1375334 九、發明說明: 【發明所屬之技術領域】 • 本發明係關於一種發光元件;特別是有關於一種具改 • 良式電極結構之發光元件,藉其改良式電極結構可提升電 流分讳(current spreading)特性’以增加該發光元件之發光 效率及發光亮度。 【先前技術】 • 發光二極體係現今重要的固態發光元件之一,其係將 電流轉換為光。發光二極體主要包含一發光層介於一 p型 半導體層與一 N型半導體層之間。驅動電流係施予在分別 電氣連接於該P型半導體層與該N型半導體層的一 p型電 氣接觸與一 N型電氣接觸,藉以使得該p型半導體層與該 N型半導體層分別射出電洞及電子至該發光層,而電洞與電 子在該發光層結合後放光從該發光層四面八方發出,並經 該發光二極體表面離開。增加發光二極體尺寸大小及其發 光面積係提高該發光二極體發光效率及發光亮度的作法。 但是以傳統氮化物發光二極體而言,由於考慮電流無法從 電氣接觸有效地勻均分佈至該發光層,使得該氮化物發光 二極體大小的製作受到限制。例如,P型氮化物半導體層具 有相對較低的導電性,使得施予在P型電氣接觸的電流^ 僅會分佈至位於該P型電氣接觸下方該p型氮化物半導體 • 層的有限面積内,而電流不會側向分佈至整個P型氮化物 半導體層,並且該發光二極體會因此產生局部發埶,使得 電氣接觸周圍元件材質提早劣化。至於N型氮化;^半導體 層雖然具有較佳的導電性,但其對於電流側向分佈仍具有 一些電阻性。隨著發光二極體元件尺寸大小的增加,從N =電氣接觸均勻分佈電流至該N型氮化物半導體層的能力 θ逐漸降低。因此,傳統氮化物發光二極體大小的製作會 5 1375334 能力據:提如二善發=光:¾效電二T 度,係為現今發光二極體產業的效率及發光党 【發明内容】 件,係提供一種具改良式電極結構之發光元 構之設計可提高該發光元件之ρ型 半導體層之電流分佈特性,以增加該發光 70件的輸出功率及光通量,進而提高其發光強产 供的具改良式電極結構之發光元;:係包括 :ίΓίΓ電極圖案於一具第一導電性半導體層上及 曝露圖案於一具第二導電性半導體層部份 曝路面積1。該具第-導電性電極圖案包含 次電極圖案,該具第二導電性電極圖案包含至少—二 案。該至少一第一次電極圖案係為從相對於-該 iC案之—部份呈封閉形狀部份延伸至被該第二 圖案之另一部份包圍而呈被封閉形狀部份,並且該 ⑯導電性電極圖案每—部份與該具第二導電性電極圖 案對應部份之間的距離大致上相同,進而促進該具第一導 電性半導體層與該具第二導電性半導體層之電流分佈特 1*生再者,本發明該具第一導電性電極圖案及該且第二導 電性電極圖案之次電極圖案料可在幾何^狀上^具有任 何,銳曲度(sharp curvature),因此可避免發光元件在電極 的尖,曲度部份附近產生高電場點(high field point),進一 步可提高本發明發光元件的發光均勻度。 6 1375334 本發明改良式電極結構的設計係適合於— 的發光元件製作或較大發航件的製作。般標Μ小 在本發明—具體實施例中,該發光 一導電性半導體層、-且第-導電性半導2包括一具第 係介於該具第—i電性;J體;體f:-發光層 π %, 日/人-穴不一導電性半導體 二义間、一基底係位於該具第二導電性半導體層下方、 導電性電極圖案係形成於該具第-導電性半導 二上方,及一具第二導電性電極圖案係形成於該且 體層之部份曝露面積上。該具第一導電性電極 圖案l 3至父一個第一次電極圖案,及該 極圖案包含至少一個第_吹雷炻圄垒導電 炻圄安U I 1固第一-人電極圖案。該具第-導電性電 ,圖案之至v-該第—次電極圖案係為從相對於—該第二 次電極圖案之-部份呈封閉形狀部份 極圖案之另-部份包圍而呈被封閉形狀部份,並= -導電性電_案每—部份與該具第 應部份之間的㈣纽上㈣。 除了提升發光元件電流分佈特性外,本發明為增加 光層面積’進-步在另—具體實施例中提供一種具改良式 電極結構之發光元件,其包括:—具第-導電性半導體層. 一發光層形成於該具第一導電性半導體層下方;一呈曰一 導電性半導體層形成於該發光層下方;一基底,係ς於^ 具第二導電性半導體層下方;_具第—導電性電極圖案,X 係形成於該具第-導電性半導體層上方並與其電性接觸, 該具第-導電性電極圖案包含至少一個第一次電極圖案. -具第二導電極圖案,係形成於該具第—導電性 體層上方’該具第二導電性電極圖案包含至少—個第 電極圖案’該具第二導電性電極圖案具有複數個通孔分佈 7 1375334 於其下方朝下延伸至該具第二導電性半導體層,其中該具 第一導電性電極圖案之至少一該第一次電極圖案係為從相 對於一該第二次電極圖案之一部份呈封閉形狀部份延伸至 .^該第二次電極圖案之另一部份包圍而呈被封閉形狀部 儉;及複數個具第二導電性接觸形成於該等通孔中,且每 一該具第二導電性接觸僅電性連接該具第二導電性電極圖 案與該具第二導電性半導體層。 在此一具體實施例中,該發光元件僅有對應該等通孔 • 的部份該具第一導電性半導體層與部份該發光層被蝕刻至 該具第二導電性半導體層,故可使該發光元件的發光面積 進一步增加,而進一步提高發光強度。 【實施方式】 本發明具改良式電極結構之發光元件藉由以下具體 實施例配合所附圖式將予以詳細說明如下。 第一圖及第二圖係本發明具改良式電極結構之發光 元件之一第一具體實施例的立體示意圖及平視示意圖。在 • 第一具體實施例中’本發明具改良式電極結構之發光元件 10係包括一 P型半導體層101、一 N型半導體層102、一 發光層103、一基底104、一 P型電極圖案105及一 N型 電極圖案106。該發光層103係介於該P型半導體層101 及該N型半導體層102之間,而該基底104係位於該N型 半導體層102下方。該P型電極圖案105係形成於該p型 半導體層101上方,該P型電極圖案105包含一扭曲S型 電極圖案105a與一扭曲倒置S型電極圖案105b,而一對 指狀電極1050、1052係分別從該S型電極圖案l〇5a與該 倒置S型電極圖案l〇5b的一端沿著該P型半導體層101 8 1375334 周緣朝向該N型電極圖案i〇6延伸《該s型電極圖案l〇5a 與該倒置S型電極圖案i〇5b呈對映關係且彼此電性連 接。該N型電極圖案106係形成於該N型半導體層102 . 之部份曝露面積上,而該N型電極圖案1〇6係與該P型電 極圖案105呈匹配關係’以使該p型電極圖案ι〇5每一部 份與該N型電極圖案106對應部份之間的距離大致上相 同。一對第一接觸墊1〇7係分別形成於該s型電極圖案 105a與該倒置s型電極圖案i〇5b靠近該發光元件1〇周緣 Φ 的一部份’該對第一接觸塾107係用以使該p型電極圖案 105與外界產生電氣接觸。一對第二接觸墊1〇8係分別形 成於該N型電極圖案1〇6靠近該發光元件1〇周緣的一部 份’該對第二接觸塾108係用以使該n型電極圖案1〇6與 外界產生電氣接觸。該對第一接觸墊107及該對第二接觸 墊108的位置以離發光區域愈遠為佳。換言之,該對第一 接觸墊107及第二接觸墊1〇8較佳形成於靠近該發光元件 晶粒邊緣的對應電極外緣部份,以利於後續的打線製程 (wire bonding process),進而防止銲接至前述第一接觸墊 • 107及第二接觸墊108的銲線阻擋到該發光元件晶粒頂面 的出射光。在考慮該P型半導體層1〇1 一般具有較高電阻 率的情況下,本發明可在該P型半導體層1〇1上方先形成 一透光的電流分佈層(current spreading layer)(未示出),而 藉該電流分佈層使該P型電極圖案105的電流能更均勻地 分佈於該P型半導體層101。該電流分佈層可是一氮化鈦 (TiN)層或一透光的金屬氧化物層,例如氧化銦錫(Indium1375334 IX. Description of the Invention: [Technical Field] The present invention relates to a light-emitting element; in particular, to a light-emitting element having a modified electrode structure, which can improve current distribution by virtue of the improved electrode structure ( Current spreading) to increase the luminous efficiency and luminance of the light-emitting element. [Prior Art] • One of the important solid-state light-emitting elements of the light-emitting diode system, which converts current into light. The light emitting diode mainly comprises a light emitting layer between a p-type semiconductor layer and an N-type semiconductor layer. Driving current is applied to a p-type electrical contact electrically connected to the P-type semiconductor layer and the N-type semiconductor layer, respectively, and an N-type electrical contact, whereby the p-type semiconductor layer and the N-type semiconductor layer respectively emit electricity The holes and electrons are emitted to the light-emitting layer, and the holes and electrons are combined in the light-emitting layer, and light is emitted from the light-emitting layer in all directions and exits through the surface of the light-emitting diode. Increasing the size of the light-emitting diode and its light-emitting area increase the luminous efficiency and brightness of the light-emitting diode. However, in the case of the conventional nitride light-emitting diode, the production of the size of the nitride light-emitting diode is limited since it is considered that the current cannot be uniformly and uniformly distributed from the electrical contact to the light-emitting layer. For example, the P-type nitride semiconductor layer has a relatively low conductivity such that the current applied to the P-type electrical contact is only distributed to a limited area of the p-type nitride semiconductor layer under the P-type electrical contact. However, the current is not laterally distributed to the entire P-type nitride semiconductor layer, and the light-emitting diode thus causes partial occurrence of defects, so that the material of the surrounding electrical components is deteriorated earlier. As for the N-type nitriding; the semiconductor layer, although having better conductivity, still has some resistance to the lateral distribution of current. As the size of the light-emitting diode element increases, the ability to uniformly distribute current from N = electrical contact to the N-type nitride semiconductor layer gradually decreases. Therefore, the size of the traditional nitride light-emitting diode will be 5 1375334. According to the following: the second good hair = light: 3⁄4 power two T degrees, is the efficiency and luminous party of the current light-emitting diode industry [invention content] The invention provides a design of a light-emitting element structure with an improved electrode structure, which can improve the current distribution characteristic of the p-type semiconductor layer of the light-emitting element, thereby increasing the output power and luminous flux of the light-emitting element 70, thereby improving the light-emitting output thereof. The illuminating element with the improved electrode structure includes: an electrode pattern on a first conductive semiconductor layer and an exposure pattern on a second conductive semiconductor layer partial exposure area 1. The first conductive electrode pattern includes a second electrode pattern, and the second conductive electrode pattern includes at least a second case. The at least one first electrode pattern extends from a partially closed shape portion with respect to the iC case to a closed shape portion surrounded by another portion of the second pattern, and the 16 The distance between each portion of the conductive electrode pattern and the corresponding portion of the second conductive electrode pattern is substantially the same, thereby promoting current distribution between the first conductive semiconductor layer and the second conductive semiconductor layer. Further, in the present invention, the first conductive electrode pattern and the second electrode pattern of the second conductive electrode pattern can have any sharp curvature on the geometric shape. It is possible to prevent the light-emitting element from generating a high field point near the tip of the electrode and the curvature portion, which further improves the uniformity of light emission of the light-emitting element of the present invention. 6 1375334 The design of the improved electrode structure of the present invention is suitable for the fabrication of light-emitting elements or the fabrication of larger navigation components. In the present invention - in particular embodiments, the light-emitting-conducting semiconductor layer, and - the first conductive semiconducting layer 2 comprises a first system interposed between the first and the first electrical; J body; body f :- luminescent layer π %, day/person-acupoint non-conductive semiconductor ambiguity, a substrate is located under the second conductive semiconductor layer, and a conductive electrode pattern is formed on the first conductive semiconductive The upper portion and a second conductive electrode pattern are formed on a portion of the exposed area of the bulk layer. The first conductive electrode pattern 13 has a first first electrode pattern to the parent, and the pole pattern includes at least one first-stage 导电 炻圄 导电 U U I 1 solid first-human electrode pattern. The first conductive conductive pattern, the pattern to the v-the first electrode pattern is surrounded by another portion of the partial pattern of the closed shape relative to the portion of the second secondary electrode pattern The part of the shape is closed, and = (conductive electricity) - each part of the case and the (four) of the first part (4). In addition to improving the current distribution characteristics of the light-emitting element, the present invention provides a light-emitting element having an improved electrode structure in an additional embodiment for increasing the optical layer area. The method comprises: a first conductive semiconductor layer. An illuminating layer is formed under the first conductive semiconductor layer; a 导电-conductive semiconductor layer is formed under the luminescent layer; a substrate is disposed under the second conductive semiconductor layer; a conductive electrode pattern, X is formed over and electrically in contact with the first conductive film layer, and the first conductive electrode pattern includes at least one first electrode pattern. Formed on the first conductive layer with a second conductive electrode pattern comprising at least one first electrode pattern. The second conductive electrode pattern has a plurality of via distributions 7 1375334 extending downwardly thereto to The second conductive semiconductor layer, wherein the at least one first sub-electrode pattern having the first conductive electrode pattern is from a portion opposite to a second sub-electrode pattern The portion of the closed shape extends to a portion of the second electrode pattern that is surrounded by the closed shape portion; and a plurality of second conductive contacts are formed in the through holes, and each of the plurality of conductive contacts is formed in the through hole The second conductive contact is electrically connected only to the second conductive electrode pattern and the second conductive semiconductor layer. In this embodiment, the light-emitting element has only a portion corresponding to the via hole, and the first conductive semiconductor layer and a portion of the light-emitting layer are etched to the second conductive semiconductor layer. The light-emitting area of the light-emitting element is further increased to further increase the light-emitting intensity. [Embodiment] A light-emitting element having an improved electrode structure of the present invention will be described in detail below by way of the following specific embodiments in conjunction with the accompanying drawings. The first and second figures are schematic perspective and plan views of a first embodiment of a light-emitting element having an improved electrode structure of the present invention. In the first embodiment, the light-emitting element 10 of the present invention having an improved electrode structure includes a P-type semiconductor layer 101, an N-type semiconductor layer 102, a light-emitting layer 103, a substrate 104, and a P-type electrode pattern. 105 and an N-type electrode pattern 106. The light-emitting layer 103 is interposed between the P-type semiconductor layer 101 and the N-type semiconductor layer 102, and the substrate 104 is located under the N-type semiconductor layer 102. The P-type electrode pattern 105 is formed over the p-type semiconductor layer 101. The P-type electrode pattern 105 includes a twisted S-type electrode pattern 105a and a twisted inverted S-type electrode pattern 105b, and a pair of finger electrodes 1050 and 1052. Extending the s-type electrode pattern from the end of the S-type electrode pattern 10a and the inverted S-type electrode pattern 10b to the N-type electrode pattern i〇6 along the periphery of the P-type semiconductor layer 101 8 1375334 The l〇5a is in an in-line relationship with the inverted S-type electrode patterns i〇5b and is electrically connected to each other. The N-type electrode pattern 106 is formed on a portion of the exposed area of the N-type semiconductor layer 102, and the N-type electrode pattern 1〇6 is in a matching relationship with the P-type electrode pattern 105 to make the p-type electrode The distance between each portion of the pattern 〇5 and the corresponding portion of the N-type electrode pattern 106 is substantially the same. A pair of first contact pads 1 〇 7 are respectively formed in the s-type electrode pattern 105a and the inverted s-type electrode pattern i 〇 5b are close to a portion of the periphery Φ of the light-emitting element 1 'the first contact 塾 107 The p-type electrode pattern 105 is used to make electrical contact with the outside world. A pair of second contact pads 1 〇 8 are respectively formed on a portion of the N-type electrode pattern 1 靠近 6 adjacent to the periphery of the illuminating element 1 ' 'the pair of second contacts 塾 108 are used to make the n-type electrode pattern 1 〇6 makes electrical contact with the outside world. Preferably, the position of the pair of first contact pads 107 and the pair of second contact pads 108 is further from the light emitting region. In other words, the pair of first contact pads 107 and the second contact pads 1 8 are preferably formed on the outer edge portion of the corresponding electrode near the edge of the light-emitting element die to facilitate the subsequent wire bonding process, thereby preventing The bonding wires soldered to the first contact pads 107 and the second contact pads 108 block the outgoing light of the top surface of the light-emitting element die. In consideration of the fact that the P-type semiconductor layer 1 一般 1 generally has a relatively high resistivity, the present invention can form a light-transmitting current spreading layer above the P-type semiconductor layer 1 〇 1 (not shown). The current distribution layer is used to more uniformly distribute the current of the P-type electrode pattern 105 to the P-type semiconductor layer 101. The current distribution layer can be a titanium nitride (TiN) layer or a light transmissive metal oxide layer, such as indium tin oxide (Indium).
Tin Oxides (IT0))層、鉻鈦氧化物(chromium TitaniumTin Oxides (IT0) layer, chromium titanium oxide
Oxide, CTO) —氧化錫:録(Sn02:Sb)、三氧化二嫁:錫 (Ga203:Sn)、氧化鎳(NiO)、氧化銦:辞(In2〇3:Zn)、氧化銀 9 1375334 銦··錫(AgIn02:Sn)、氧化銅鋁(CuA102)、鑭銅氧硫 (LaCuOS)、氧化銅鎵(CuGa02)、氧化锶銅(SrCu202)、氧化 • 錳(MnO)、氧化銅(CuO)、氧化錫(SnO)或氮化鎵(GaN)。 • 本發明發光元件可選自下列任一者:發光二極體、發 光異質接面(light emitting heterojunctions)'發光量子井結構 及其它發光固態元件。本發明發光元件係可採用任何適當 的材料系統,包括例如II-VI材料系統及III-V材料系統, 如第III族氮化物(Ill-nitride)系統、第III族填化物 φ (IH-Phosphide)系統及第III族砷化物(ni_arsenide)系統。該 P型電極圖案105及該N型電極圖案106以具有低電阻率 及低光吸收度的材質為佳。例如就第III族氮化物系統的發 光元件而言’該P型電極圖案1〇5的材質可以是銀、鋁、 金、铑或鉑,而該N型電極圖案1〇6的材質可以是鋁或銀。 就第III族磷化物系統的發光元件而言,該p型電極圖案1〇5 的材質可以是金/鋅合金、金/鈹合金、鋁、鉑、把、錄或銀, 而該N型電極圖案1〇6的材質可以是金/錄合金、金/錫合 金、金/錯合金、銀、鋁、鉑、铑或鈀。 • 再者,本發明中可以蝕刻方式在該基底104周緣適當 位置形成複數個位置對齊標記(aligmnent key)1〇9,係做為 該發光元件10進行圖案辨識(pattern rec〇gniti〇n)的參考位 置。例如,在該發光元件10後段封裝製程中前述位置對齊 標記109較佳形成於該發光元件1〇的高光反射區域,以相 對第-接觸墊1G7及第二接㈣⑽建立—參考位置,以 利於該發光元件晶粒焊接及打線製程的進行。換句話說, 本發明利用前述位置對齊標記109做為參考位置,可在該 發光το件10上進行快速且精準的圖案辦識,以加速後段涉 及晶粒焊接及打線的封裂製程,進而提高該發光元件10的 1375334 產率。就該發光元件10而言,該P型半導體層101及該N 型半導體層102的相對位置可以互換’而該P型電極圖案 • 1〇5及該N型電極圖案106之導電性亦隨之互換。另一方 . 面,該P型電極圖案1〇5及該N型電極圖案106的形狀亦 可互換 第三圖及第四圖係本發明具改良式電極結構之發光 元件之一第二具體實施例的立體示意圖及平視示意圖。在 第二具體實施例中’本發明具改良式電極結構之發光元件 φ 30係包括一 P型半導體層301、一發光層3〇2、一 n型半 導體層303、一基底304、一 P型電極圖案3〇5及一 N型 電極圖案306。該發光層302係介於該p型半導體層3〇1 與該N型半導體層303之間,而該基底3〇4係位於該Θν型 半導體層303下方。該Ρ型電極圖案3〇5係形成於該?型 半導體層301上方’該ρ型電極圖案305包含彼此電性連 接的一對弧狀電極305a及305b及由該對弧狀電極3〇5a 及305b中間朝發光面延伸之一倒置γ型分支電極3〇允, 並且該倒置Y型分支電極3〇5c之二分支係具有弧度。該n 擊型電極圖案306係形成於該N型半導體層3〇3之部份曝露 面積上。該N型電極圖案3〇6形狀與該p型電極圖案3〇5 形狀呈匹配關係,以縮短該p型電極圖案3〇5與該N型電 極圖案306之間的距離,並使該p型電極圖案3〇5每一部 份與該N型電極圖案306對應部份之間的距離大致上相 同。一第一接觸墊307係形成於該對弧狀電極305&及3〇5b 中間罪近該發光元件30的周緣,係用以使該p型電極圖 案305與外界產生電氣接觸。一第二接觸墊3〇8係形成於 該N型電極圖案306的一對稱位置並且靠近該發光元件3〇 的周緣’係用以使該N型電極圖案306與外界產生電氣接 11 1375334 觸》該第一接觸墊307及該第二接觸墊308的位置以距發 光區域愈遠為佳。換言之,該對第一接觸墊307及第二接 觸墊308較佳形成於靠近該發光元件晶粒邊緣的對應電極 • 部份’以利於後續的打線製程(wire bonding process) ’進而 防止銲接至前述第一接觸墊307及第二接觸墊308的銲線 阻擋到該發光元件晶粒頂面的出射光。相同於前述第一具 體實施例,可加入一透光電流分佈層(未示出)於該P型半 導體層301上,藉以促進該p型電極圖案305電流的侧向 φ 分佈能力’進而提升該P型半導體層301的電流分佈均勻 性。 在第二具體實施例中,本發明可以蝕刻方式在該基底 304的一角落分別形成一位置對齊標記(alignment key) 309 ’以做為該發光元件3〇進行圖案辨識(pattern recognition)的參考位置。就該發光元件3〇而言,該p型 半導體層301及該n型半導體層303的相對位置可以互 換’而該P型電極圖案3〇5及該N型電極圖案306之導電 性亦隨之互換。該P型電極圖案3〇5及該N型電極圖案306 的形狀亦可互換。 第二具體實施例與第一具體實施例之發光元件結構最 大不同處係在於兩者的p型電極圖案與N型電極圖案具有 不同的形狀設計,因而所搭配與外界產生電氣接觸的接觸 置及數量隨之做調整,並且供圖案辨識作用的位置對 齊軚圮在基底上的位置亦做調整。第二具體實施例的該發 光το件30的各層材質係與第一具體實施例的該發光元件 10相同,在此不再重述。 本發明具改良式電極結構之發光元件係藉 P型電極圖 案與N型電極圖案分別具有複數個曲線形分支電極並且使 12 1375334 二者的形狀互相匹配的設計概念,提供該發光元件以下的 優點:(1)使P型半導體層及N型半導體層具有更佳的電流 侧向分佈能力,以提高該兩層的電流分佈均勻性,以增進 . 該發光層的發光效率及發光亮度;;(2)使P型電極圖案與 N型電極圖案兩者間的距離大致上保持一致,以增加發光 層的電流密度均勻性’以提高該發光層的發光均勻度;及 (3)避免因電極具有尖銳曲度(sharp curves)所產生的高電場 作用。 φ 另一方面,本發明以下其它具體實施例除了可提高發 光元件的電流分佈特性外’同時可增加發光層面積。 第五圖及第六圖係本發明具改良式電極結構之發光元 件的第三具體實施例的立體示意圖及平視示意圖。在第三 具體實施例中,本發明具改良式電極結構之發光元件5〇 包括一第一絕緣層501、一 P型半導體層502、一發光層 503、一 N型半導體層504、一基底505、一 P型電極圖^ 506、一 N型電極圖案507、一第二絕緣層508及複數個N 型接觸509。該P型半導體層502係形成於該第一絕緣層 • 501下方,該發光層503形成於該p型半導體層502下方, 而該N型半導體層504形成於該發光層503下方,該基底 505位於該N型半導體層504下方。該p型電極圖案5〇6 係形成於該第一絕緣層501中並與該P型半導體層502電 性接觸’該P型電極圖案506包含一扭曲S型電極圖案5〇如 與一扭曲倒置S型電極圖案506b,其中該S型電極圖案 506a與該倒置S型電極圖案506b呈對映關係且彼此電性 連接,而一對指狀電極5060、5062係分別從該S型電極 圖案506a與該倒置S型電極圖案506b的一端沿著該第_ 絕緣層501周緣朝向該N型電極圖案507延伸。該N型電 13 1375334Oxide, CTO) - Tin Oxide: Recorded (Sn02:Sb), Bismuth Oxide: Tin (Ga203:Sn), Nickel Oxide (NiO), Indium Oxide: (In2〇3:Zn), Silver Oxide 9 1375334 Indium · tin (AgIn02:Sn), copper aluminum oxide (CuA102), beryllium copper oxide (LaCuOS), copper gallium oxide (CuGa02), beryllium copper oxide (SrCu202), oxidation, manganese (MnO), copper oxide (CuO) Tin oxide (SnO) or gallium nitride (GaN). • The illuminating elements of the present invention may be selected from one of the following: light emitting diodes, light emitting heterojunctions, luminescent quantum well structures, and other luminescent solid state components. The light-emitting element of the present invention may be any suitable material system including, for example, a II-VI material system and a III-V material system, such as a Group III nitride (Ill-nitride) system, a Group III filler φ (IH-Phosphide). System and Group III arsenide (ni_arsenide) system. The P-type electrode pattern 105 and the N-type electrode pattern 106 are preferably made of a material having a low electrical resistivity and a low light absorbance. For example, in the case of the light-emitting element of the Group III nitride system, the material of the P-type electrode pattern 1〇5 may be silver, aluminum, gold, rhodium or platinum, and the material of the N-type electrode pattern 1〇6 may be aluminum. Or silver. For the light-emitting element of the Group III phosphide system, the material of the p-type electrode pattern 1〇5 may be gold/zinc alloy, gold/germanium alloy, aluminum, platinum, handle, or silver, and the N-type electrode The material of the pattern 1〇6 may be gold/recording alloy, gold/tin alloy, gold/mis alloy, silver, aluminum, platinum, rhodium or palladium. In addition, in the present invention, a plurality of positional alignment marks 1〇9 may be formed at appropriate positions on the periphery of the substrate 104 by etching, and the pattern recognition (pattern rec〇gniti〇n) of the light-emitting element 10 may be performed. Reference location. For example, in the post-packaging process of the light-emitting element 10, the position alignment mark 109 is preferably formed in the high-light reflection area of the light-emitting element 1 to establish a reference position with respect to the first contact pad 1G7 and the second connection (4) (10) to facilitate the The light-emitting element die bonding and wire bonding process are carried out. In other words, the present invention utilizes the aforementioned position alignment mark 109 as a reference position, and can perform fast and accurate patterning on the light-emitting component 10 to accelerate the subsequent cracking process involving grain welding and wire bonding, thereby improving The yield of the light-emitting element 10 was 1375334. With respect to the light-emitting element 10, the relative positions of the P-type semiconductor layer 101 and the N-type semiconductor layer 102 can be interchanged, and the conductivity of the P-type electrode pattern • 1〇5 and the N-type electrode pattern 106 is also followed. exchange. In the other aspect, the shape of the P-type electrode pattern 1〇5 and the N-type electrode pattern 106 may also be interchanged. The third embodiment and the fourth figure are one of the light-emitting elements of the present invention having an improved electrode structure. The three-dimensional schematic and the schematic view. In the second embodiment, the light-emitting element φ 30 of the improved electrode structure of the present invention comprises a P-type semiconductor layer 301, a light-emitting layer 3〇2, an n-type semiconductor layer 303, a substrate 304, and a P-type. The electrode pattern 3〇5 and an N-type electrode pattern 306. The light-emitting layer 302 is interposed between the p-type semiconductor layer 3〇1 and the N-type semiconductor layer 303, and the substrate 3〇4 is located under the germanium-type semiconductor layer 303. Is the Ρ-type electrode pattern 3〇5 formed in this? Above the semiconductor layer 301, the p-type electrode pattern 305 includes a pair of arc electrodes 305a and 305b electrically connected to each other and an inverted γ-type branch electrode extending from the pair of arc electrodes 3〇5a and 305b toward the light emitting surface. 3, and the two branches of the inverted Y-type branch electrodes 3〇5c have an arc. The n-type electrode pattern 306 is formed on a portion of the exposed area of the N-type semiconductor layer 3?3. The shape of the N-type electrode pattern 3〇6 is matched with the shape of the p-type electrode pattern 3〇5 to shorten the distance between the p-type electrode pattern 3〇5 and the N-type electrode pattern 306, and the p-type The distance between each portion of the electrode pattern 3〇5 and the corresponding portion of the N-type electrode pattern 306 is substantially the same. A first contact pad 307 is formed on the periphery of the pair of arc electrodes 305 & and 3〇5b adjacent to the periphery of the light-emitting element 30 for electrically contacting the p-type electrode pattern 305 with the outside. A second contact pad 3 〇 8 is formed at a symmetrical position of the N-type electrode pattern 306 and adjacent to the periphery of the illuminating element 3 系 for electrically connecting the N-type electrode pattern 306 to the outside world. The position of the first contact pad 307 and the second contact pad 308 is preferably farther from the light-emitting area. In other words, the pair of first contact pads 307 and the second contact pads 308 are preferably formed adjacent to the corresponding electrode portions of the edge of the light-emitting element die to facilitate subsequent wire bonding processes to prevent soldering to the foregoing. The bonding wires of the first contact pad 307 and the second contact pad 308 block the outgoing light of the top surface of the light-emitting element die. Similar to the foregoing first embodiment, a light-transmitting current distribution layer (not shown) may be added to the P-type semiconductor layer 301 to promote the lateral φ distribution capability of the current of the p-type electrode pattern 305 to further enhance the The current distribution uniformity of the P-type semiconductor layer 301. In a second embodiment, the present invention can form a position alignment mark 309' at a corner of the substrate 304 in an etching manner as a reference position for pattern recognition of the light-emitting element 3 . With respect to the light-emitting element 3, the relative positions of the p-type semiconductor layer 301 and the n-type semiconductor layer 303 can be interchanged, and the conductivity of the P-type electrode pattern 3〇5 and the N-type electrode pattern 306 is also followed. exchange. The shapes of the P-type electrode patterns 3〇5 and the N-type electrode patterns 306 may also be interchanged. The second embodiment differs greatly from the light-emitting device structure of the first embodiment in that the p-type electrode patterns and the N-type electrode patterns of the two embodiments have different shape designs, and thus are in contact with the external electrical contact. The quantity is then adjusted, and the position of the pattern recognition is aligned with the position on the substrate. The material of each layer of the light-emitting member 30 of the second embodiment is the same as that of the light-emitting element 10 of the first embodiment, and will not be repeated here. The light-emitting element with improved electrode structure of the present invention provides a design concept of a plurality of curved branch electrodes and a shape of 12 1375334 by the P-type electrode pattern and the N-type electrode pattern, respectively, and provides the following advantages of the light-emitting element. (1) The P-type semiconductor layer and the N-type semiconductor layer have better current lateral distribution capability to improve the current distribution uniformity of the two layers to enhance the luminous efficiency and the luminance of the light-emitting layer; 2) making the distance between the P-type electrode pattern and the N-type electrode pattern substantially uniform to increase the current density uniformity of the light-emitting layer 'to improve the light-emitting uniformity of the light-emitting layer; and (3) avoiding the electrode having The high electric field produced by sharp curves. φ On the other hand, other embodiments of the present invention, in addition to improving the current distribution characteristics of the light-emitting element, can simultaneously increase the area of the light-emitting layer. Fig. 5 and Fig. 6 are a perspective view and a plan view showing a third embodiment of the illuminating element with the improved electrode structure of the present invention. In a third embodiment, the light-emitting element 5 of the present invention has a first insulating layer 501, a P-type semiconductor layer 502, a light-emitting layer 503, an N-type semiconductor layer 504, and a substrate 505. A P-type electrode pattern 506, an N-type electrode pattern 507, a second insulating layer 508, and a plurality of N-type contacts 509. The P-type semiconductor layer 502 is formed under the first insulating layer 501. The luminescent layer 503 is formed under the p-type semiconductor layer 502, and the N-type semiconductor layer 504 is formed under the luminescent layer 503. The substrate 505 is formed. Located below the N-type semiconductor layer 504. The p-type electrode pattern 5〇6 is formed in the first insulating layer 501 and is in electrical contact with the P-type semiconductor layer 502. The P-type electrode pattern 506 includes a twisted S-type electrode pattern 5, such as a twisted inverted The S-type electrode pattern 506b, wherein the S-type electrode pattern 506a and the inverted S-type electrode pattern 506b are in an opposite relationship and electrically connected to each other, and the pair of finger electrodes 5060, 5062 are respectively from the S-type electrode pattern 506a and One end of the inverted S-type electrode pattern 506b extends toward the N-type electrode pattern 507 along the circumference of the first insulating layer 501. The N type electricity 13 1375334
極圖案507係形成於該第一絕緣層501上方,該N型電極 圖案507係與該P型電極圖案5〇6呈匹配關係,以縮短該 P型電極圖案506與該N型電極圖案507之間的距離,並 使該P型電極圖案506每一部份與該N型電極圖案507對 應部儉之間的矩離大致上相同,而該N型電極圖案507具 有複數個通孔5070沿著其圖案形狀分伟於其下方並且從 該第一絕緣層501向下延伸至該N型半導體層504。前述 通孔5070的截面形狀除了圓形之外,仍可以是楕圓形、正 方形或矩形。該第二絕緣層508係形成於每一該通孔5070The P-type electrode pattern 507 is formed above the first insulating layer 501, and the N-type electrode pattern 507 is matched with the P-type electrode pattern 5〇6 to shorten the P-type electrode pattern 506 and the N-type electrode pattern 507. The distance between each of the P-type electrode patterns 506 and the corresponding portion of the N-type electrode pattern 507 is substantially the same, and the N-type electrode pattern 507 has a plurality of through holes 5070 along The pattern shape is subdivided below and extends downward from the first insulating layer 501 to the N-type semiconductor layer 504. The cross-sectional shape of the aforementioned through hole 5070 may be a circular shape, a square shape or a rectangular shape in addition to a circular shape. The second insulating layer 508 is formed in each of the through holes 5070
之内周壁,並且該第二絕緣層5〇8係可選自下列任一介電 材質:二氧化石夕、玻璃(g㈣及旋轉塗佈 Glass)。該等N型接觸509形成於該 V F 性連接該N塑電極圖案507與該h孔5謂中’以電 該第一絕緣層501形成於該P型舉敫半導體層504。此外, 也可以形成於每一該通孔5070的内體層502上方的同時 層508係與該第一絕緣層501為同〜°展壁’亦即該第二絕緣 另一方面,該第一絕緣層5〇ι及 以是空氣,在此情況下,該Ρ型電缸面一絕緣I 508也可 於該Ρ型半導體層502上,而該& ’案506係直接形成 該等Ν型接觸509與該Ν型半導體電極圖案507係藉由 該Ν型電極圖案507藉由空氣做為9 504電性接觸’並且 導體層502電性隔離,該等Ν型接触、、材質而與該Ρ型半 做電性隔離。 5()9 周緣藉亦由空氣 該Ρ型電極圖案506包含一對笛 接該S型電極圖案506a與該倒置s厂接觸墊510分別連 靠近該第一絕緣層50i的周緣,以接f電極圖案506b並且 與外界的電氣接觸。該對第-接^'^型電極®案506 S10的位置以距發光 1375334 區域愈遠並為高光反射區為佳《該N型電極圖案507包含 一對第二接觸墊512係靠近該第一絕緣層501的二角落, • 以提供該N型電極圖案507與外界的電氣接觸。同樣地, - 該對第一接觸墊510及第二接觸墊512較佳形成於靠近該 發光元件晶粒邊緣的對應電極外緣部份,以利於後續的打 線製程(wire bonding process),進而防止銲接至前述第一接 觸墊510及第二接觸墊512的銲線阻擋到該發光元件晶粒 頂面的出射光。相同於前述具體實施例,可加入一透光電 φ 流分佈層(未示出)於該P型半導體層502上,使該P型電 極圖案506與該透光電流分佈層電氣接觸,藉以促進該P 型電極圖案506電流的側向分佈能力,進而提升該P型半 導體層502的電流分佈均勻性》 在第三具體實施例中,本發明可以蝕刻方式在該基底 505的二角落分別形成一位置對齊標記(alignment key) 513,係做為該發光元件50進行圖案辨識(pattern recognition)的參考位置。就該發光元件50而言,該P型 半導體層502及該N型半導體層504的相對位置可以互 _ 換,而該P型電極圖案506及該N型電極圖案507之導電 性亦隨之互換。該P型電極圖案506及該N型電極圖案507 的形狀亦可互換。 參第二圖及第六圖,第三具體實施例的發光元件50 與第一具體實施例的發光元件10不同處係在於第三具體 實施例的發光元件50的該P型電極圖案506形成在該第 一絕緣層501中,而該N型電極圖案507形成在該第一絕 緣層501上方,該第一絕緣層501對應該P型電極圖案506 的部份係經蝕刻至該P型半導體層502,以使該P型電極 圖案506電氣接觸該p型半導體層502。該第一絕緣層 15 S()l、該P型半導體層502及該發光層503僅有對應該N $電極圖案507的該等通孔5070的部份被蝕刻移除至該N 製半導體層504,並藉由前述N型接觸509形成於該等通 孔5〇7〇中,以電氣連接該n型電極圖案507與該N型半 專發層504。至於在第一具體實施例中,該發光元件1〇的 续P型電極圖案105及該N型電極圖案106分別形成在該 ^型半導體層101上及被曝露的部份該N型半導體層1〇2 上。也就是說,該P型半導體層101及該發光層103對應 讀N型電極圖案1〇6及該等第二接觸墊108的部份係被蝕 刻移除至該N型半導體層1〇2,以使該N型電極圖案106 及該等第二接觸墊108電氣接觸該N型半導體層1〇2。所 以第三具體實施例的發光元件30相較於第一具體實施例 的發光元件10,其發光面積會相對地增加,而更進一步提 高該發光元件30的發光效率及發光強度。 第七圖及第八圖係本發明具改良式電極結構之發光元 件的第四具體實施例的立體示意圖及平視示意圖。在第四 具體實施例中’本發明具改良式電極結構之發光元件70 包括一第一絕緣層701、一 p型半導體層702、一發光層 703、一 N型半導體層704、一基底705、一 P型電極圖案 706、一 N型電極圖案707、一第二絕緣層708及複數個N 型接觸709 »該P型半導體層702係形成於該第一絕緣層 701下方’該發光層703形成於該p型半導體層702下方, 而該N型半導體層704形成於該發光層703下方,該基底 705位於該N型半導體層704下方。該P型電極圖案706 係形成於該第一絕緣層701中並且與該p型半導體層702 電性接觸。也就是說’該第一絕緣層701對應該P型電極 圖案706的部份係經蝕刻移除至該P型半導體層702,以 1375334 使該P型電極圖案7〇6電氣接觸該P型半導體層7〇2。該 P型電極®案706包含彼此電性連接之—雜狀電極 •及706b及由該對弧狀電極706a及706b中間朝發光面延伸 •之一,,Y型分支電極706c,而該倒置Y型分支電極706c 的二分支係呈弧肤。該N型電極圖案7〇7係形成於該第一 絕緣層701上方’該N型電極圖案7〇7係與該p型電極圖 案706呈匹配關係,以縮短該P型電極圖案706與該N型 電極圖案707之間的距離,並使該P型電極圖案706每一 φ 部份與該1^型電極圖案707對應部份之間的距離大致上相 同。該N型電極圖案707具有複數個通孔7070沿其圖案 形狀分佈於其下方並且從該第一絕緣層7〇1向下延伸至該 N型半導體層704。前述通孔7070的截面形狀除了圓形之 外,仍可以是楕圓形、正方形或矩形。該第二絕緣層708 係形成於每一該通孔7070之内周壁,並且該第二絕緣層 708可以是選自下列任一介電材質:二氧化矽、玻璃⑻ass) 及旋轉塗佈玻璃(Spin on Glass)。而該等N型接觸709係 形成於該等通孔7070中,以電性連接該N型電極圖案707 • 與該N型半導體層704。此外,該第一絕緣層701形成於 該P型半導體層702上方的同時也彳以形成於每一該通孔 7070的内周壁,亦即該第二絕緣層708係與該第一絕緣層 701為同一層。另一方面,該第一絕緣層7〇ι及第二絕緣 層708也可以是空氣,在此情況下,該P型電極圖案706 係直接形成於該P型半導體層702上’而該^型電極圖案 707係藉由該等N型接觸709與該N型半導體層7〇4電性 接觸’並且該N型電極圖案707藉由空氣做為絕緣村質而 與該P型半導體層702電性隔離,該等N型接觸709周緣 藉亦由空氣做電性隔離。一第一接觸墊71〇係形成於該對 17 1375334 弧狀電極706a及706b中間靠近該發光元件7〇的周緣,係 用以使該P型電極圖案706與外界產生電氣接觸。一第二 • 接觸塾712係形成於該N型電極圖案707的一對稱位置並 • 且靠近該發光元件7〇的周緣,係用以使該N型電極圖案 707與外界產生電氣接觸。該第一接觸墊710及該第二^ 觸塾712的位置以距發光區域愈遠並位於高 佳。換言之,該對第一接觸墊710及第二接觸墊較佳 形成於靠近該發光元件晶粒邊緣的對應電極部份,以利於 φ 後續的打線製程(wire bonding process) ’進而防止鲜接至前 述第一接觸墊710及第二接觸墊712的銲線阻擔到該發光 元件晶粒頂面的出射光。相同於前述第二具體實施例,可 加入一透光電流分佈層(未示出)於該P型半導體層702 上,使該P型電極圖案706電氣接觸該透光電流分佈層, 藉以促進該P型電極圖案706電流的側向分佈能力,進而 提升該P型半導體層702的電流分佈均勻性。 在第四具體實施例中,本發明可以蝕刻方式在該基底 705的二角落分別形成一位置對齊標記(alignment key;) • 713,係做為該發光元件70進行圖案辨識(pattern recognition)的參考位置。就該發光元件70而言,該p型 半導體層702及該N型半導體層704的相對位置可以互 換,而該P型電極圖案706及該N型電極圖案707之導電 性亦隨之互換。該P型電極圖案706及該N型電極圖案707 的形狀亦可互換。 參第四圖及第八圖,第四具體實施例的發光元件70 與第二具體實施例的發光元件30不同處係在於第四具體 實施例的發光元件70的該P型電極圖案706形成在該第 一絕緣層701中,而該N型電極圖案707形成在該第一絕 1375334The inner peripheral wall, and the second insulating layer 5〇8 may be selected from any of the following dielectric materials: silica dioxide, glass (g (four), and spin-coated glass). The N-type contacts 509 are formed in the V F-type connection between the N-electrode pattern 507 and the h-hole 5 to electrically form the first insulating layer 501 on the P-type semiconductor layer 504. In addition, a layer 508 may be formed on the inner body layer 502 of each of the through holes 5070, and the first insulating layer 501 is the same as the first insulating layer 501. That is, the second insulation, on the other hand, the first insulation. The layer 5〇ι and then the air, in this case, the 电-type cylinder face-insulation I 508 can also be on the Ρ-type semiconductor layer 502, and the & 'Case 506 directly forms the Ν-type contact 509 and the 半导体-type semiconductor electrode pattern 507 are electrically contacted by the Ν-type electrode pattern 507 by air as 9 504 and the conductor layer 502 is electrically isolated, the Ν-type contact, the material and the Ρ type Semi-electrical isolation. 5 () 9 peripheral edge also by air, the 电极-type electrode pattern 506 includes a pair of flutes of the S-type electrode pattern 506a and the inverted s factory contact pad 510 respectively adjacent to the periphery of the first insulating layer 50i, to connect the f electrode Pattern 506b is in electrical contact with the outside world. The position of the pair of the first electrode 506 S10 is further away from the region of the light 1375334 and is a highlight reflecting region. The N-type electrode pattern 507 includes a pair of second contact pads 512 close to the first Two corners of the insulating layer 501, • provide electrical contact between the N-type electrode pattern 507 and the outside. Similarly, the first contact pad 510 and the second contact pad 512 are preferably formed on the outer edge portion of the corresponding electrode near the edge of the light-emitting element die to facilitate a subsequent wire bonding process, thereby preventing The bonding wires soldered to the first contact pad 510 and the second contact pad 512 block the outgoing light of the top surface of the light-emitting element die. Similar to the foregoing specific embodiment, a light-transmitting electric φ flow distribution layer (not shown) may be added on the P-type semiconductor layer 502 to electrically contact the P-type electrode pattern 506 with the light-transmitting current distribution layer, thereby promoting the The lateral distribution capability of the current of the P-type electrode pattern 506, thereby improving the uniformity of current distribution of the P-type semiconductor layer 502. In the third embodiment, the present invention can form a position at two corners of the substrate 505 in an etching manner. An alignment key 513 is used as a reference position for pattern recognition of the light-emitting element 50. With respect to the light-emitting element 50, the relative positions of the P-type semiconductor layer 502 and the N-type semiconductor layer 504 can be interchanged, and the conductivity of the P-type electrode pattern 506 and the N-type electrode pattern 507 are also interchanged. . The shapes of the P-type electrode pattern 506 and the N-type electrode pattern 507 may also be interchanged. Referring to the second and sixth figures, the light-emitting element 50 of the third embodiment is different from the light-emitting element 10 of the first embodiment in that the P-type electrode pattern 506 of the light-emitting element 50 of the third embodiment is formed at In the first insulating layer 501, the N-type electrode pattern 507 is formed over the first insulating layer 501, and the portion of the first insulating layer 501 corresponding to the P-type electrode pattern 506 is etched to the P-type semiconductor layer. 502, the P-type electrode pattern 506 is electrically contacted to the p-type semiconductor layer 502. The first insulating layer 15 S (1), the P-type semiconductor layer 502, and the light-emitting layer 503 are only etched and removed to the N-type semiconductor layer corresponding to the through-holes 5070 of the N $ electrode pattern 507. 504, and the N-type contact 509 is formed in the through holes 5?7? to electrically connect the n-type electrode pattern 507 and the N-type semi-exclusive layer 504. In the first embodiment, the P-type electrode pattern 105 of the light-emitting element 1 and the N-type electrode pattern 106 are respectively formed on the semiconductor layer 101 and the exposed portion of the N-type semiconductor layer 1 〇 2 on. That is, the P-type semiconductor layer 101 and the portion of the light-emitting layer 103 corresponding to the read N-type electrode pattern 1〇6 and the second contact pads 108 are etched and removed to the N-type semiconductor layer 1〇2, The N-type electrode pattern 106 and the second contact pads 108 are electrically contacted to the N-type semiconductor layer 1〇2. Therefore, the light-emitting element 30 of the third embodiment has a relatively larger light-emitting area than the light-emitting element 10 of the first embodiment, and the light-emitting efficiency and the light-emitting intensity of the light-emitting element 30 are further improved. 7 and 8 are a perspective view and a plan view showing a fourth embodiment of the light-emitting element of the present invention having an improved electrode structure. In the fourth embodiment, the light-emitting element 70 of the improved electrode structure of the present invention comprises a first insulating layer 701, a p-type semiconductor layer 702, a light-emitting layer 703, an N-type semiconductor layer 704, a substrate 705, a P-type electrode pattern 706, an N-type electrode pattern 707, a second insulating layer 708, and a plurality of N-type contacts 709 » the P-type semiconductor layer 702 is formed under the first insulating layer 701 'The light-emitting layer 703 is formed Below the p-type semiconductor layer 702, the N-type semiconductor layer 704 is formed under the light-emitting layer 703, and the substrate 705 is located under the N-type semiconductor layer 704. The P-type electrode pattern 706 is formed in the first insulating layer 701 and is in electrical contact with the p-type semiconductor layer 702. That is, the portion of the first insulating layer 701 corresponding to the P-type electrode pattern 706 is etched and removed to the P-type semiconductor layer 702, and the P-type electrode pattern 7〇6 is electrically contacted with the P-type semiconductor at 1375334. Layer 7〇2. The P-electrode® case 706 includes one of the electrically-connected electrodes 706b and one of the pair of arc-shaped electrodes 706a and 706b extending toward the light-emitting surface, and the Y-type branch electrode 706c, and the inverted Y The two branches of the branch electrode 706c are curved skin. The N-type electrode pattern 7〇7 is formed over the first insulating layer 701. The N-type electrode pattern 7〇7 is matched with the p-type electrode pattern 706 to shorten the P-type electrode pattern 706 and the N. The distance between the electrode patterns 707 is such that the distance between each φ portion of the P-type electrode pattern 706 and the corresponding portion of the electrode pattern 707 is substantially the same. The N-type electrode pattern 707 has a plurality of via holes 7070 distributed under the pattern shape thereof and extending downward from the first insulating layer 7〇1 to the N-type semiconductor layer 704. The cross-sectional shape of the aforementioned through hole 7070 may be a circular shape, a square shape or a rectangular shape in addition to a circular shape. The second insulating layer 708 is formed on the inner peripheral wall of each of the through holes 7070, and the second insulating layer 708 may be selected from any of the following dielectric materials: ceria, glass (8) ass, and spin-coated glass ( Spin on Glass). The N-type contacts 709 are formed in the vias 7070 to electrically connect the N-type electrode patterns 707 and the N-type semiconductor layers 704. In addition, the first insulating layer 701 is formed on the P-type semiconductor layer 702 and is also formed on the inner peripheral wall of each of the through holes 7070, that is, the second insulating layer 708 is coupled to the first insulating layer 701. It is the same layer. On the other hand, the first insulating layer 7 and the second insulating layer 708 may also be air. In this case, the P-type electrode pattern 706 is directly formed on the P-type semiconductor layer 702. The electrode pattern 707 is electrically contacted with the N-type semiconductor layer 7〇4 by the N-type contacts 709 and the N-type electrode pattern 707 is electrically insulated from the P-type semiconductor layer 702 by using air as an insulating layer. For isolation, the circumference of the N-type contacts 709 is also electrically isolated by air. A first contact pad 71 is formed in the middle of the pair of 17 1375334 arc electrodes 706a and 706b adjacent to the periphery of the light-emitting element 7A for electrically contacting the P-type electrode pattern 706 with the outside. A second contact 塾 712 is formed at a symmetrical position of the N-type electrode pattern 707 and close to the periphery of the illuminating element 7 , for electrically contacting the N-type electrode pattern 707 with the outside. The position of the first contact pad 710 and the second contact 712 is farther from the illuminating area and is located at a higher level. In other words, the pair of first contact pads 710 and the second contact pads are preferably formed on the corresponding electrode portions near the edge of the light-emitting element die to facilitate the subsequent wire bonding process of the φ, thereby preventing the fresh connection to the foregoing. The bonding wires of the first contact pad 710 and the second contact pad 712 resist the outgoing light to the top surface of the light-emitting element die. Similar to the foregoing second embodiment, a light-transmitting current distribution layer (not shown) may be added on the P-type semiconductor layer 702 to electrically contact the P-type electrode pattern 706 to the light-transmitting current distribution layer, thereby promoting the The lateral distribution capability of the P-type electrode pattern 706 current further enhances the current distribution uniformity of the P-type semiconductor layer 702. In a fourth embodiment, the present invention can form a position alignment mark ( 713 ) at two corners of the substrate 705 in an etching manner as a reference for pattern recognition of the light-emitting element 70. position. With respect to the light-emitting element 70, the relative positions of the p-type semiconductor layer 702 and the N-type semiconductor layer 704 can be interchanged, and the conductivity of the P-type electrode pattern 706 and the N-type electrode pattern 707 are also interchanged. The shapes of the P-type electrode patterns 706 and the N-type electrode patterns 707 may also be interchanged. Referring to the fourth and eighth figures, the light-emitting element 70 of the fourth embodiment is different from the light-emitting element 30 of the second embodiment in that the P-type electrode pattern 706 of the light-emitting element 70 of the fourth embodiment is formed at In the first insulating layer 701, the N-type electrode pattern 707 is formed on the first anode 1375334
緣層701上方,該第一絕緣層701對應該P型電極圖案7〇6 的部份係經蝕刻至該P型半導體層702,以使該p型電極 圖案706電氣接觸該p型半導體層702。該第一絕緣層 • 701、該P型半導體層702及該發光層703僅有對應該N 型電極圖案707的該等通孔7070的部伶被蝕刻移除至該N 型半導體層704,並藉由前述N型接觸709形成於該等通 孔7070中,以電氣連接該N型電極圖案707與該n型半 導體層704。至於在第二具體實施例中,該發光元件3〇的 • 該P型電極圖案305及該N型電極圖案306分別形成在該 P型半導體層301上及被曝露的部份該N型半導體層3〇3 上。也就是說,該P型半導體層301及該發光層302對應 該N型電極圖案306及該第二接觸墊308的部份係被蝕刻 移除至該N型半導體層303,以使該N型電極圖案306及 該第二接觸墊308電氣接觸該N型半導體層303。所以第 四具體實施例的發光元件70相較於第二具體實施例的發 光元件30,其發光面積會相對地增加,而更進一步提高發 光元件70的發光效率及發光強度。 I 第九圖係第四具體實施例的一個變化例的平視示意 圖’其中該等通孔7070沿著該N型電極圖案707輪廓走 向的洞徑大小係隨著遠離前述第二接觸墊712而逐漸加 大,以利於電流更均勻分佈在該N型半導體層704上。同 樣地’第三具體實施例的發光元件50的該等通孔5070沿 者該N型電極圖案507輪廊走向的洞控大小可隨著遠離前 述第二接觸墊512而逐漸加大’以利於電流更均勻分佈在 該N型半導體層504上。 第十圖及第十一圖係本發明具改良式電極結構之發 光元件的第五具體實施例的立體示意圖及平視示意圖。在 19 1375334 第五具體實施例中,本發明具改良式電極結構之發光元 80係包括一 P型半導體層8〇1、一 N型半導體層8〇3、一 .發光層802、—基底804、一 P型電極圖案8〇5及一 :^型 . 電極圖案806。該發光層802係介於該P型半導體層8〇1 及該N型半導體層803之間,而該基底8〇4係位於該N型 半導體層803下方。該P型電極圖案8〇5係形成於該卩型 半導體層801上方,該P型電極圖案8〇5包含一扭曲E型 電極圖案805a及一 L型分支電極8051從該E型電極圖案 • 805a的一端向下延伸及一扭曲倒置E型電極圖案8〇5b與 一 L型分支電極8052從該扭曲倒置e型電極圖案8〇5b的 一端向下延伸。該E型電極圖案805a及該扭曲倒置e型 電極圖案805b彼此呈對映關係且彼此電性連接。該N型 電極圖案806係形成於該N型半導體層8〇3之部份曝露面 積上’而該N型電極圖案806係與該P型電極圖案805呈 匹配關係,以使該P型電極圖案805每一部份與該N型電 極圖案806對應部份之間的距離大致上相同。一對第一接 觸墊807係分別形成於該E型電極圖案805a與該扭曲倒 籲置E型電極圖案805b靠近該發光元件80周緣的一部份, 該對第一接觸墊807係用以使該P型電極圖案805與外界 產生電氣接觸。一對第二接觸墊808係分別形成於該N型 電極圖案806靠近該發光元件80周緣的一部份,該對第二 接觸墊808係用以使該N型電極圖案806與外界產生電氣 接觸。該對第一接觸墊807及該對第二接觸墊808的位置 以離發光區域愈遠為佳。換言之,該對第一接觸墊807及 第二接觸墊808較佳形成於靠近該發光元件晶粒邊緣的對 應電極部份,以利於後續的打線製程(wire bonding process),進而防止録接至前述第一接觸墊807及第二接觸 20 1375334 墊808的銲線阻擋到該發光元件晶粒頂面的出射光。在考 慮該P型半導體層801 —般具有較高電阻率的情況下,本 發明可在該P型半導體層801上方先形成一透光的電流分 . 佈層(current spreading layer)(未示出),而藉該電流分佈層 使該P型電極圖案805的電流能更均勻地分佈於該ρ型半 導體層801。該電流分佈層可是一氮化鈦(TiN)層或一透光 的金屬乳化物層’例如氧化麵錫(Indium Tin Oxides (ITO)) 層、鉻鈦氧化物(Chromium Titanium Oxide, CTO)、二氧化 # 錫:録(Sn〇2:sb)、三氧化二鎵:錫(Ga203:Sn)、氧化鎳(NiO)、 氧化銦:辞(In2〇3:Zn)、氧化銀銦:錫(AgIn〇2:Sn)、氧化銅 鋁(CuAl〇2)、鑭銅氧硫(LaCuOS)、氧化銅鎵(CuGa02)、氧 化錄銅(SrCu2〇2)、氧化猛(MnO)、氧化銅(CuO)、氧化錫 (SnO)或氮化鎵(GaN)。 就該發光元件80而言’該P型半導體層8〇1及該n 型半導體層803的相對位置可以互換,而該p型電極圖案 805及該N型電極圖案806之導電性亦隨之互換。該p型 電極圖案805及該N型電極圖案806的形狀亦可互換。 _ 第十二圖及第十三圖係本發明具改良式電極結構之發 光元件的第六具體實施例的立體示意圖及平視示意圖。在 第六具體實施例中,本發明具改良式電極結構之發光元件 90包括一第一絕緣層901、一 P型半導體層902、一發光 層903、一 N型半導體層904、一基底905、一 P型電極圖 案906、一 N型電極圖案907、一第二絕緣層909及複數 個N型接觸910。該P型半導體層902係形成於該第一絕 緣層901下方,該發光層903形成於該p型半導體廣902 下方,而該N型半導體層904形成於該發光層903下方, 該基底905位於該N型半導體層904下方。該p型電極圖 21 1375334 902於該第一、絕緣層901中並與該p塑半導體詹 =接觸’該P型電極圖案9〇6包含一扭曲E型電極 及—L型分支電極90)61從該E型電極圖案906a 剂八=向下延伸及〆扭曲倒置E型電極圖案㈣與一 L =支電極9062從該扭曲倒置E型電極圖帛9〇6b的一端 °1伸。刖述扭曲E型電極圖案906a及L型分支電極 係與前述扭曲倒置E型電極圖案9〇6b&L型分支電 62呈對映關係且彼此電性連接。該N型電極圖案9〇7 糸形成於該第一絕緣層901上方而與該p型電極圖案9〇6 呈匹配關係,以使該P型電極圖案9〇6每一部份與該N型 電極圖案907對應部份之間的距離大致上相同。該N型電 極圖案907具有複數個通孔908沿著其圖案形狀分佈於其 下方並且從該第一絕緣層901向下延伸至該n型半導體層 9〇4。前述通孔908的截面形狀除了圓形之外,仍可以是楕 圓形、正方形或矩形。該第二絕緣層9〇9係形成於每一該 通孔908之内周壁’其可以是選自下列任—介電材質:二 氧化矽、玻璃(glass)及旋轉塗佈玻璃(Spin on Glass)。該等 N型接觸910形成於該等通孔908中,以電性連接該N型 電極圖案907與該N型半導體層904。此外,該第一絕緣 層901形成於該p型半導體層902上方的同時也可以形成 於每一該通孔908的内周壁’亦即該第二絕緣層909係與 該第一絕緣層901為同一層。另一方面,該第一絕緣層901 及第二絕緣層908也可以是空氣,在此情況下,該p型電 極圖案906係直接形成於該P型半導體層902上,而該N 型電極圖案907係藉由該等N型接觸909與該N型半導體 層904電性接觸,並且等該N型電極圖案907藉由空氣做 為絕緣材質而與該P型半導體層902電性隔離,該等n型 22 1375334 接觸909周緣亦藉由空氣做電性隔離。 該P型電極圖案906包含一對第一接觸墊911分別連 接前述扭曲E型電極圖案906a及L型分支電極9061與前 • 述扭曲倒置E型電極圖案906b與L型分支電極9062,並 且前述第一接觸墊9Π靠近該第一絕緣層901的周緣,以 提供該P型電極圖案906與外界的電氣接觸。該對第一接 觸墊911的位置以距發光區域愈遠並為高光反射區為佳。 該N型電極圖案907包含一對第二接觸墊912係靠近該第 φ 一絕緣層901的周緣,以提供該N型電極圖案907與外界 的電氣接觸。同樣地,該對第一接觸墊911及第二接觸塾 912較佳形成於靠近該發光元件晶粒邊緣的對應電極部 份’以利於後續的打線製程(wire bonding process),進而防 止銲接至前述第一接觸墊911及第二接觸墊912的銲線阻 擋到該發光元件晶粒頂面的出射光。相同於前述具體實施 例,可加入一透光電流分佈層(未示出)於該P型半導體層 902上,使該p型電極圖案906與該透光電流分佈層電氣 接觸,藉以促進該P型電極圖案906電流的侧向分佈能 鲁力,進而提升該P型半導體層902的電流分佈均勻性。 另外,該等通孔908沿著該N型電極圖案907輪靡走 向的洞經大小亦可隨著遠離前述第二接觸塾912而逐漸加 大,以利於電流更均勻分佈在該N型半導體層904上。 參第十圖及第十二圖,第六具體實施例的發光元件90 與第五具體實施例的發光元件80不同處係在於第六具體 實施例的發光元件90的該P型電極圖案906形成在該第 一絕緣層901中,而該N型電極圖案907形成在該第一絕 緣層901上方,該第一絕緣層901對應該P型電極圖案906 的部份係經蝕刻至該P型半導體層902,以使該P型電極 23 1375334 圖案906電氣接觸該p型半導體層902。該第一絕緣層Above the edge layer 701, a portion of the first insulating layer 701 corresponding to the P-type electrode pattern 7〇6 is etched to the P-type semiconductor layer 702 such that the p-type electrode pattern 706 electrically contacts the p-type semiconductor layer 702. . The first insulating layer 701, the P-type semiconductor layer 702 and the luminescent layer 703 are only etched and removed to the N-type semiconductor layer 704 by the portions of the vias 7070 corresponding to the N-type electrode patterns 707, and The N-type contact 709 is formed in the via holes 7070 to electrically connect the N-type electrode pattern 707 and the n-type semiconductor layer 704. In the second embodiment, the P-type electrode pattern 305 and the N-type electrode pattern 306 are respectively formed on the P-type semiconductor layer 301 and the exposed portion of the N-type semiconductor layer. 3〇3. That is, the P-type semiconductor layer 301 and the portion of the light-emitting layer 302 corresponding to the N-type electrode pattern 306 and the second contact pad 308 are etched and removed to the N-type semiconductor layer 303, so that the N-type The electrode pattern 306 and the second contact pad 308 electrically contact the N-type semiconductor layer 303. Therefore, the light-emitting element 70 of the fourth embodiment has a relatively larger light-emitting area than the light-emitting element 30 of the second embodiment, and the light-emitting efficiency and the light-emitting intensity of the light-emitting element 70 are further improved. The ninth diagram is a schematic plan view of a variation of the fourth embodiment, wherein the size of the diameter of the through holes 7070 along the contour of the N-type electrode pattern 707 is away from the second contact pad 712. It is gradually increased to facilitate a more even distribution of current on the N-type semiconductor layer 704. Similarly, the hole size of the through holes 5070 of the light-emitting element 50 of the third embodiment may be gradually increased along the direction of the N-type electrode pattern 507, so as to be gradually increased away from the second contact pad 512. The current is more evenly distributed over the N-type semiconductor layer 504. The tenth and eleventh drawings are a perspective view and a plan view of a fifth embodiment of the light-emitting device of the present invention having an improved electrode structure. In a fifth embodiment of the invention, the illuminating element 80 of the improved electrode structure of the present invention comprises a P-type semiconductor layer 〇1, an N-type semiconductor layer 〇3, a luminescent layer 802, and a substrate 804. , a P-type electrode pattern 8 〇 5 and a: ^ type. Electrode pattern 806. The light-emitting layer 802 is interposed between the P-type semiconductor layer 8〇1 and the N-type semiconductor layer 803, and the substrate 8〇4 is located under the N-type semiconductor layer 803. The P-type electrode pattern 8〇5 is formed over the 卩-type semiconductor layer 801, and the P-type electrode pattern 〇5 includes a twisted E-type electrode pattern 805a and an L-type branch electrode 8051 from the E-type electrode pattern 805a. One end extends downward and a twisted inverted E-shaped electrode pattern 8〇5b and an L-shaped branch electrode 8052 extend downward from one end of the twisted inverted e-type electrode pattern 8〇5b. The E-type electrode pattern 805a and the twisted inverted e-type electrode pattern 805b are in an opposing relationship with each other and electrically connected to each other. The N-type electrode pattern 806 is formed on a portion of the exposed area of the N-type semiconductor layer 8〇3, and the N-type electrode pattern 806 is matched with the P-type electrode pattern 805 to make the P-type electrode pattern. The distance between each portion of 805 and the corresponding portion of the N-type electrode pattern 806 is substantially the same. A pair of first contact pads 807 are respectively formed on a portion of the E-type electrode pattern 805a and the twisted inverted E-type electrode pattern 805b near the periphery of the light-emitting element 80. The pair of first contact pads 807 are used to make The P-type electrode pattern 805 is in electrical contact with the outside. A pair of second contact pads 808 are respectively formed on a portion of the N-type electrode pattern 806 near the periphery of the light-emitting element 80. The pair of second contact pads 808 are used to make the N-type electrode pattern 806 electrically contact with the outside. . The position of the pair of first contact pads 807 and the pair of second contact pads 808 is preferably as far as possible from the light-emitting area. In other words, the pair of first contact pads 807 and second contact pads 808 are preferably formed on the corresponding electrode portions near the edge of the light-emitting element die to facilitate the subsequent wire bonding process, thereby preventing the recording to the foregoing. The bonding wires of the first contact pad 807 and the second contact 20 1375334 pad 808 block the outgoing light of the top surface of the light-emitting element die. In consideration of the fact that the P-type semiconductor layer 801 generally has a relatively high resistivity, the present invention can form a light-transmitting current distribution layer on the P-type semiconductor layer 801 (not shown). And the current distribution layer causes the current of the P-type electrode pattern 805 to be more uniformly distributed to the p-type semiconductor layer 801. The current distribution layer may be a titanium nitride (TiN) layer or a light transmissive metal emulsion layer such as an Indium Tin Oxides (ITO) layer, Chromium Titanium Oxide (CTO), Oxidation # Tin: recorded (Sn〇2: sb), gallium trioxide: tin (Ga203: Sn), nickel oxide (NiO), indium oxide: (In2〇3: Zn), silver indium oxide: tin (AgIn 〇2:Sn), copper aluminum oxide (CuAl〇2), lanthanum oxysulfide (LaCuOS), copper gallium oxide (CuGa02), copper oxide (SrCu2〇2), oxidized MnO, copper oxide (CuO) Tin oxide (SnO) or gallium nitride (GaN). For the light-emitting element 80, the relative positions of the P-type semiconductor layer 8〇1 and the n-type semiconductor layer 803 can be interchanged, and the conductivity of the p-type electrode pattern 805 and the N-type electrode pattern 806 are also interchanged. . The shapes of the p-type electrode pattern 805 and the N-type electrode pattern 806 may also be interchanged. The twelfth and thirteenth drawings are a perspective view and a plan view of a sixth embodiment of the light-emitting element of the present invention having an improved electrode structure. In a sixth embodiment, the light-emitting device 90 having the improved electrode structure comprises a first insulating layer 901, a P-type semiconductor layer 902, a light-emitting layer 903, an N-type semiconductor layer 904, a substrate 905, A P-type electrode pattern 906, an N-type electrode pattern 907, a second insulating layer 909, and a plurality of N-type contacts 910. The P-type semiconductor layer 902 is formed under the first insulating layer 901. The luminescent layer 903 is formed under the p-type semiconductor 902, and the N-type semiconductor layer 904 is formed under the luminescent layer 903. Below the N-type semiconductor layer 904. The p-type electrode of FIG. 21 1375334 902 is in the first insulating layer 901 and is in contact with the p-type semiconductor. The P-type electrode pattern 9〇6 includes a twisted E-type electrode and an L-type branch electrode 90. From the E-type electrode pattern 906a, the agent 8 = downwardly extending and the twisted inverted E-type electrode pattern (4) and an L = branch electrode 9062 extend from one end of the twisted inverted E-type electrode pattern 〇9〇6b. The twisted E-type electrode pattern 906a and the L-type branch electrode are in an opposite relationship to the twisted inverted E-type electrode pattern 9〇6b&L-type branching electrode 62 and are electrically connected to each other. The N-type electrode pattern 9〇7 糸 is formed over the first insulating layer 901 to match the p-type electrode pattern 9〇6 such that each part of the P-type electrode pattern 9〇6 and the N-type The distance between the corresponding portions of the electrode pattern 907 is substantially the same. The N-type electrode pattern 907 has a plurality of via holes 908 distributed therebelow along its pattern shape and extending downward from the first insulating layer 901 to the n-type semiconductor layer 9〇4. The cross-sectional shape of the aforementioned through hole 908 may be circular, square or rectangular in addition to a circular shape. The second insulating layer 9〇9 is formed on the inner peripheral wall of each of the through holes 908. It may be selected from the following dielectric materials: cerium oxide, glass, and spin on glass. ). The N-type contacts 910 are formed in the via holes 908 to electrically connect the N-type electrode patterns 907 and the N-type semiconductor layers 904. In addition, the first insulating layer 901 may be formed on the inner peripheral wall of each of the through holes 908 while the first insulating layer 901 is formed over the p-type semiconductor layer 902, that is, the second insulating layer 909 and the first insulating layer 901 are The same layer. On the other hand, the first insulating layer 901 and the second insulating layer 908 may also be air. In this case, the p-type electrode pattern 906 is directly formed on the P-type semiconductor layer 902, and the N-type electrode pattern is formed. 907 is electrically contacted with the N-type semiconductor layer 904 by the N-type contacts 909, and the N-type electrode pattern 907 is electrically isolated from the P-type semiconductor layer 902 by using air as an insulating material. N-type 22 1375334 Contact 909 circumference is also electrically isolated by air. The P-type electrode pattern 906 includes a pair of first contact pads 911 respectively connecting the twisted E-type electrode pattern 906a and the L-type branch electrode 9061 and the front twisted inverted E-type electrode pattern 906b and the L-shaped branch electrode 9062, and the foregoing A contact pad 9 is adjacent to the periphery of the first insulating layer 901 to provide electrical contact of the P-type electrode pattern 906 with the outside. Preferably, the position of the pair of first contact pads 911 is farther from the light-emitting area and is a high-light reflection area. The N-type electrode pattern 907 includes a pair of second contact pads 912 adjacent to the periphery of the first φ-insulating layer 901 to provide electrical contact of the N-type electrode pattern 907 with the outside. Similarly, the pair of first contact pads 911 and the second contact pads 912 are preferably formed adjacent to the corresponding electrode portions of the edge of the light-emitting element die to facilitate a subsequent wire bonding process, thereby preventing soldering to the foregoing. The bonding wires of the first contact pad 911 and the second contact pad 912 block the outgoing light of the top surface of the light-emitting element die. Similar to the foregoing specific embodiment, a light-transmitting current distribution layer (not shown) may be added on the P-type semiconductor layer 902 to electrically contact the p-type electrode pattern 906 with the light-transmitting current distribution layer, thereby promoting the P. The lateral distribution of the current of the pattern electrode pattern 906 can be Lulu, thereby increasing the uniformity of current distribution of the P-type semiconductor layer 902. In addition, the hole size of the through holes 908 along the rim of the N-type electrode pattern 907 may be gradually increased along the distance from the second contact port 912 to facilitate more uniform distribution of current in the N-type semiconductor layer. On 904. Referring to the tenth and twelfth drawings, the light-emitting element 90 of the sixth embodiment is different from the light-emitting element 80 of the fifth embodiment in that the P-type electrode pattern 906 of the light-emitting element 90 of the sixth embodiment is formed. In the first insulating layer 901, the N-type electrode pattern 907 is formed over the first insulating layer 901, and the portion of the first insulating layer 901 corresponding to the P-type electrode pattern 906 is etched to the P-type semiconductor. Layer 902 is such that pattern P 906 of the P-type electrode 23 1375334 is in electrical contact with the p-type semiconductor layer 902. The first insulating layer
901、該p型半導體層902及該發光層903僅有對應該N901, the p-type semiconductor layer 902 and the light-emitting layer 903 only correspond to N
型電極圖案907的該等通孔908的部份被蝕刻移除至該N • 型半導體層904,並藉由前述N型接觸910形成於該等通 孔908中,以電氣連接該N型電極圖案9〇7與該N塑半導 體層904。 再者,本發明前述第三、四及第六具體實施例亦可有 如下變化例(未示出),即除了前述N型電極圖案下方分佈 • 有複數個通孔外,以形成該等N型接觸外,同樣地對應的 P型電極圖案可形成於該第一絕緣層上方’並且複數個通 孔分佈於該P型電極圖案下方而延伸至前述p型半導體 層’其内周壁形成有絕緣層’及形成p型接觸於該等通孔 中’以與該P型半導體層產生電性導通。前述p型電極圖 案對應的該等通孔截面形狀設計可與該N型電極圖案對應 的該等通孔一樣。如此一來,可更進一步增加本發明發光 元件發光面積。另外,本發明前述各層絕緣層可以是選自 下列任一介電材質:二氧化矽、玻璃(glass)及旋轉塗佈玻 籲璃(Spin on Glass)。 ^另一方面’本發明可在前述每一發光元件之基底下方 形成一反射器結構。該反射器結構可以是一金屬層,例如 鋁二銀或銀鋁合金,可以是一透光介電層與一金屬層組成 之疊層結構,例如二氧化矽層/鋁金屬層之疊層結構,而該 二氧化矽層的厚度可以從2500埃至75〇〇埃。該透光介電 f的折射係數小於該透光基底的折射係數,使穿透前述發 光兀件基底的發射光可在該基底與該透光介電層的介面產 生全反射’而被導引朝向該發光元件表面發射。至於該透 光介電層下方之該金屬層仍可將穿透該透光介電層的部份 24 1375334 發射光反射回去。前述反射器結構亦可以是透光介電層/ 布拉格反射器/金屬層之疊層結構,其令該透光介電層的折 射係數小於該發光元件之折射係數,而該金屬層可以是 鋁至該布拉格反射器可以是由複數層透光介電層組 成,該等,光介電層兩兩之間的折射係數呈高低週期性變 化,並且每一該透光介電層的厚度應為該發光元件發光波 ^的四分之-(1/4λ)。前述透光介電層/布拉格反射器/金 ^層的疊層結構可以是二氧切/布拉格反_/金屬層的 豐層結構,其t二氧化矽的厚度可以從25〇〇埃至75〇〇埃。 以下以第十四圖及ϋ + :^ΔΕ, ^ 、 件加入反射器五Α至十五C圖說明本發明發光元 參第十四圖,本發明传太上_ — 1Ω4πτ^^^ ^ ή :月係在刖述發光兀件1〇的該基底 五Α至十ic一圖所;·益,1!0。、該反射器110的變化例如第十 μ 1不,可以是—金屬層111、一透光介電 i格及射~ 之豎層結構或一透光介電層112/一布 器113二透夬if層111之疊層結構。該布拉格反射 由一透先介電層113a及-透光介電層⑽交互 以上所述僅為本發明 定本發明之中請專利_^體實&例而已’並非用以限 精神下所完/¾之等效改變=其它未脫離本發明所揭示之 專利範圍内。 戍修飾,均應包含在下述之申請 25 1375334 【圖式簡單說明】 第一圖係本發明具改良式電極結構之發光元件的弟 • 一具體實施例的立體示意圖; . 第二圖係本發明具改良式電極結構之發光元件的第 一具體實施例的平視示意圖; 第三圖係本發明具改良式電極結構之發光元件的第 二具體實施例的立體示意圖; 第四圖係本發明具改良式電極結構之發光元件的第 Φ 二具體實施例的平視示意圖; 第五圖係本發明具改良式電極結構之發光元件的第 三具體實施例的立體示意圖; 第六圖係本發明具改良式電極結構之發光元件的第 三具體實施例的平視示意圖; 第七圖係本發明具改良式電極結構之發光元件的第 四具體實施例的立體示意圖; 第八圖係本發明具改良式電極結構之發光元件的第 四具體實施例的平視示意圖; • 第九圖係本發明具改良式電極結構之發光元件第四具 體實施例的一變化例的平視示意圖; 第十圖係本發明具改良式電極結構之發光元件的第 五具體實施例的立體不意圖, 第十一圖係本發明具改良式電極結構之發光元件的 第五具體實施例的平視示意圖; 第十二圖係本發明具改良式電極結構之發光元件的第 六具體實施例的立體示意圖; 第十三圖係本發明具改良式電極結構之發光元件的第 六具體實施例的平視示意圖; 26 1375334 第十四圖係本發明具改良式電極結構之發光元件的第 一具體實施例的一變化例的立體示意圖;及 第十五A圖至第十五C圖係本發明反射器結構的各種 變化例。 【主要元件符號對照說明】 10、30、50、70、80、90…-發光元件 101、 301、502、702、801----P 型半導體層 102、 303、504、704、803…-N 型半導體層 103、 302、503、703、802----發光層 104、 304、505、705、804-…基底 105、 305、506、706、805 —P 型電極圖案 106、 306、507、707、806 —N 型電極圖案 105a、506b-…扭曲S型電極圖案 105b、506b-—扭曲倒置S型電極圖案 1050、1052、5060、5062…指狀電極 107、 307、510、710-…第一接觸塾 108、 308、512、712-…第二接觸塾 109、 309、513、713…-位置對齊標記 110 反射15 111----金屬層 112-…透光介電層 113—·_布拉格反射器 113a,113b-…透光介電層 305a、305b、706a、706b—弧狀電極 305c、706c—倒置Y型分支電極 501、701--·-第一絕緣層 508、 708—第二絕緣層 509、 709…-Ν型接觸 27 1375334 5070、7070-…通孔 805a…-扭曲E型電極圖案 805b—扭曲倒置E型電極圖案 8051、8052…-L型分支電極 8Π7- w v r ___笪一姐鋸執 * ^'4 808- 901- —-第一絕緣層 902- 903- 發光層 904- 905- ---基底 906- 907—N型電極圖案 908- 909—--第二絕緣層 906a——扭曲E型電極圖案 906b…-扭曲倒置E型電極圖案 911-…第一接觸墊 912 9061、9062—L型分支電極 --第二接觸塾 --P型半導體層 _—N型半導體層 …P型電極圖案 ·---通孔 910…-N型接觸 第二接觸墊Portions of the vias 908 of the electrode pattern 907 are etched away to the N − -type semiconductor layer 904 and are formed in the vias 908 by the N-type contacts 910 to electrically connect the N-type electrodes. The pattern 9〇7 and the N-plastic semiconductor layer 904. Furthermore, the third, fourth and sixth embodiments of the present invention may also have the following modifications (not shown), that is, in addition to the distribution of the plurality of through holes under the N-type electrode pattern, to form the N Similarly, a corresponding P-type electrode pattern may be formed over the first insulating layer 'and a plurality of via holes are distributed under the P-type electrode pattern to extend to the p-type semiconductor layer', and an inner peripheral wall thereof is insulated The layer 'and the p-type contacts are formed in the vias' to electrically conduct with the P-type semiconductor layer. The through-hole cross-sectional shape design corresponding to the p-type electrode pattern may be the same as the through-hole corresponding to the N-type electrode pattern. As a result, the light-emitting area of the light-emitting element of the present invention can be further increased. Further, the foregoing insulating layers of the present invention may be selected from any of the following dielectric materials: cerium oxide, glass, and spin-on glass. On the other hand, the present invention can form a reflector structure under the substrate of each of the foregoing light-emitting elements. The reflector structure may be a metal layer, such as aluminum di silver or silver aluminum alloy, and may be a laminated structure composed of a transparent dielectric layer and a metal layer, for example, a stacked structure of a ruthenium dioxide layer/aluminum metal layer. The thickness of the cerium oxide layer may range from 2,500 angstroms to 75 angstroms. The refractive index of the transparent dielectric f is smaller than the refractive index of the transparent substrate, so that the emitted light penetrating the base of the light-emitting element can be totally reflected at the interface between the substrate and the transparent dielectric layer. Emitted toward the surface of the light-emitting element. The metal layer under the transparent dielectric layer can still reflect the emitted light of the portion 24 1375334 that penetrates the transparent dielectric layer. The reflector structure may also be a laminated structure of a transparent dielectric layer/Brag reflector/metal layer, such that the refractive index of the transparent dielectric layer is smaller than the refractive index of the light-emitting element, and the metal layer may be aluminum. The Bragg reflector may be composed of a plurality of transparent dielectric layers, wherein the refractive index between the optical dielectric layers varies periodically, and the thickness of each of the transparent dielectric layers shall be The light-emitting element emits a quarter-(1/4λ) of the light wave. The laminated structure of the light-transmitting dielectric layer/Bragr reflector/gold layer may be a layered structure of a dioxometer/Brag-inverse/metal layer, and the thickness of the t-cerium oxide may be from 25 Å to 75 Å. 〇〇埃. The following is a fourteenth diagram of the illuminating element gin of the present invention, which is shown in Fig. 14 and ϋ + : ^ ΔΕ, ^ , and a member of the reflector Α Α 十五 , , , , , , , , , , _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ : The month is a description of the base of the illuminating element 1 Α to 10 ic 1; 益, 1! 0. The change of the reflector 110, for example, the tenth μ 1 is not, may be - the metal layer 111, a transparent dielectric i-element and a vertical layer structure or a transparent dielectric layer 112 / a cloth 113 The laminated structure of the 夬if layer 111. The Bragg reflection is performed by a transmissive dielectric layer 113a and a transparent dielectric layer (10). The above is only the invention of the present invention. The patent is not in the spirit of the invention. Equivalent change of /3⁄4 = other without departing from the scope of the invention disclosed in the present invention. The 图 戍 , 25 25 25 1 1 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 25 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一 第一A schematic plan view of a first embodiment of a light-emitting element having an improved electrode structure; a third diagram is a perspective view of a second embodiment of the light-emitting element of the present invention having an improved electrode structure; A schematic plan view of a second embodiment of a light-emitting element of an improved electrode structure; a fifth schematic view of a third embodiment of the light-emitting element of the present invention having an improved electrode structure; A schematic plan view of a third embodiment of a light-emitting element of an improved electrode structure; a seventh schematic view of a fourth embodiment of the light-emitting element of the present invention having an improved electrode structure; A schematic plan view of a fourth embodiment of a light-emitting element of the electrode structure; • a ninth diagram of the invention having an improved electrode structure A schematic plan view of a variation of a fourth embodiment of the device; a tenth view is a perspective view of a fifth embodiment of the light-emitting device of the present invention having an improved electrode structure, and the eleventh embodiment is an improved A schematic plan view of a fifth embodiment of a light-emitting element of an electrode structure; a twelfth embodiment is a perspective view of a sixth embodiment of the light-emitting element of the present invention having an improved electrode structure; A plan view of a sixth embodiment of a light-emitting element of the electrode structure; 26 1375334 a four-dimensional view of a variation of the first embodiment of the light-emitting element of the improved electrode structure of the present invention; The fifteenth to fifteenth Cth drawings are various variations of the reflector structure of the present invention. [Main component symbol comparison description] 10, 30, 50, 70, 80, 90... - Light-emitting elements 101, 301, 502, 702, 801---P-type semiconductor layers 102, 303, 504, 704, 803...- N-type semiconductor layers 103, 302, 503, 703, 802----emissive layers 104, 304, 505, 705, 804-... substrates 105, 305, 506, 706, 805 - P-type electrode patterns 106, 306, 507 707, 806 - N-type electrode patterns 105a, 506b - ... twist S-type electrode patterns 105b, 506b - twisted inverted S-type electrode patterns 1050, 1052, 5060, 5062... finger electrodes 107, 307, 510, 710-... The first contact 塾 108, 308, 512, 712-...the second contact 塾 109, 309, 513, 713...-position alignment mark 110 reflection 15 111----metal layer 112-...transmissive dielectric layer 113-· _ Bragg reflectors 113a, 113b-...transmissive dielectric layers 305a, 305b, 706a, 706b - arc electrodes 305c, 706c - inverted Y-branch electrodes 501, 701 - - first insulating layers 508, 708 - Two insulating layers 509, 709...-Ν contact 27 1375334 5070, 7070-...through hole 805a...-twisted E-type electrode pattern 805b-twisted inverted E-type electrode pattern 8051, 8052 ...-L-type branch electrode 8Π7- wvr ___笪一姐锯**'4 808- 901---first insulating layer 902-903- light-emitting layer 904-905---substrate 906-907-N type Electrode pattern 908-909---second insulating layer 906a-twisted E-type electrode pattern 906b...-twisted inverted E-type electrode pattern 911-...first contact pad 912 9061, 9062-L-type branch electrode--second contact塾--P-type semiconductor layer _-N-type semiconductor layer...P-type electrode pattern·---through hole 910...-N type contact second contact pad
2828