TWI326049B - Method of image object classification and identification - Google Patents
Method of image object classification and identification Download PDFInfo
- Publication number
- TWI326049B TWI326049B TW95141794A TW95141794A TWI326049B TW I326049 B TWI326049 B TW I326049B TW 95141794 A TW95141794 A TW 95141794A TW 95141794 A TW95141794 A TW 95141794A TW I326049 B TWI326049 B TW I326049B
- Authority
- TW
- Taiwan
- Prior art keywords
- image
- contour
- waveform
- image object
- wave
- Prior art date
Links
Landscapes
- Image Analysis (AREA)
- Image Processing (AREA)
Description
二達編號·· TW3286PA 九、發明說明: 【發明所屬之技術領域】 本發明是有關於一種影像處理方法,且特別是有關於 一種影像物件分類及辨識方法。 【先前技術】 移動偵測功能已是目前保全監視錄影系統的基本功 能之一。習知保全監視錄影系統為了減少資料儲存量,只 有在偵測到物件移動時啟動錄影功能或發出警報。儘管如 此,目前保全監視錄影系統卻時常發生移動偵測的誤判, 例如鏡頭影像中因為風吹造成枝葉搖晃,或是光線變化等 之環境因素干擾,都將會誤财物體在移誠開始錄影或 發出警報,進而導致資料儲存浪費及誤警。 因此,若保全監視錄影系統能結合影像處理技術,進 ===行分類與識别’辨識出此移動物件是屬 Γ二 ==車、行李等),將可僅針對真正想 要瓜視的目標發出警報,而大幅減少誤警的機率。 【發明内容】 有鑑 於此’本發明的目的就是 類及辨識方法,可獲得快速 &供—種,讀物件分 果。當應用在影像監視^統,的物件分類及辨識結 警報發生,並可有效且確實地减少对的誤 根據本發明的目的,提少一〜像貝科錯存量。 種影像物件辨識方法,包达达编号·· TW3286PA IX. Description of the Invention: [Technical Field] The present invention relates to an image processing method, and more particularly to a method for classifying and identifying an image object. [Prior Art] The motion detection function is one of the basic functions of the current surveillance video recording system. In order to reduce the amount of data stored, the conventional security video recording system only starts the recording function or issues an alarm when it detects the movement of the object. Despite this, the current surveillance video recording system often has misjudgment of motion detection. For example, if the lens image is shaken by the wind, or the environmental factors such as light changes, the money will be recorded or sent out. Alerts, which in turn lead to waste of data storage and false alarms. Therefore, if the security surveillance video system can be combined with image processing technology, the input === line classification and identification 'identify that the mobile object belongs to the second == car, luggage, etc.), will be only for the target that really wants to be viewed Alerts are issued and the chances of false alarms are greatly reduced. SUMMARY OF THE INVENTION It is to be noted that the purpose of the present invention is to classify and identify methods, and to obtain fast & When applied to the image monitoring system, the object classification and identification alarms occur, and the errors can be effectively and surely reduced. According to the object of the present invention, one-to-be-like stock is reduced. Image object identification method, package
132㈣臟 :TW3286PA 像物曲線繪製-物件 放物件輪靡㈣輪靡波型’以縮 物件輪廊波型由空間域轉換至頻率吏得 .之::輪廓波型與-波型資料庫 庫搜參考物件輪毅H及( 貝科 參考物件輪廓波型之一對應參考物件。❼件為 包括下列步像物件分類方法, -來耗纽#據參考參考輪•曲線緣製 懂,下為月之上述目的、特徵、和優點能更關易 明如=特舉一較佳實施例’並配合所附圖式,作詳細說 【實施方式】 箱马照第1圖,紐示朗本發明—較佳實施例的〜 牛:件辨識方法之流程圖。影像物件辨識方法開始於 取一影像物件m,並於步㈣G依據影像物 輪廓曲線繪製一物件輪廓波型。物件輪廓波型之較 佳緣製方式如第5A至5C圖所示。如第5A圖所示,影像 6 1326049132 (4) Dirty: TW3286PA image curve drawing - object release object rim (four) rim wave type 'converted object wheel wave shape from space domain to frequency 吏.:: contour wave type and - wave type database library search Reference object wheel Yi H and (Beacon reference object contour wave type corresponds to the reference object. The piece is the following step object classification method, - to consume the new # according to the reference wheel • curve edge system, the next month The above objects, features, and advantages can be more clearly illustrated as a preferred embodiment of the present invention, and in conjunction with the accompanying drawings, in detail. ~ The cow: The flow chart of the identification method. The image object recognition method starts with taking an image object m, and draws an object contour wave pattern according to the contour curve of the image in step (4) G. The preferred edge mode of the object contour wave pattern is as follows. Figure 5A to 5C. As shown in Figure 5A, image 6 1326049
ΐ號:TW3280PA 物件的輪廉曲線上具有數個點座標(Xi,Yi)。首先曾 出影像物件之重心座標(Xe,Ye),影像物件的重心座標r 括XC,YC)係為輪靡曲線上每一點座標(Xi,Yi)之加總平均 。再者’計算輪療曲線上每一點座標(xi,Yi)與重心座 *(^^’丫〇之距離。計算時可從輪廓曲線上之任一點 =’例如:第5B圖之起始點⑽肩)係為當掃描物件輪 f婦X軸方向再掃γ軸方向時所遇到的第一個點。 =點沿著輪廊曲線依序計算出各點與重心間之距 距離點座標(Xl,Yi)與重心座標(Xc,Yc)之 輪輪廓波型。第5c 數,而其縱座標為=型之座標圖,其橫座標為輪廊點 步驟_將第5C圖中的原始之物件輪廓波型正規 寸,而二M縮放原始之物件輪廉波型至—固定尺 寸,而成為第5D圖的一正楣界+札从从士 例放大或縮小至亦即’將物件等比 的情況。步_係進一步將第==物件大小不-廓波型進行波㈣換冑 、、化之物件輪 =::換至1率域的波==:空: MW 轉換、或小波轉換等。經由波型轉換之 Γ 型’可排除影像物件有旋轉或鏡射相反的情 7Nickname: TW3280PA The object's rounded curve has several point coordinates (Xi, Yi). First, the center of gravity coordinates (Xe, Ye) of the image object are shown. The center of gravity coordinate of the image object, including XC, YC, is the sum of the coordinates of each point (Xi, Yi) on the rim curve. Furthermore, 'calculate the coordinates of each point coordinate (xi, Yi) and the center of gravity * (^^'丫〇 on the round therapy curve. You can calculate from the point on the contour curve = ' For example: the starting point of Figure 5B (10) Shoulder) is the first point encountered when scanning the object wheel X-axis direction and then sweeping the γ-axis direction. = Point calculates the distance between each point and the center of gravity along the corridor curve. The contour coordinates of the point coordinates (Xl, Yi) and the center of gravity coordinates (Xc, Yc). The 5th number, and its ordinate is the coordinate map of the = type, the abscissa is the wheel point step _ the original object contour wave shape in the 5C picture is normal inch, and the second M scales the original object round wave type To - fixed size, and become a positive boundary of the 5D map + Zha from the case of zooming in or out to the case of 'the object is equal. Step _ further transforms the == object size not-profile type wave (four), and the object wheel =:: changes to the wave of the 1 rate domain ==: empty: MW conversion, or wavelet conversion. Γ-type via waveform conversion can exclude the opposite of the image object rotating or mirroring 7
1326049 : 三達編號:TW3286PA 〗在,型對之前,可在步驟14〇巾先過滤物件輪廊波 S頻卩刀使用低通遽波器將物件輪廓波型中高頻 部分過濾掉,悔料低解分。如此-來,可除去因物 完整所導致輪毅型中之高頻震I,而讓物 i日車乂為平滑。接著’在步驟150 *,比對該正規 J後之物件輪廓波型與一波型資料庫,並從波型資 出、參考物件輪廓波型。波型資料庫具有數個參 往廓波型,可為人、車、行李等物件之輪廓波型。 Λ > 、、第2圖,其繪示第1圖之影像物件辨識方法中 座貝^庫比對之流程圖。首先於步驟251 +,從波型資料 擇一參考物件輪廓波型,並於步驟252中將所選出 物件麵波型與該正聽且轉換狀物件輪廓波 / :以取得一波型差。接著,在步驟挪巾,計算波 +骚^巴對值或最小平方和之值’並定義為一比對值。在 ,4判_比對值是否為最小且小於-門檻值。若 次%進入下—個步驟;若否,則回到步驟251,從波型 2貝52、井中選擇另一參考物件輪廓波型,並重複進行步驟 小比對驟、253及步驟254,直到判斷出一小於門檻值之最 的輪产2為止。至此,由於不同的物件種類有著不同特定 件。型,故可藉由輪廓波型來判斷影像物件是何種物 即為且方ί可直接進入最後之步驟160,判斷出影像物件 應參i有最小比對值之參考物件輪驗型所對應之一對 :辨巧ί件。本方法尚可執行步驟255及步驟256,以辅 s w像物件係為上述之對應參考物件。步驟2 5 5係判 81326049 : Sanda number: TW3286PA 〗 Before, type pair, you can filter the object in the step of the first step to filter the object wave wave S-frequency boring tool using low-pass chopper to filter the high-frequency part of the contour wave of the object, regret low Solution. In this way, the high-frequency vibration I in the wheel-type type caused by the integrity of the object can be removed, and the rut is smoothed. Then, in step 150*, the contour waveform and the contour database of the object after the normal J are compared, and the contour waveform of the object is extracted from the waveform. The wave type database has several profiles, which can be contour waveforms of objects such as people, cars and luggage. Λ >, Fig. 2, which shows a flow chart of the comparison of the sill and the library in the image object identification method of Fig. 1. First, in step 251+, a reference object contour waveform is selected from the waveform data, and in step 252, the selected object surface waveform is matched with the positive and the contour contour wave / : to obtain a wave pattern difference. Next, in the step of the towel, the value of the wave + Sao bar value or the sum of the least squares is calculated and defined as an alignment value. At 4, the _ comparison value is the minimum and less than the - threshold value. If the next % goes to the next step; if not, then returns to step 251, select another reference object contour waveform from the waveform 2, 52, and repeat the step small comparison step, 253 and step 254 until It is judged that the second round of production is less than the threshold value. At this point, there are different specific parts due to different object types. Type, so it can be judged by the contour wave type which object is the image object and can directly enter the final step 160, and it is judged that the image object should be referenced by the reference object wheel type with the smallest comparison value. One pair: identify the pieces. The method may further perform step 255 and step 256, so that the auxiliary s w image object system is the corresponding reference object. Step 2 5 5 Judgment 8
達編號:TW3286PA 1326049 斷景夕像物件之長寬比(height/widthratio)是否在一特 定範圍内,而步驟256係判斷影像物件之色彩直方圖 (color histogram)是否符合該對應參考物件之色彩直 方圖。 此外,上述波型資料庫之建立方式係採用一旦 分類方法。請參照第3圖,其_依照 例的一種影像物件分類方法之流程圖。影像物件辨識^法 一參考物件,並於步驟310依據-參 線繪製一參考物件輪廓波型。參考 =3=佳繪製方式亦同樣如第㈣圖所 輪产f 考影像物件之重心座標(Xc,k);再叶算 輪靡曲線上每-點座標(xi ° 2並以輪雜為_、__=== 物件輪廓圖。接著,牛w q 9 '、、、會襄夕考 步將第sninAA u疋尺寸。步驟330係進一 換,使得正規化物/輪麼波型進行波型轉 至-頻率域的型由空間域的波型轉換 轉換後之參寺物件 ^等。最後’將該正規化且 影像物件分類方法。波型資’而結束此 影像物件分龜古物件之輪靡波型,皆係經由此 類方法進行分類後讀存至波型資料庫+。 9 1J26049No.: TW3286PA 1326049 Whether the aspect ratio (height/widthratio) of the object is within a certain range, and step 256 determines whether the color histogram of the image object conforms to the color histogram of the corresponding reference object. Figure. In addition, the way in which the above-mentioned waveform database is established is adopted once the classification method. Please refer to Fig. 3, which is a flow chart of a method for classifying image objects according to an example. The image object recognition method is a reference object, and in step 310, a reference object contour waveform is drawn according to the - reference line. Reference = 3 = good drawing method is also the same as the center of gravity coordinates (Xc, k) of the image of the image of the rotation of the image of the test (4); the coordinates of each point on the rim curve (xi ° 2 and the number of turns is _ , __=== object contour map. Then, the cow wq 9 ',,, will be the first step of the sninAA u疋 size. Step 330 is replaced by a change, so that the regular compound / round wave type wave mode to - The type of the frequency domain is transformed from the waveform of the spatial domain to the object of the temple, etc. Finally, the normalization and classification method of the image object. The wave type is used to end the rim type of the object object. All are classified by this method and then stored in the waveform database +. 9 1J26049
i麵號:TW3286PA 請參照第4圖,1絡千笸 離出來。在步驟4()1中 ^目減法將移動物件分 成一背景晝面。接著於件的影像畫面儲存 饮有於步驟402擷敌旦<庇研、„〆 :Γ移:將擷取晝面與背景晝面:二= 移之一移動物件。此移動物件可 離出位 待辨識之影像物件,亦料㈣觸方法令 之參考物件。π作“像物件分類方法中待分類 本發明上述實_所㈣之f彡像 =利用影像物件之輪廊形狀來進行:識方 :波型錢化至一固定的數值之作法,可排除=象= 鏡頭之遂所造iu彡像物件大柯—的情;兄 二 波型轉換至頻率域波型之作法,可排 放正所造成影像物件旋轉的情況及排除擷取景==未 因為方向的不同所造成鏡射相反之情況。因此,瘦由本發 明上述實_之方法可㈣快速且準確的物件分類及辨x 識結果。此外,當本發明應用於影像監視系統上時,即可 藉由辨識移動物件之輪廓波型來快速地判斷所偵測出之 移動物件是何種物體,僅針對真正想要監視的目標發出警 報,而大幅減少誤警的機率,並可有效且確實地減少影像 資料儲存量。i face number: TW3286PA Please refer to Figure 4, 1 笸 笸 笸. In step 4 () 1, the ^object subtraction divides the moving object into a background plane. Then, the image of the image is stored in the image of the enemy in the step 402. 庇 庇 庇 〆 〆 〆 〆 〆 : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : The image object to be recognized is also referred to as (4) the reference object of the touch method. π is used in the image classification method to be classified as the above-mentioned real image of the present invention (the fourth), using the shape of the wheel of the image object: Fang: The method of wave-type money to a fixed value can be excluded = the image of the iu彡 image created by the lens is the same as that of the lens; the conversion of the brother-two wave type to the frequency domain wave type can be discharged positively. The situation caused by the rotation of the image object and the exclusion of the framing finder == the opposite of the mirror caused by the difference in direction. Therefore, the method of the above-described method of the present invention can (4) quickly and accurately classify objects and identify the results. In addition, when the present invention is applied to an image monitoring system, it is possible to quickly determine which object the detected moving object is by recognizing the contour waveform of the moving object, and only issue an alarm for the target that is actually intended to be monitored. , and greatly reduce the chance of false alarms, and can effectively and surely reduce the amount of image data storage.
.達編號:TW3286PA 1326049 綜上所述,雖然本發明已以一較佳實施例揭露如上, 然其並非用以限定本發明。本發明所屬技術領域中具有通 常知識者,在不脫離本發明之精神和範圍内,當可作各種 之更動與潤飾。因此,本發明之保護範圍當視後附之申請 專利範圍所界定者為準。达 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 It will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.
11 132604911 1326049
: 三達編號:TW3286PA / 【圖式簡單說明】 第1圖繪示依照本發明一較佳實施例的一種影像物 件辨識方法之流程圖。 第2圖繪示第1圖之影像物件辨識方法中的資料庫比 對之流程圖。 • 第3圖繪示依照本發明一較佳實施例的一種影像物 件分類方法之流程圖。 第4圖繪示第1圖之影像物件辨識方法中及第3圖之 影像物件分類方法中的影像擷取之流程圖。 ^ 第5A至5E圖繪示形成物件輪廓波型之示意圖。 【主要元件符號說明】 (無)3: TW3286PA / [Simple Description of the Drawings] FIG. 1 is a flow chart showing an image object identification method according to a preferred embodiment of the present invention. Fig. 2 is a flow chart showing the comparison of the data bases in the image object identification method of Fig. 1. Figure 3 is a flow chart showing an image object classification method in accordance with a preferred embodiment of the present invention. FIG. 4 is a flow chart showing image capture in the image object identification method of FIG. 1 and the image object classification method of FIG. ^ Figures 5A to 5E are schematic views showing the contour waveform of the formed object. [Main component symbol description] (none)
1212
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95141794A TWI326049B (en) | 2006-11-10 | 2006-11-10 | Method of image object classification and identification |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW95141794A TWI326049B (en) | 2006-11-10 | 2006-11-10 | Method of image object classification and identification |
Publications (2)
Publication Number | Publication Date |
---|---|
TW200821957A TW200821957A (en) | 2008-05-16 |
TWI326049B true TWI326049B (en) | 2010-06-11 |
Family
ID=44770664
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW95141794A TWI326049B (en) | 2006-11-10 | 2006-11-10 | Method of image object classification and identification |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI326049B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI497325B (en) * | 2010-08-30 | 2015-08-21 | Ibm | Method for classification of objects in a graph data stream |
US9117138B2 (en) | 2012-09-05 | 2015-08-25 | Industrial Technology Research Institute | Method and apparatus for object positioning by using depth images |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI493475B (en) * | 2011-07-27 | 2015-07-21 | Icp Electronics Inc | Method for determining convex polygon object in image |
-
2006
- 2006-11-10 TW TW95141794A patent/TWI326049B/en active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI497325B (en) * | 2010-08-30 | 2015-08-21 | Ibm | Method for classification of objects in a graph data stream |
US9117138B2 (en) | 2012-09-05 | 2015-08-25 | Industrial Technology Research Institute | Method and apparatus for object positioning by using depth images |
Also Published As
Publication number | Publication date |
---|---|
TW200821957A (en) | 2008-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Pan et al. | Detecting image region duplication using SIFT features | |
CN103699905B (en) | Method and device for positioning license plate | |
JP5705147B2 (en) | Representing 3D objects or objects using descriptors | |
CN103077407B (en) | Car logo positioning and recognition method and car logo positioning and recognition system | |
CN106485740B (en) | A kind of multidate SAR image registration method of combination stable point and characteristic point | |
JP2013196682A (en) | Group-of-people detection method and group-of-people detector | |
US9495607B2 (en) | Describing objects using edge-pixel-feature descriptors | |
WO2012159109A2 (en) | Dynamic bayesian networks for vehicle classification in video | |
US9317765B2 (en) | Human image tracking system, and human image detection and human image tracking methods thereof | |
WO2005004461A2 (en) | Stereo-vision based imminent collision detection | |
CN111027544B (en) | MSER license plate positioning method and system based on visual saliency detection | |
WO2014132490A1 (en) | Vehicle specifications measurement processing device, vehicle specifications measuring method, and recording medium | |
TWI326049B (en) | Method of image object classification and identification | |
Zeng et al. | Ear recognition based on 3D keypoint matching | |
Wang et al. | Real-time vehicle classification based on eigenface | |
JP4784932B2 (en) | Vehicle discrimination device and program thereof | |
Zhang et al. | Road sign detection based on visual saliency and shape analysis | |
Gate et al. | Fast algorithm for pedestrian and group of pedestrians detection using a laser scanner | |
Zhan et al. | An image splicing detection method based on PCA minimum eigenvalues. | |
Lee et al. | Multiple-kernel based vehicle tracking using 3-D deformable model and license plate self-similarity | |
Tang et al. | Smoke image recognition based on local binary pattern | |
Manno-Kovacs et al. | Multidirectional building detection in aerial images without shape templates | |
Jin et al. | Method for pedestrian detection using ground plane constraint based on vision sensor | |
Arunkumar et al. | Estimation of vehicle distance based on feature points using monocular vision | |
Bhaskar et al. | Comparing Hough and Radon transform based parallelogram detection |