誤差。多軸工具機具有轉軸與主軸。檢測裝置包括殼體、光源、光學鏡組、第一位置感測器、第二位置感測器與球透鏡。殼體設置於主軸上。球透鏡設置於轉軸上且具有一反射層,且在球透鏡與光源之間具有一距離。光源與光學鏡組設置於殼體內,而第一位置感測器與第二位置感測器設置於光源的兩側。檢測方法包括:藉由光源的光束通過光學鏡組後產生第一光束與第二光束,且藉由轉軸轉動與主軸移動。藉由第一光束與第二光束入射至球透鏡且反射層反射第一光束與第二光束並夾一銳角,第一光束入射至第一位置感測器,且第二光束入射至第二位置感測器。藉由第一位置感測器與第二位置感器偵測感測距離是否被改變並分別產生偵測結果。The detection method of the present invention is suitable for use in a detection device to detect errors in a multi-axis machine tool. The multi-axis machine tool has a rotating shaft and a main shaft. The detecting device comprises a housing, a light source, an optical mirror, a first position sensor, a second position sensor and a ball lens. The housing is disposed on the main shaft. The ball lens is disposed on the rotating shaft and has a reflective layer and has a distance between the ball lens and the light source. The light source and the optical mirror are disposed in the housing, and the first position sensor and the second position sensor are disposed on both sides of the light source. The detecting method comprises: generating a first beam and a second beam by passing the beam of the light source through the optical lens group, and moving by the rotating shaft and the spindle. The first light beam and the second light beam are incident on the ball lens and the reflective layer reflects the first light beam and the second light beam at an acute angle, the first light beam is incident on the first position sensor, and the second light beam is incident on the second position. Sensor. The first position sensor and the second position sensor detect whether the sensing distance is changed and respectively generate a detection result.
在本發明的一實施例中,上述的第一位置感測器具有第一感測面,且第二位置感測器具有第二感測面。當轉軸繞著多軸工具機的第一旋轉軸旋轉且感測距離被改變時,第一感測面具有第一偏移與第二偏移,且第二感測面具有第三偏移。第一偏移、第二偏移與第三偏移分別平行於多軸工具機的第一線性軸、第二 線性軸與第三線性軸。In an embodiment of the invention, the first position sensor has a first sensing surface and the second position sensor has a second sensing surface. When the rotating shaft rotates about the first rotating shaft of the multi-axis machine tool and the sensing distance is changed, the first sensing surface has a first offset and a second offset, and the second sensing surface has a third offset. The first offset, the second offset, and the third offset are respectively parallel to the first linear axis of the multi-axis machine tool, and the second Linear axis and third linear axis.
在本發明的一實施例中,上述的轉軸的延伸方向與主軸的延伸方向互為垂直,且第一旋轉軸與第三線性軸平行。In an embodiment of the invention, the extending direction of the rotating shaft and the extending direction of the main shaft are perpendicular to each other, and the first rotating shaft is parallel to the third linear axis.
在本發明的一實施例中,上述的轉軸的延伸方向與主軸的延伸方向互為平行,且第一旋轉軸與第三線性軸平行。In an embodiment of the invention, the extending direction of the rotating shaft and the extending direction of the main shaft are parallel to each other, and the first rotating shaft is parallel to the third linear axis.
在本發明的一實施例中,上述的多軸工具機更具有一工作平台。轉軸設置於工作平台上,且工作平台適於繞著一第二旋轉軸旋轉。轉軸的延伸方向與主軸的延伸方向互為垂直,且第一旋轉軸於工作平台未旋轉時與第三線性軸平行,而第二旋轉軸與第二線性軸平行。In an embodiment of the invention, the multi-axis machine tool has a working platform. The rotating shaft is disposed on the working platform, and the working platform is adapted to rotate about a second rotating shaft. The extending direction of the rotating shaft is perpendicular to the extending direction of the main shaft, and the first rotating shaft is parallel to the third linear axis when the working platform is not rotated, and the second rotating shaft is parallel to the second linear axis.
在本發明的一實施例中,上述的球透鏡具有一折射率,且該折射率為2。當第一光束與第二光束分別入射至球透鏡並聚焦在反射層的中央時,第一光束的第一入射方向與第一出射方向互為平行,且第二光束的第二入射方向與第二出射方向互為平行。In an embodiment of the invention, the ball lens has a refractive index and the refractive index is 2. When the first beam and the second beam are respectively incident on the ball lens and focused on the center of the reflective layer, the first incident direction of the first beam is parallel to the first exit direction, and the second incident direction of the second beam is The two exit directions are parallel to each other.
在本發明的一實施例中,上述的光學鏡組包括第一偏極分光鏡(Polarized Beam Splitter,PBS)、第二偏極分光鏡、第一四分之一波片(Quarter Wave Plate,QWP)與一第二四分之一波片。第一偏極分光鏡設置於第一四分之一波片與光源之間,且第一位置感測器與第二偏極分光鏡設置於第一偏極分光鏡的兩側,而第二偏極分光鏡設置於第二四分之一波片與第二位置感測器之間。In an embodiment of the invention, the optical lens group includes a first polarized beam splitter (PBS), a second polarized beam splitter, and a first quarter wave plate (Quarter Wave Plate, QWP). ) with a second quarter wave plate. The first polarizing beam splitter is disposed between the first quarter wave plate and the light source, and the first position sensor and the second polarizing beam splitter are disposed on two sides of the first polarizing beam splitter, and the second The polarizing beam splitter is disposed between the second quarter wave plate and the second position sensor.
在本發明的一實施例中,上述的殼體包括上蓋與底板。光源、光學鏡組、第一位置感測器與第二位置感測器安裝於底板 上。上蓋具有桿體。當上蓋與底板組裝時,桿體與主軸連接。In an embodiment of the invention, the housing includes an upper cover and a bottom plate. The light source, the optical lens group, the first position sensor and the second position sensor are mounted on the bottom plate on. The upper cover has a rod body. When the upper cover is assembled with the bottom plate, the rod body is coupled to the main shaft.
在本發明的一實施例中,上述的第一位置感測器為四象限光位置感測器(Quadrant Photodiode,QPD)、電荷耦合元件感測器(Charge Coupled Device sensor,CCD sensor)或互補式金氧半導體感測器(Complementary Metal Oxide Semiconductor sensor,CMOS sensor),且第二位置感測器為一維位置感測器、二維位置感測器或四象限位置感測器。In an embodiment of the invention, the first position sensor is a four-quadrant photo position sensor (QPD), a charge coupled device sensor (CCD sensor) or a complementary type. The second position sensor is a one-dimensional position sensor, a two-dimensional position sensor or a four-quadrant position sensor.
在本發明的一實施例中,上述的光源為雷射二極體或氦氖雷射。In an embodiment of the invention, the light source is a laser diode or a neon laser.
基於上述,本發明的光源的光束於通過光學鏡組且經由反射層反射後形成夾銳角的兩道光束,且這兩道光束分別入射至兩個位置感測器內,以讓兩個位置感測器偵測球透鏡與光源之間的感測距離是否被改變以分別產生偵測結果。藉此,檢測裝置可同時偵測到多軸工具機的多軸誤差,以作為補償多軸工具機的資訊。Based on the above, the light beam of the light source of the present invention forms two beams with acute angles after being reflected by the optical mirror and reflected by the reflective layer, and the two beams are respectively incident into the two position sensors to make two position senses The detector detects whether the sensing distance between the ball lens and the light source is changed to generate a detection result, respectively. Thereby, the detecting device can simultaneously detect the multi-axis error of the multi-axis machine tool as information for compensating the multi-axis machine tool.
為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.
1、1a、1b‧‧‧多軸工具機1, 1a, 1b‧‧‧ multi-axis machine tool
10‧‧‧轉軸10‧‧‧ shaft
20‧‧‧主軸20‧‧‧ Spindle
30‧‧‧工作平台30‧‧‧Working platform
100‧‧‧檢測裝置100‧‧‧Detection device
110‧‧‧殼體110‧‧‧shell
112‧‧‧上蓋112‧‧‧上盖
112a‧‧‧桿體112a‧‧‧ rod body
114‧‧‧底板114‧‧‧floor
120‧‧‧光源120‧‧‧Light source
122‧‧‧光束122‧‧‧ Beam
122a‧‧‧第一光束122a‧‧‧First beam
122b‧‧‧第二光束122b‧‧‧second beam
130‧‧‧光學鏡組130‧‧‧Optical mirror
132‧‧‧第一偏極分光鏡132‧‧‧First polarized beam splitter
134‧‧‧第二偏極分光鏡134‧‧‧Second polarized beam splitter
136‧‧‧第一四分之一波片136‧‧‧first quarter wave plate
138‧‧‧第二四分之一波片138‧‧‧Second quarter wave plate
140‧‧‧球透鏡140‧‧‧Ball lens
142‧‧‧反射層142‧‧‧reflective layer
150‧‧‧第一位置感測器150‧‧‧First position sensor
152‧‧‧第一感測面152‧‧‧First sensing surface
160‧‧‧第二位置感測器160‧‧‧Second position sensor
162‧‧‧第二感測面162‧‧‧Second sensing surface
A1‧‧‧第一旋轉軸A1‧‧‧first rotating shaft
A2‧‧‧第二旋轉軸A2‧‧‧second rotating shaft
D1‧‧‧感測距離D1‧‧‧Sense distance
D2‧‧‧轉軸延伸方向D2‧‧‧ shaft extension direction
D3‧‧‧主軸延伸方向D3‧‧‧Spindle extension direction
D4‧‧‧入射方向D4‧‧‧Injection direction
D5‧‧‧出射方向D5‧‧‧ outgoing direction
O‧‧‧原點O‧‧‧ origin
P‧‧‧入射點P‧‧‧ incident point
P1‧‧‧第一偏移P1‧‧‧ first offset
P2‧‧‧第二偏移P2‧‧‧second offset
P3‧‧‧第三偏移P3‧‧‧ third offset
X‧‧‧第一線性軸X‧‧‧first linear axis
Y‧‧‧第二線性軸Y‧‧‧Second linear axis
Z‧‧‧第三線性軸Z‧‧‧third linear axis
S110~S130‧‧‧步驟S110~S130‧‧‧Steps
θ‧‧‧銳角Θ‧‧‧ acute angle
圖1為本發明一實施例之檢測裝置應用於多軸工具機的示意圖。1 is a schematic view of a detecting device applied to a multi-axis machine tool according to an embodiment of the present invention.
圖2為圖1之檢測裝置於A部分的局部放大圖。Figure 2 is a partial enlarged view of the detecting device of Figure 1 in a portion A.
圖3為圖2之檢測裝置的示意圖。Figure 3 is a schematic illustration of the detection device of Figure 2.
圖4為本發明一實施例之檢測方法用於檢測裝置的流程圖。4 is a flow chart of a detecting method for a detecting device according to an embodiment of the present invention.
圖5為圖2檢測裝置用於多軸工具機的流程示意圖。FIG. 5 is a schematic flow chart of the detecting device of FIG. 2 for a multi-axis machine tool.
圖6為圖3之第一位置感測器與第二位置感測器根據感測距離是否被改變的偵測示意圖。FIG. 6 is a schematic diagram of detection of whether the first position sensor and the second position sensor of FIG. 3 are changed according to the sensing distance.
圖7為圖2的檢測裝置用於多軸工具機的另一實施例的流程示意圖。7 is a flow chart showing another embodiment of the detecting device of FIG. 2 for a multi-axis machine tool.
圖8為圖2的檢測裝置用於多軸工具機的又一實施例的流程示意圖。FIG. 8 is a flow chart showing still another embodiment of the detecting device of FIG. 2 for a multi-axis machine tool.
圖9為圖3的球透鏡反射第一光束與第二光束的示意圖。9 is a schematic diagram of the ball lens of FIG. 3 reflecting a first beam and a second beam.
圖1為本發明一實施例之檢測裝置應用於多軸工具機的示意圖。圖2為圖1之檢測裝置於A部分的局部放大圖。請參考圖1與圖2,在本實施例中,檢測裝置100用以檢測多軸工具機1的誤差,且多軸工具機1具有轉軸10與主軸20。此外,多軸工具機1例如為五軸刀具磨床,其轉軸10可繞著第一旋轉軸A1旋轉,且主軸20可分別沿著第一線性軸X、第二線性軸Y與第三線性軸Z移動,其中第一線性軸X、第二線性軸Y與第三線性軸Z兩兩垂直。1 is a schematic view of a detecting device applied to a multi-axis machine tool according to an embodiment of the present invention. Figure 2 is a partial enlarged view of the detecting device of Figure 1 in a portion A. Referring to FIGS. 1 and 2 , in the present embodiment, the detecting device 100 is used to detect an error of the multi-axis machine tool 1 , and the multi-axis power tool 1 has a rotating shaft 10 and a spindle 20 . Furthermore, the multi-axis machine tool 1 is, for example, a five-axis tool grinding machine, the shaft 10 of which can be rotated about a first axis of rotation A1, and the spindle 20 can be along a first linear axis X, a second linear axis Y and a third linear axis, respectively. The axis Z moves, wherein the first linear axis X, the second linear axis Y and the third linear axis Z are perpendicular to each other.
圖3為圖2之檢測裝置的示意圖。請參考圖2與圖3, 需說明的是為使視圖清楚,圖3省略檢測裝置100的部分構件。檢測裝置100包括殼體110、光源120、光學鏡組130、球透鏡140、第一位置感測器150與第二位置感測器160。殼體110設置於主軸20上。光源120設置於殼體110內且用以發射光束122,其中光源120例如為雷射二極體或氦氖雷射,以使光束122於發射後可具有高指向性以及高同調性。光學鏡組130設置於殼體110內。當光束122通過光學鏡組130時,第一光束122a與第二光束122b被產生,其中第一光束122a例如為圖3的正向光束,且第二光束122b例如為圖3的斜向光束。球透鏡140設置於轉軸10上且具有一反射層142,其中反射層142的材質例如為鋁或銅,且在球透鏡140與光源120之間具有一感測距離D1。第一位置感測器150與第二位置感測器160設置於光源120的兩側。Figure 3 is a schematic illustration of the detection device of Figure 2. Please refer to Figure 2 and Figure 3, It should be noted that in order to make the view clear, FIG. 3 omits part of the components of the detecting device 100. The detecting device 100 includes a housing 110, a light source 120, an optical mirror 130, a ball lens 140, a first position sensor 150, and a second position sensor 160. The housing 110 is disposed on the main shaft 20. The light source 120 is disposed in the housing 110 and is configured to emit a light beam 122, wherein the light source 120 is, for example, a laser diode or a neon laser, so that the light beam 122 can have high directivity and high homology after being emitted. The optical lens assembly 130 is disposed within the housing 110. When the light beam 122 passes through the optical lens set 130, the first light beam 122a and the second light beam 122b are generated, wherein the first light beam 122a is, for example, the forward light beam of FIG. 3, and the second light beam 122b is, for example, the oblique light beam of FIG. The ball lens 140 is disposed on the rotating shaft 10 and has a reflective layer 142. The reflective layer 142 is made of aluminum or copper, for example, and has a sensing distance D1 between the ball lens 140 and the light source 120. The first position sensor 150 and the second position sensor 160 are disposed on both sides of the light source 120.
承上述,當轉軸10繞著第一旋轉軸A1旋轉且主軸20配合轉軸10沿著第一線性軸X與第二線性軸Y移動時,第一光束122a與第二光束122b分別入射至球透鏡140內並經由反射層142被反射,且第一光束122a與第二光束122b夾一銳角θ。接著,第一光束122a與第二光束122b分別入射至第一位置感測器150與第二位置感測器160內,且第一位置感測器150與第二位置感測器160能偵測感測距離D1是否被改變以分別產生一偵測結果,其中第一位置感測器150與第二位置感測器160所產生的偵測結果例如為轉軸10繞著第一旋轉軸A1旋轉時於第一線性軸X、第二線性軸Y與第三線性軸Z上的偏移。藉此,透過兩道反射光束(即 第一光束122a與第二光束122b)分別入射至第一位置感測器150與第二位置感測器160可同時偵測轉軸10的多個線性軸的偏移量。此外,由於第一光束122a與第二光束122b透過反射層142分別被反射至第一位置感測器150與第二位置感測器160,且夾銳角θ,因此可有效減少殼體110的內部空間需求。藉此配置,可減少殼體110的整體尺寸,並使檢測裝置100驅於微型化產品以利於安裝至多軸工具機1。In the above, when the rotating shaft 10 rotates about the first rotating axis A1 and the main shaft 20 moves along the first linear axis X and the second linear axis Y in cooperation with the rotating shaft 10, the first light beam 122a and the second light beam 122b are respectively incident on the ball. The lens 140 is reflected by the reflective layer 142, and the first beam 122a and the second beam 122b are separated by an acute angle θ. Then, the first beam 122a and the second beam 122b are respectively incident into the first position sensor 150 and the second position sensor 160, and the first position sensor 150 and the second position sensor 160 can detect Whether the sensing distance D1 is changed to generate a detection result, wherein the detection result generated by the first position sensor 150 and the second position sensor 160 is, for example, when the rotating shaft 10 rotates around the first rotating axis A1. An offset on the first linear axis X, the second linear axis Y, and the third linear axis Z. Thereby, through two reflected beams (ie The first beam 122a and the second beam 122b are respectively incident on the first position sensor 150 and the second position sensor 160 to simultaneously detect the offsets of the plurality of linear axes of the shaft 10. In addition, since the first light beam 122a and the second light beam 122b are respectively reflected to the first position sensor 150 and the second position sensor 160 through the reflective layer 142, and the acute angle θ is sandwiched, the interior of the housing 110 can be effectively reduced. Space requirements. With this configuration, the overall size of the housing 110 can be reduced, and the detecting device 100 can be driven to the miniaturized product to facilitate mounting to the multi-axis machine tool 1.
圖4為本發明一實施例之檢測方法用於檢測裝置的流程圖。圖5為圖2檢測裝置用於多軸工具機的流程示意圖。請參考圖3、圖4與圖5,詳細地說,在殼體110安裝至多軸工具機1的主軸20且球透鏡140安裝至多軸工具機1的轉軸10,並調整在光源120與球透鏡140之間維持感測距離D1後,檢測裝置100開始使偵測。首先,在步驟S110中,當光源120的光束122通過光學鏡組130時,第一光束122a與第二光束122b被產生,且轉軸10繞著第一旋轉軸A1旋轉而主軸20根據轉軸10轉動沿著第一線性軸X與第二線性軸Y移動,以讓主軸20同動於轉軸10的旋轉路徑並讓第一光束122a與第二光束122b持續地入射於球透鏡140內。4 is a flow chart of a detecting method for a detecting device according to an embodiment of the present invention. FIG. 5 is a schematic flow chart of the detecting device of FIG. 2 for a multi-axis machine tool. Referring to FIG. 3, FIG. 4 and FIG. 5, in detail, the housing 110 is mounted to the main shaft 20 of the multi-axis machine tool 1 and the ball lens 140 is mounted to the rotating shaft 10 of the multi-axis machine tool 1, and is adjusted to the light source 120 and the ball lens. After the sensing distance D1 is maintained between 140, the detecting device 100 starts to detect. First, in step S110, when the light beam 122 of the light source 120 passes through the optical lens group 130, the first light beam 122a and the second light beam 122b are generated, and the rotating shaft 10 rotates about the first rotating axis A1 and the spindle 20 rotates according to the rotating shaft 10. The first linear axis X and the second linear axis Y are moved to cause the main shaft 20 to move in the same manner as the rotational path of the rotary shaft 10 and to continuously inject the first light beam 122a and the second light beam 122b into the ball lens 140.
接著,在步驟S120中,在第一光束122a與第二光束122b入射至球透鏡140後,球透鏡140的反射層142反射第一光束122a與第二光束122b並讓兩反射光束夾一銳角θ。當第一光束122a與第二光束122b再次通過光學鏡組130時,第一光束122a入射 至第一位置感測器150,且第二光束122b入射至第二位置感測器160。Next, in step S120, after the first beam 122a and the second beam 122b are incident on the ball lens 140, the reflective layer 142 of the ball lens 140 reflects the first beam 122a and the second beam 122b and causes the two reflected beams to have an acute angle θ . When the first beam 122a and the second beam 122b pass through the optics 130 again, the first beam 122a is incident To the first position sensor 150, and the second light beam 122b is incident to the second position sensor 160.
然後,在步驟S130中,第一位置感測器150與第二位置感測器160偵測感測距離D1是否被改變並產生偵測結果。藉此方式,可偵測轉軸10於旋轉時於各個線性軸上是否產生偏移。Then, in step S130, the first position sensor 150 and the second position sensor 160 detect whether the sensing distance D1 is changed and generate a detection result. In this way, it is possible to detect whether or not the axis of rotation 10 is offset on each linear axis when rotating.
圖6為圖3之第一位置感測器與第二位置感測器根據感測距離是否被改變的偵測示意圖。請參考圖2、圖3與圖6,具體而言,第一位置感測器150例如為四象限光位置感測器,且第二位置感測器160例如為一維位置感測器。另外,第一位置感測器150具有一第一感測面152,且第二位置感測器160具有一第二感測面162。當轉軸10繞著第一旋轉軸A1旋轉時,第一光束122a與第二光束122b透過球透鏡140的反射層142反射並分別入射在第一感測面152與第二感測面162上。FIG. 6 is a schematic diagram of detection of whether the first position sensor and the second position sensor of FIG. 3 are changed according to the sensing distance. Please refer to FIG. 2, FIG. 3 and FIG. 6. Specifically, the first position sensor 150 is, for example, a four-quadrant light position sensor, and the second position sensor 160 is, for example, a one-dimensional position sensor. In addition, the first position sensor 150 has a first sensing surface 152 , and the second position sensor 160 has a second sensing surface 162 . When the rotating shaft 10 rotates around the first rotating axis A1, the first light beam 122a and the second light beam 122b are reflected by the reflective layer 142 of the ball lens 140 and are incident on the first sensing surface 152 and the second sensing surface 162, respectively.
若光源120與球透鏡140之間的感測距離D1被改變時,則第一光束122a入射在第一感測面152上後,第一光束122a的入射點P與第一感測面152的原點O之間具有第一偏移P1與第二偏移P2,其中第一偏移P1為轉軸10於旋轉時第一位置感測器150所偵測到第一線性軸X的誤差,且第二偏移P2為轉軸10於旋轉時第一位置感測器150所偵測到第二線性軸Y的誤差。由於球透鏡140隨著轉軸10轉動而同動,且第一光束122a由球透鏡140反射出的方向平行第三線性軸Z,因此第一光束122a的入射點P與第一感測面152的原點O重合。另外,在第二光束122b入射在 第二感測面162上後,第二光束122b的入射點P與第二感測面162的原點O之間具有第三偏移P3,其中第三偏移P3為轉軸10於旋轉時所偵測到第三線性軸Z的誤差。If the sensing distance D1 between the light source 120 and the ball lens 140 is changed, after the first light beam 122a is incident on the first sensing surface 152, the incident point P of the first light beam 122a and the first sensing surface 152 The first offset P1 has a first offset P1 and a second offset P2. The first offset P1 is an error of the first linear axis X detected by the first position sensor 150 when the rotating shaft 10 rotates. The second offset P2 is an error of the second linear axis Y detected by the first position sensor 150 when the rotating shaft 10 rotates. Since the ball lens 140 moves in conjunction with the rotation of the rotating shaft 10, and the direction in which the first light beam 122a is reflected by the ball lens 140 is parallel to the third linear axis Z, the incident point P of the first light beam 122a and the first sensing surface 152 The origin O coincides. In addition, the second light beam 122b is incident on After the second sensing surface 162, the incident point P of the second light beam 122b and the origin O of the second sensing surface 162 have a third offset P3, wherein the third offset P3 is when the rotating shaft 10 is rotated. The error of the third linear axis Z is detected.
反之,在第一光束122a與第二光束122b分別入射至第一位置感測器150的第一感測面152與第二位置感測器160的第二感測面162後,第一光束122a的入射點P與第一感測面152的原點O皆重合,且第二光束122b的入射點P與第二感測面162的原點O重合,則光源120與球透鏡140之間的感測距離D1並無被改變。換言之,轉軸10於旋轉時於各線性軸上皆無偏移。On the contrary, after the first light beam 122a and the second light beam 122b are respectively incident on the first sensing surface 152 of the first position sensor 150 and the second sensing surface 162 of the second position sensor 160, the first light beam 122a The incident point P coincides with the origin O of the first sensing surface 152, and the incident point P of the second beam 122b coincides with the origin O of the second sensing surface 162, and the light source 120 and the ball lens 140 are The sensing distance D1 has not been changed. In other words, the rotating shaft 10 has no offset on each linear axis when rotated.
因此,透過第一光束122a與第二光束122b分別入射至第一位置感測器150與第二位置感測器160可同時獲得三個線性軸的偏移量,並在補償第一偏移P1、第二偏移P2與第三偏移P3後,即可修正多軸工具機1的誤差。藉此,可維持多軸工具機1的機台精度。Therefore, the first light beam 122a and the second light beam 122b are respectively incident on the first position sensor 150 and the second position sensor 160, and the offsets of the three linear axes can be simultaneously obtained, and the first offset P1 is compensated. After the second offset P2 and the third offset P3, the error of the multi-axis machine tool 1 can be corrected. Thereby, the machine precision of the multi-axis machine tool 1 can be maintained.
此外,在另一實施例中,第一位置感測器150可為電荷耦合元件感測器或互補式金氧半導體感測器,且第二位置感測器160可為二維位置感測器或四象限位置感測器。再者,本實施例的多軸工具機1的轉軸10的轉軸延伸方向D2與主軸20的主軸延伸方向D3互為垂直,且第一旋轉軸A1與第三線性軸Z平行。In addition, in another embodiment, the first position sensor 150 may be a charge coupled device sensor or a complementary MOS sensor, and the second position sensor 160 may be a two-dimensional position sensor. Or four-quadrant position sensor. Further, the rotation axis extending direction D2 of the rotating shaft 10 of the multi-axis power tool 1 of the present embodiment is perpendicular to the main shaft extending direction D3 of the main shaft 20, and the first rotating shaft A1 is parallel to the third linear axis Z.
圖7為圖2的檢測裝置用於多軸工具機的另一實施例的流程示意圖。請參考圖2、圖5與圖7,在本實施例中,多軸工具機1a與圖5的多軸工具機1相似,其中相同或相似的元件標號代 表相同或相似的元件,於此不再贅述。本實施例的多軸工具機1a的轉軸10的轉軸延伸方向D2與主軸20的主軸延伸方向D3互為平行,且第一旋轉軸A1與第三線性軸Z平行。在經過圖4的檢測步驟後,可獲得轉軸10於旋轉時各線性軸的誤差。故,本實施例多軸工具機1b與圖5的多軸工具機1差異在於:本實施例的主軸20面向轉軸10,而圖5的主軸20位於轉軸10的側邊。此外,本實施例的檢測流程亦同於圖5的檢測流程皆為移動兩個線性軸與一旋轉軸而檢測轉軸10的誤差。7 is a flow chart showing another embodiment of the detecting device of FIG. 2 for a multi-axis machine tool. Referring to FIG. 2, FIG. 5 and FIG. 7, in the present embodiment, the multi-axis machine tool 1a is similar to the multi-axis machine tool 1 of FIG. 5, wherein the same or similar component numbers are substituted. The same or similar elements are not listed here. The rotation axis extending direction D2 of the rotating shaft 10 of the multi-axis power tool 1a of the present embodiment is parallel to the main shaft extending direction D3 of the main shaft 20, and the first rotating shaft A1 is parallel to the third linear axis Z. After passing through the detecting step of FIG. 4, the error of each linear axis of the rotating shaft 10 at the time of rotation can be obtained. Therefore, the multi-axis machine tool 1b of the present embodiment differs from the multi-axis machine tool 1 of FIG. 5 in that the main shaft 20 of the present embodiment faces the rotating shaft 10, and the main shaft 20 of FIG. 5 is located at the side of the rotating shaft 10. In addition, the detection flow of the embodiment is the same as the detection flow of FIG. 5, which is to detect the error of the rotating shaft 10 by moving two linear axes and one rotating axis.
圖8為圖2的檢測裝置用於多軸工具機的另一實施例的流程示意圖。請參考圖2、圖5與圖8,在本實施例中,多軸工具機1b與圖5的多軸工具機1相似,其中相同或相似的元件標號代表相同或相似的元件,於此不再贅述。本實施例的多軸工具機1b更具有一繞著第二旋轉軸A2旋轉的工作平台30,且轉軸10設置於工作平台30上。轉軸10的轉軸延伸方向D2與主軸20的主軸延伸方向D3互為垂直,且第一旋轉軸A1於工作平台30未旋轉時與第三線性軸Z平行,而第二旋轉軸A2與第二線性軸Y平行。在經過圖4的檢測步驟後,可獲得轉軸10於旋轉時各線性軸的誤差。故,本實施例多軸工具機1b與圖5的多軸工具機1差異在於:本實施例的多軸工具機1b的工作平台30繞著第二旋轉軸A2旋轉且轉軸10繞著第一旋轉軸A1旋轉,而圖5的多軸工具機1僅由轉軸10繞著第一旋轉軸A1旋轉,且本實施例的檢測流程為移動三個線性軸與兩旋轉軸而檢測轉軸10的誤差。Figure 8 is a flow diagram of another embodiment of the detection device of Figure 2 for a multi-axis machine tool. Referring to FIG. 2, FIG. 5 and FIG. 8, in the present embodiment, the multi-axis machine tool 1b is similar to the multi-axis machine tool 1 of FIG. 5, wherein the same or similar component numbers represent the same or similar components. Let me repeat. The multi-axis machine tool 1b of the present embodiment further has a work platform 30 that rotates about the second rotation axis A2, and the rotation shaft 10 is disposed on the work platform 30. The rotation axis extending direction D2 of the rotating shaft 10 is perpendicular to the main shaft extending direction D3 of the main shaft 20, and the first rotating shaft A1 is parallel to the third linear axis Z when the working platform 30 is not rotated, and the second rotating shaft A2 and the second linearity The axis Y is parallel. After passing through the detecting step of FIG. 4, the error of each linear axis of the rotating shaft 10 at the time of rotation can be obtained. Therefore, the multi-axis machine tool 1b of the present embodiment is different from the multi-axis machine tool 1 of FIG. 5 in that the working platform 30 of the multi-axis machine tool 1b of the present embodiment rotates about the second rotation axis A2 and the rotating shaft 10 rotates around the first The rotation axis A1 rotates, and the multi-axis machine tool 1 of FIG. 5 is rotated only by the rotation shaft 10 about the first rotation axis A1, and the detection flow of the present embodiment detects the error of the rotation shaft 10 by moving three linear axes and two rotation axes. .
請參考圖3,本實施例的光學鏡組130包括第一偏極分光鏡132、第二偏極分光鏡134、第一四分之一波片136與一第二四分之一波片138。第一偏極分光鏡132設置於第一四分之一波片136與光源120之間,且第一位置感測器150與第二偏極分光鏡134設置於第一偏極分光鏡132的兩側,而第二偏極分光鏡134設置於第二四分之一波片138與第二位置感測器160之間。Referring to FIG. 3, the optical lens assembly 130 of the present embodiment includes a first polarizing beam splitter 132, a second polarizing beam splitter 134, a first quarter wave plate 136 and a second quarter wave plate 138. . The first polarizing beam splitter 132 is disposed between the first quarter wave plate 136 and the light source 120 , and the first position sensor 150 and the second polarizing beam splitter 134 are disposed on the first polarizing beam splitter 132 . On both sides, the second polarizing beam splitter 134 is disposed between the second quarter wave plate 138 and the second position sensor 160.
詳細地說,當光源120發射出光束122時,光束122進入到第一偏極分光鏡132以產生第一光束122a與第二光束122b。當第一光束122a通過第一四分之一波片136時,第一光束122a為一P圓偏振光且入射至球透鏡140。在球透鏡140的反射層142反射第一光束122a並再次通過第一四分之一波片136後,第一光束122a為一S線偏振光並透過第一偏極分光鏡132反射至第一位置感測器150內。In detail, when the light source 120 emits the light beam 122, the light beam 122 enters the first polarizing beam splitter 132 to generate the first light beam 122a and the second light beam 122b. When the first light beam 122a passes through the first quarter wave plate 136, the first light beam 122a is a P circularly polarized light and is incident on the ball lens 140. After the reflective layer 142 of the ball lens 140 reflects the first light beam 122a and passes through the first quarter wave plate 136 again, the first light beam 122a is an S linearly polarized light and is reflected to the first through the first polarizing beam splitter 132. Position sensor 150.
承上述,在第二光束122b通過第二偏極分光鏡134與第二四分之一波片138時,第二光束122b為一S圓偏振光且入射至球透鏡140。在球透鏡140的反射層142反射第二光束122b並再次通過第二四分之一波片138後,第一光束122a為一P線偏振光並透過第二偏極分光鏡134反射至第二位置感測器160內。藉此方式,在第一光束122a與第二光束122b的通過路徑上分別配置第一四分之一波片136與第二四分之一波片138,可改變光的性質以避免第一光束122a或第二光束122b傳入到光源120的內部而干擾光源120。因此,可確保檢測裝置100的偵測精度。As described above, when the second light beam 122b passes through the second polarization beam splitter 134 and the second quarter wave plate 138, the second light beam 122b is an S circularly polarized light and is incident on the ball lens 140. After the reflective layer 142 of the ball lens 140 reflects the second light beam 122b and passes through the second quarter wave plate 138 again, the first light beam 122a is a P-line polarized light and is reflected by the second polarizing beam splitter 134 to the second. Position sensor 160. In this way, the first quarter wave plate 136 and the second quarter wave plate 138 are respectively disposed on the passing paths of the first light beam 122a and the second light beam 122b, and the properties of the light can be changed to avoid the first light beam. The 122a or second beam 122b is passed into the interior of the source 120 to interfere with the source 120. Therefore, the detection accuracy of the detecting device 100 can be ensured.
圖9為圖3的第一光束與第二光束的光路示意圖。請參考圖3與圖9,須說明的是第一光束122a與第二光束122b的入射方式與反射方式相近,故以圖9說明兩光束入射至球透鏡140與從球透鏡140反射出的光路。在本實施例中,當球透鏡140的材質的折射率為2,且第一光束122a與第二光束122b分別入射至球透鏡140並聚焦在反射層142的中央時,第一光束122a的入射方向D4與出射方向D5互為平行,且第二光束122b的入射方向D4與出射方向D5互為平行。藉此,可讓第一光束122a的入射光與反射光互相平行,且第二光束122b的入射光與反射光相互平行,並有助於維持檢測裝置100的偵測精度。9 is a schematic diagram of optical paths of the first beam and the second beam of FIG. Referring to FIG. 3 and FIG. 9, it should be noted that the incident mode and the reflection mode of the first light beam 122a and the second light beam 122b are similar, so that the light paths of the two light beams incident on the ball lens 140 and reflected from the ball lens 140 are illustrated in FIG. . In the present embodiment, when the refractive index of the material of the ball lens 140 is 2, and the first beam 122a and the second beam 122b are respectively incident on the ball lens 140 and focused on the center of the reflective layer 142, the incident of the first beam 122a The direction D4 and the exit direction D5 are parallel to each other, and the incident direction D4 and the outgoing direction D5 of the second light beam 122b are parallel to each other. Thereby, the incident light and the reflected light of the first light beam 122a can be parallel to each other, and the incident light and the reflected light of the second light beam 122b are parallel to each other, and help to maintain the detection accuracy of the detecting device 100.
請參考圖2與圖3,本實施例的殼體110包括上蓋112與底板114。光源120、光學鏡組130、第一位置感測器150與第二位置感測器160安裝於底板114上。上蓋112具有桿體112a。當上蓋112與底板114組裝時,桿體112a與主軸20連接。因此,在上蓋112與底板114組裝後,可讓光源120、光學鏡組130、第一位置感測器150與第二位置感測器160構成一模組化構件,以增加組裝至主軸20的便利性。Referring to FIG. 2 and FIG. 3 , the housing 110 of the embodiment includes an upper cover 112 and a bottom plate 114 . The light source 120, the optical lens assembly 130, the first position sensor 150 and the second position sensor 160 are mounted on the bottom plate 114. The upper cover 112 has a rod body 112a. When the upper cover 112 is assembled with the bottom plate 114, the rod 112a is coupled to the main shaft 20. Therefore, after the upper cover 112 and the bottom plate 114 are assembled, the light source 120, the optical lens assembly 130, the first position sensor 150 and the second position sensor 160 can be configured as a modular member to increase assembly to the main shaft 20. Convenience.
綜上所述,本發明透過第一光束與第二光束分別入射至第一位置感測器與第二位置感測器,且根據光源與球透鏡之間的感測距離是否被改變而同時偵測轉軸的多個線性軸的偏移量。因此,在補正這些偏移量後即可修正多軸工具機的誤差。此外,由於第一光束與第二光束透過反射層分別被反射且夾銳角,因此可 有效減少殼體的內部空間需求。藉此,可減少殼體的整體尺寸,並使檢測裝置驅於微型化產品。再者,當在第一光束與第二光束的通過路徑上分別配置四分之一波片時,可避免第一光束與第二光束進入到光源的內部,因此可提高檢測裝置的偵測精度。另外,當球透鏡的折射率為2時,第一光束的入射光平行於反射光,且第二光束的入射光平行於反射光,亦可提高檢測裝置的偵測精度。In summary, the present invention is incident on the first position sensor and the second position sensor through the first beam and the second beam, respectively, and simultaneously detects whether the sensing distance between the light source and the ball lens is changed. The offset of the multiple linear axes of the spindle. Therefore, the error of the multi-axis machine tool can be corrected after correcting these offsets. In addition, since the first beam and the second beam are respectively reflected by the reflective layer and are acutely angled, Effectively reduce the internal space requirements of the housing. Thereby, the overall size of the housing can be reduced and the detection device can be driven to miniaturize the product. Furthermore, when the quarter wave plate is respectively disposed on the passing paths of the first light beam and the second light beam, the first light beam and the second light beam can be prevented from entering the light source, thereby improving the detection accuracy of the detecting device. . In addition, when the refractive index of the ball lens is 2, the incident light of the first beam is parallel to the reflected light, and the incident light of the second beam is parallel to the reflected light, which can also improve the detection accuracy of the detecting device.
雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.
100‧‧‧檢測裝置100‧‧‧Detection device
110‧‧‧殼體110‧‧‧shell
114‧‧‧底板114‧‧‧floor
120‧‧‧光源120‧‧‧Light source
122‧‧‧光束122‧‧‧ Beam
122a‧‧‧第一光束122a‧‧‧First beam
122b‧‧‧第二光束122b‧‧‧second beam
130‧‧‧光學鏡組130‧‧‧Optical mirror
132‧‧‧第一偏極分光鏡132‧‧‧First polarized beam splitter
134‧‧‧第二偏極分光鏡134‧‧‧Second polarized beam splitter
136‧‧‧第一四分之一波片136‧‧‧first quarter wave plate
138‧‧‧第二四分之一波片138‧‧‧Second quarter wave plate
140‧‧‧球透鏡140‧‧‧Ball lens
142‧‧‧反射層142‧‧‧reflective layer
150‧‧‧第一位置感測器150‧‧‧First position sensor
152‧‧‧第一感測面152‧‧‧First sensing surface
160‧‧‧第二位置感測器160‧‧‧Second position sensor
162‧‧‧第二感測面162‧‧‧Second sensing surface
D1‧‧‧感測距離D1‧‧‧Sense distance
θ‧‧‧銳角Θ‧‧‧ acute angle
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102101546A TWI496651B (en) | 2013-01-15 | 2013-01-15 | Detection apparatus and detection method by using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW102101546A TWI496651B (en) | 2013-01-15 | 2013-01-15 | Detection apparatus and detection method by using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201427791A TW201427791A (en) | 2014-07-16 |
TWI496651B true TWI496651B (en) | 2015-08-21 |
Family
ID=51725912
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW102101546A TWI496651B (en) | 2013-01-15 | 2013-01-15 | Detection apparatus and detection method by using the same |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI496651B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI785914B (en) * | 2021-12-02 | 2022-12-01 | 財團法人工業技術研究院 | Obtaining method and obtaining apparatus for geometric error of dual rotation axes |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI754562B (en) * | 2021-03-12 | 2022-02-01 | 國立虎尾科技大學 | Spindle temperature measurement and compensation system and method |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1409677A (en) * | 1999-10-15 | 2003-04-09 | 马科尼数据系统公司 | Laser marking device |
TW200419133A (en) * | 2003-03-27 | 2004-10-01 | Nat Huwei Inst Of Technology | Ring grating type rotational axis measurement system with 5 degrees of freedom |
JP2006039865A (en) * | 2004-07-26 | 2006-02-09 | Nippei Toyama Corp | Position correction apparatus for operating program of traveling object in industrial equipment |
TW200835935A (en) * | 2006-11-21 | 2008-09-01 | Palo Alto Res Ct Inc | Light scanning mechanism for scan displacement invariant laser ablation apparatus |
TW201009287A (en) * | 2008-03-06 | 2010-03-01 | Academia Sinica | Optical multi-axis linear displacement measurement system and a method thereof |
TW201008697A (en) * | 2008-08-27 | 2010-03-01 | Univ Nat Formosa | Five-axis tool machine detection device |
TW201026419A (en) * | 2008-11-13 | 2010-07-16 | Olympus Corp | Defect correction device |
TW201120596A (en) * | 2009-12-02 | 2011-06-16 | Univ Nat Formosa | Dynamic path detection method for five-axis machine tool and device thereof. |
TW201121700A (en) * | 2009-12-29 | 2011-07-01 | Univ Nat Formosa | Measurement device for multi-axis machine tool. |
CN102275094A (en) * | 2010-06-10 | 2011-12-14 | 株式会社森精机制作所 | Method and apparatus for measuring workpiece on machine tool |
TWM437953U (en) * | 2012-05-23 | 2012-09-21 | Saultech Technology Co Ltd | Optical measuring device |
-
2013
- 2013-01-15 TW TW102101546A patent/TWI496651B/en active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1409677A (en) * | 1999-10-15 | 2003-04-09 | 马科尼数据系统公司 | Laser marking device |
TW200419133A (en) * | 2003-03-27 | 2004-10-01 | Nat Huwei Inst Of Technology | Ring grating type rotational axis measurement system with 5 degrees of freedom |
JP2006039865A (en) * | 2004-07-26 | 2006-02-09 | Nippei Toyama Corp | Position correction apparatus for operating program of traveling object in industrial equipment |
TW200835935A (en) * | 2006-11-21 | 2008-09-01 | Palo Alto Res Ct Inc | Light scanning mechanism for scan displacement invariant laser ablation apparatus |
TW201009287A (en) * | 2008-03-06 | 2010-03-01 | Academia Sinica | Optical multi-axis linear displacement measurement system and a method thereof |
TW201008697A (en) * | 2008-08-27 | 2010-03-01 | Univ Nat Formosa | Five-axis tool machine detection device |
TW201026419A (en) * | 2008-11-13 | 2010-07-16 | Olympus Corp | Defect correction device |
TW201120596A (en) * | 2009-12-02 | 2011-06-16 | Univ Nat Formosa | Dynamic path detection method for five-axis machine tool and device thereof. |
TW201121700A (en) * | 2009-12-29 | 2011-07-01 | Univ Nat Formosa | Measurement device for multi-axis machine tool. |
CN102275094A (en) * | 2010-06-10 | 2011-12-14 | 株式会社森精机制作所 | Method and apparatus for measuring workpiece on machine tool |
TWM437953U (en) * | 2012-05-23 | 2012-09-21 | Saultech Technology Co Ltd | Optical measuring device |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI785914B (en) * | 2021-12-02 | 2022-12-01 | 財團法人工業技術研究院 | Obtaining method and obtaining apparatus for geometric error of dual rotation axes |
Also Published As
Publication number | Publication date |
---|---|
TW201427791A (en) | 2014-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9201313B2 (en) | Compact encoder head for interferometric encoder system | |
US10663589B2 (en) | Laser interferometer system for measuring six degrees of freedom with respect to a linear axis | |
WO2018103268A1 (en) | Laser measurement system for measuring geometric error in six degrees of freedom of rotating shaft, and method therefor | |
CN105277119B (en) | The error detecting apparatus and error detection method of multiaxis machine tool | |
TWI577962B (en) | Apparatus and method for curvature and thin film stress measurement | |
JP7089401B2 (en) | Straightness measuring device | |
JP2008064471A (en) | Method and apparatus for laser tracking interferometric length measurement | |
US20100201992A1 (en) | Lightwave interference measurement device | |
TWI496651B (en) | Detection apparatus and detection method by using the same | |
JP2011064674A (en) | Laser gauge interferometer, machining device using the same, and machining method of work piece | |
CN114812392A (en) | Laser six-degree-of-freedom motion error synchronous measurement system | |
US7327474B2 (en) | Method and apparatus for measuring displacement of an object | |
JP7112311B2 (en) | Displacement measuring device | |
JP2004327501A (en) | Mapping system | |
JP5858670B2 (en) | Laser beam shake amount detecting device, displacement measuring device, and optical element molding die manufacturing method | |
JP2009025006A (en) | Optical device, light source device, and optical measuring device | |
US10215558B2 (en) | Rotation angle measuring system and machining system comprising the same | |
JP2010249595A (en) | Tracking laser gauge interferometer | |
JP2019095380A (en) | Laser distance measuring device | |
TWI712773B (en) | Laser interferometer positioning system | |
WO2020040142A1 (en) | Cutting device, sensor unit, and detection method | |
JP2010223897A (en) | Device for measuring shape of plane | |
TW201703923A (en) | Rotation error measurement system and method of machine tool spindle having advantages of low cost, accurate measurement result, easy installation and less damage | |
JPH05504833A (en) | 2-axis plane mirror interferometer | |
EP2538169B1 (en) | Grazing incidence interferometer |