1305047 、 屮:: 間介電層112與金屬間介電層114、116、118之折射係數… ⑴大於光學屏障層12〇的折射係數h。光學屏障層以之 材質可以是氧化鈦(titanium 〇xide)、氧化石夕或其他折射係數 值符合前述要件的材料所構成。此外,考量金屬本身具有 良好的光學反射特性,故光學屏障層124亦可由,金屬屏 障層所取代,以強化光學屏障層124的阻隔效果。 ^ 如第7圖所示,進行一回触刻製程,用以移除沉積於 金屬間介電層118表面的光學屏障層124與沉積在凹型底 面122上的光學屏障層124,僅保留沉積在凹槽12〇内側 壁面的部分光學屏障層124。隨後如第8圖所示,進行一 沉積製程,如旋轉塗佈(SOG)、化學氣相沉積(CVD)製程、 咼溫沉積製程、電紧輔助化學氣相沉積(plasma enhanced chemical vapor deposition,PECVD)製程或物理氣相沉積 (PVD)製程等’於金屬間介電層us及光學屏障層124表面 形成一填充層126並填滿凹槽120。於本較佳實施例中, 填充層126可利用如氧化鈦(titanium oxide)或氧化钽 (tantalum oxide)等分色膜(dichroic film)材料製作而成,然 填充層126並不僅限定以分色膜材料製作,其亦可利用彩 色濾光片的原料’例如加入彩色染料的樹脂、彩色光阻或 其他無機化合物等材料製作成一彩色滤光層,又或者利用 其他可供光線通過的透明物質做為填充層126的材料。 1305047 ο (丨( 如第9圖所示’進行一化學機械研磨之平坦化製程, 用以移除部分形成於金屬間介電層丨18表面的部分填充層 126 ’使填充層126表面與金屬間介電;f ΪΓΒ表面齊平。至 此,凹槽120、光學屏障層124以及填充層126即共同構 成本發明之波導管125。 值得注意的是,在本較佳實施例中,填充層126具有 ^ 一折射係數n2,且填充層126的折射係數n2大於光學屏障 層124的折射係數n3。因此當一入射光線射向光學屏障層 124時,由於填充層126的折射係數叱大於光學屏障層124 的反射係數n3,所以非垂直入射的入射光線會在光學屏障 層124表面進行全反射,再到達光學元件106,形成波導 效應(wave guide effect),而不會有穿越金屬間介電層114、 116、118與層間介電層112,造成跨越現象的問題。 ^ 如第10圖所示,可於金屬間介電層118與波導管125 上方形成一平坦層128與一微聚光鏡(microlens) 130。平 坦層128可保護下方的金屬間介電層114、116、118、層間 介電層112與波導管125並形成平坦表面,利於後續形成 微聚光鏡130的製程進行。而平坦層128可以是透明的薄 膜層,例如氧化矽層、透明樹脂、玻璃或其他具有透光特 性的材質製成,而微聚光鏡130可藉由形成一圖案化的聚 合物於平坦層128上,再經由一回火製程將該聚合物形成 16 13050471305047, 屮:: refractive index of the dielectric layer 112 and the intermetal dielectric layers 114, 116, 118... (1) greater than the refractive index h of the optical barrier layer 12A. The optical barrier layer may be made of titanium oxide (titanium 〇xide), oxidized oxide or other material having a refractive index value consistent with the above requirements. In addition, considering that the metal itself has good optical reflection characteristics, the optical barrier layer 124 can also be replaced by a metal barrier layer to enhance the barrier effect of the optical barrier layer 124. ^ As shown in FIG. 7, a touch etching process is performed to remove the optical barrier layer 124 deposited on the surface of the intermetal dielectric layer 118 and the optical barrier layer 124 deposited on the concave bottom surface 122, leaving only the deposition A portion of the optical barrier layer 124 of the inner sidewall surface of the recess 12〇. Then, as shown in FIG. 8, a deposition process such as spin coating (SOG), chemical vapor deposition (CVD) process, thermal deposition process, and plasma enhanced chemical vapor deposition (PECVD) are performed. A process or physical vapor deposition (PVD) process or the like forms a filling layer 126 on the surface of the inter-metal dielectric layer us and the optical barrier layer 124 and fills the recess 120. In the preferred embodiment, the filling layer 126 can be made of a dichroic film material such as titanium oxide or tantalum oxide, and the filling layer 126 is not limited to color separation. For the production of a film material, it can also be made into a color filter layer by using a material of a color filter, such as a resin containing a color dye, a color resist or other inorganic compound, or using other transparent materials for light to pass through. It is the material of the filling layer 126. 1305047 ο (丨 (as shown in Fig. 9 'to conduct a chemical mechanical polishing planarization process to remove a portion of the filling layer 126 formed on the surface of the intermetal dielectric layer 18' to make the surface of the filling layer 126 and the metal The dielectric surface is flush; at this point, the recess 120, the optical barrier layer 124, and the fill layer 126 collectively form the waveguide 125 of the present invention. It is noted that in the preferred embodiment, the fill layer 126 There is a refractive index n2, and the refractive index n2 of the filling layer 126 is greater than the refractive index n3 of the optical barrier layer 124. Therefore, when an incident light is incident on the optical barrier layer 124, since the refractive index 填充 of the filling layer 126 is larger than the optical barrier layer The reflection coefficient of 124 is n3, so the incident light that is not normally incident will be totally reflected on the surface of the optical barrier layer 124 and then reach the optical element 106 to form a wave guide effect without crossing the inter-metal dielectric layer 114. , 116, 118 and the interlayer dielectric layer 112, causing a problem of spanning phenomenon. ^ As shown in FIG. 10, a flat layer 128 and a micro-convex can be formed over the inter-metal dielectric layer 118 and the waveguide 125. Microlens 130. The flat layer 128 protects the underlying inter-metal dielectric layers 114, 116, 118, the interlayer dielectric layer 112 and the waveguide 125 and forms a flat surface, which facilitates the subsequent process of forming the micro-concentrating mirror 130. The layer 128 can be a transparent film layer, such as a yttria layer, a transparent resin, glass, or other material having light transmissive properties, and the micro concentrator 130 can be formed on the flat layer 128 by forming a patterned polymer. The polymer is formed into a 16 1305047 via a tempering process
該凹型底面與光學元件204間相距一預定距離,於本'"實施 例中,此預定距離約為層間介電層208的厚度,以確保光 學元件204的可靠性。 而影像感測裝置200另包含一平坦層220以及至少一 微聚光鏡222設於介電層216與波導管215上方,保護下 方的介電層216與波導管215,並提供聚光的效用。值得 注意的是,波導管215之側壁具有一平直表面,故當有外 來光線入射時,較不易造成無方向性的散射,於本較佳實 施例中,層間介電層208與金屬間介電層210、212、214 均具有相同之一折射係數η!,而光學屏障層224具有一折 射係數η3,其中層間介電層208與金屬間介電層210、212、 214之折射係數η!大於光學屏障層224之折射係數η3,由 於折射係數的差異,自外界通過金屬間介電層214射向光 學屏障層224的光線229,將會在光學屏障層224與金屬 間介電層214的介面反射,又填充層226可具有一折射係 數η2,且填充層226的折射係數η2大於光學屏障層224的 折射係數η3 ;故當一光線228射向光學屏障層224時,由 於填充層226的折射係數η2大於光學屏障層224的折射係 數η3,因此光線228在光學屏障層224表面會進行全反射, 而不會有穿越介電層216並造成跨越現象的問題。此外, 考量金屬本身可造成良好的光反射效果且光線不易穿過, 因此光學屏障層224亦可由一金屬屏障層所取代,以強化 18 i^U5〇47The concave bottom surface is spaced apart from the optical element 204 by a predetermined distance. In the present embodiment, the predetermined distance is about the thickness of the interlayer dielectric layer 208 to ensure the reliability of the optical element 204. The image sensing device 200 further includes a flat layer 220 and at least one micro condensing mirror 222 disposed above the dielectric layer 216 and the waveguide 215 to protect the lower dielectric layer 216 from the waveguide 215 and provide a concentrating effect. It should be noted that the sidewall of the waveguide 215 has a flat surface, so that when external light is incident, it is less likely to cause non-directional scattering. In the preferred embodiment, the interlayer dielectric layer 208 and the inter-metal dielectric layer are interposed. The electrical layers 210, 212, 214 each have the same refractive index η!, and the optical barrier layer 224 has a refractive index η3, wherein the refractive index η of the interlayer dielectric layer 208 and the intermetal dielectric layers 210, 212, 214! Greater than the refractive index η3 of the optical barrier layer 224, due to the difference in refractive index, the light 229 from the outside through the inter-metal dielectric layer 214 to the optical barrier layer 224 will be between the optical barrier layer 224 and the inter-metal dielectric layer 214. The interface reflection, the filling layer 226 may have a refractive index η2, and the refractive index η2 of the filling layer 226 is greater than the refractive index η3 of the optical barrier layer 224; therefore, when a light ray 228 is incident on the optical barrier layer 224, due to the filling layer 226 The refractive index η2 is greater than the refractive index η3 of the optical barrier layer 224, so that the ray 228 is totally reflected on the surface of the optical barrier layer 224 without the problem of traversing the dielectric layer 216 and causing a spanning phenomenon. In addition, considering that the metal itself can cause good light reflection effect and light is not easy to pass through, the optical barrier layer 224 can also be replaced by a metal barrier layer to strengthen 18 i^U5〇47
十、申請專利範圓: I 一種影像感測裝置,其包含有: 一基底,包含至少一光學元件; 至少一介電層設於該基底上且該介電層具有一折射係數ηι ; 至少一波導管(wave-guide tube)設於該介電層中,該波 導管之側壁具有一平直表面且該波導管係對應該光 學元件並與該光學元件相距一預定距離,而該波導 ‘ 管包含: 一填充層,鑲嵌於該介電層内,該填充層具有一折 射係數n2 ;以及 一光學屏障層,設於該填充層之側壁’該光學屏障 層具有一折射係數n3,且該填充層之該折射 係數七大於該光學屏障層之該折射係數n3。 W 2·如請求項1之影像感測裝置,其中該波導管具有一凹 型底面。 3.如請求項1之影像感測裝置,其中該介電層包含至少 一層間介電層,以及至少一金屬間介電層設置於該 層間介電層之上。 .士明求項3之影像感測裝置’其中該預定距離係為該 層間介電層之厚度。 22 月求項1之影像感測裝置,其中該介電層之該折射 糸數h大於該光學屏障層之該折射係數h。 士明求項1之影像感測裝置,其中該填充層係為 色膜。 7. 如叫求項1之影像感測裝置,其中該填充層係為一彩 色濾光層。 8. 如4求項1之影像感測裝置,另包含_微聚光鏡 (micr〇lens)設於該波導管上方。 9·如請求項1之影像感測裝置,其中該光學元件為一感 光二極體。 10.如凊求項1之影像感測裝置,其中該影像感測裴置係 為一互補式金氧半導體電晶體影像感測器。 一種影像感測裝置的製作方法,該製作方法包含: 提供一具有至少一光學元件之基底; 於該基底上形成至少一介電層,並覆蓋於該光學元件; 於該介電層中形成一凹槽,該凹槽係對應於該光學元 件’且該凹槽與該光學元件相隔一預定距離; 23 ,該凹槽之内側壁表面形成—平直的絲屏障層;以及 形成一填充層填滿該凹槽,以形成一波導管; 其中"亥電層具有一折射係數n!、該填充層具有一折射 係數n2以及該絲屏障層具有—折射係數〜,且該 填充層之該折射係數n2大於該光學屏障層之該折射 係數n3。 .如清求項11之製作方法,其中該介電層包含至少一 層間介電層以及至少一金屬間介電層設置於該層 間介電層之上。 3’如清求項12之製作方法,其中該預定距離係為該層 間介電層之厚度。 W 1(如請求項u之製作方法,其t該凹槽具有—凹型底 面。 如4求項u之製作方法,其中於該凹槽之内側壁表 面形成該光學屏障層之方法包含: 進行一沉積製程,於該介電層表面與該凹槽之内側壁及 、该凹型底面表面形成一光學屏障層;以及 造行一編m程’射m積於該凹型底面上的部分該光 學屏障層以及該介電層表面的部分該光學屏障層。 24 :之項方:=作方法’其47形成該填充層填滿該 、該凹槽1積5形成轉充層於該介f層表面並填滿X. Patent application: I. An image sensing device comprising: a substrate comprising at least one optical component; at least one dielectric layer disposed on the substrate and the dielectric layer having a refractive index ηι; at least one a wave-guide tube disposed in the dielectric layer, the sidewall of the waveguide having a flat surface and the waveguide is corresponding to the optical element and spaced apart from the optical element by a predetermined distance, and the waveguide The method includes: a filling layer embedded in the dielectric layer, the filling layer has a refractive index n2; and an optical barrier layer disposed on a sidewall of the filling layer, the optical barrier layer has a refractive index n3, and the filling The refractive index of the layer is greater than the refractive index n3 of the optical barrier layer. W2. The image sensing device of claim 1, wherein the waveguide has a concave bottom surface. 3. The image sensing device of claim 1, wherein the dielectric layer comprises at least one interlayer dielectric layer, and at least one inter-metal dielectric layer is disposed over the interlayer dielectric layer. The image sensing device of claim 3 wherein the predetermined distance is the thickness of the interlayer dielectric layer. The image sensing device of claim 1, wherein the refractive index h of the dielectric layer is greater than the refractive index h of the optical barrier layer. The image sensing device of claim 1, wherein the filling layer is a color film. 7. The image sensing device of claim 1, wherein the fill layer is a color filter layer. 8. The image sensing device of claim 1, further comprising a micro condenser (micr〇lens) disposed above the waveguide. 9. The image sensing device of claim 1, wherein the optical component is a photosensitive diode. 10. The image sensing device of claim 1, wherein the image sensing device is a complementary MOS transistor image sensor. A method for fabricating an image sensing device, comprising: providing a substrate having at least one optical component; forming at least one dielectric layer on the substrate and covering the optical component; forming a dielectric layer in the dielectric layer a groove corresponding to the optical element 'and the groove is spaced apart from the optical element by a predetermined distance; 23, the inner sidewall surface of the groove forms a flat wire barrier layer; and a filling layer is formed Filling the groove to form a waveguide; wherein the layer has a refractive index n!, the filling layer has a refractive index n2, and the wire barrier layer has a refractive index 〜, and the refractive layer of the filling layer The coefficient n2 is greater than the refractive index n3 of the optical barrier layer. The method of fabricating claim 11, wherein the dielectric layer comprises at least one interlayer dielectric layer and at least one intermetal dielectric layer is disposed over the interlayer dielectric layer. 3' wherein the method of fabricating the item 12, wherein the predetermined distance is the thickness of the interlayer dielectric layer. W 1 (such as the manufacturing method of the request item u, wherein the groove has a concave bottom surface. The method for manufacturing the optical barrier layer on the inner sidewall surface of the groove comprises: a deposition process, forming an optical barrier layer on the surface of the dielectric layer, the inner sidewall of the recess, and the surface of the concave bottom surface; and forming a portion of the optical barrier layer on the bottom surface of the recessed surface And a portion of the surface of the dielectric layer of the optical barrier layer. 24: the square: = as a method of '47' forming the filling layer to fill the groove 1 product 5 to form a transfer layer on the surface of the layer Fill up
、丁平坦化製程’移除沉積於該介電層表面之部分該 充層,使該填充層表面與該介電層表面齊平。 包含一形成微聚光鏡方=亥波其導中管於上該方m製程後另 认如請求項11之製作方法’其中該介電層之該折射係數叫 大於该光學屏障層之該折射係數〇3。 19. 一種影像感測裝置,其包含有: 一基底,包含至少一光學元件; 至少一介電層設於該基底上; 至少一波導管(wave-guide tube)設於該介電層中,該波 導管之侧壁具有一平直表面且該波導管係對應該光 學元件並與該光學元件相距一預定距離,而該波導 管包含: 一濾光層,鑲嵌於該介電層内;以及 一金屬屏障層,設於該濾光層之側壁。 25 20. 如請求項19之影像感測裝置,其中該介電層包含至 少一層間介電層,以及至少一金屬間介電層設1於 該層間介電層之上。 、 21. 如請求項20之影像感測裝置,其中該預定距離係為 該層間介電層之厚度。 如請求項19之影像感測裝置,其中該波導管具有一 凹型底面。 如請求項19之影像感測裝置,其中該濾光層係為一 分色膜。 24. 如晴求項19之影像感測裝置,另包含一微聚光鏡設 於該波導管上方。 25. 如請求項19之影像感測裝置,其中該光學元件為一 感光二極體。 6·如睛求項19之影像感測裝置,其中該影像感測裝置 係為一互補式金氧半導體電晶體影像感測器。 •種影像感測裝置的製作方法,該製作方法包含: 提供一具有至少一光學元件之基底; 於該基底上形成至少一介電層,並覆蓋該光學元件; 於該介電層中形成一凹槽,該凹槽係對應於該光學元 件,且該凹槽與該光學元件相隔一預定距離; 於該凹槽之内側壁表面形成一平直的金屬屏障層; 形成一遽光層填滿該凹槽,以形成一波導管。 28. 如請求項27之製作方法,其中該介電層包含至少一 層間介電層’以及至少—金屬間介電層設置於該層 間介電層之上。 29. 如請求項28之製作方法,其中該駄距離係為該層 間介電層之厚度。 30. 如請求項27之製作方法,其中該凹槽具有一凹型底 面。 ^ T仍舔凹糟之内側壁表 • Λ丄 * i刘堉求項ου又取作方法,其中於該 面形成該金屬_層之方法包含 進:-=製程’於該介電層表“該 表面形成,屏障二 進仃-蝕刻製程,蝕刻沉積 屬屏_及該介電層表面的部二=金 2·如清求工員27之製作方法’ #中形成該濾光層填滿該 四槽之方法包含: 進行一沉積製程,形成該濾光層於該介電層表面並填滿 該凹槽;以及And the flattening process removes a portion of the filling layer deposited on the surface of the dielectric layer such that the surface of the filling layer is flush with the surface of the dielectric layer. Included in the method of forming a micro-concentrating mirror, which is greater than the refractive index of the optical barrier layer, wherein the refractive index of the dielectric layer is greater than the refractive index of the optical barrier layer. 〇 3. 19. An image sensing device, comprising: a substrate comprising at least one optical component; at least one dielectric layer disposed on the substrate; at least one wave-guide tube disposed in the dielectric layer The side wall of the waveguide has a flat surface and the waveguide corresponds to the optical element and is spaced a predetermined distance from the optical element, and the waveguide comprises: a filter layer embedded in the dielectric layer; A metal barrier layer is disposed on a sidewall of the filter layer. The image sensing device of claim 19, wherein the dielectric layer comprises at least one interlayer dielectric layer, and at least one inter-metal dielectric layer is disposed over the interlayer dielectric layer. 21. The image sensing device of claim 20, wherein the predetermined distance is a thickness of the interlayer dielectric layer. The image sensing device of claim 19, wherein the waveguide has a concave bottom surface. The image sensing device of claim 19, wherein the filter layer is a color separation film. 24. The image sensing device of claim 19, further comprising a micro concentrating mirror disposed above the waveguide. 25. The image sensing device of claim 19, wherein the optical component is a photodiode. 6. The image sensing device of claim 19, wherein the image sensing device is a complementary MOS transistor image sensor. A method for fabricating an image sensing device, the method comprising: providing a substrate having at least one optical component; forming at least one dielectric layer on the substrate and covering the optical component; forming a dielectric layer in the dielectric layer a groove corresponding to the optical element, wherein the groove is spaced apart from the optical element by a predetermined distance; a flat metal barrier layer is formed on the inner sidewall surface of the groove; forming a calender layer to fill The groove forms a waveguide. 28. The method of claim 27, wherein the dielectric layer comprises at least one interlayer dielectric layer' and at least an inter-metal dielectric layer disposed over the interlayer dielectric layer. 29. The method of claim 28, wherein the distance is the thickness of the interlayer dielectric layer. 30. The method of claim 27, wherein the groove has a concave bottom surface. ^T still 内 之 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内 内Forming, barrier enthalpy-etching process, etching deposition screen _ and the surface of the dielectric layer part 2 = gold 2 · _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ The method includes: performing a deposition process to form the filter layer on a surface of the dielectric layer and filling the recess;
進行一平坦化製程,移除沉積於該介電層表面之部分該 據光層,使該濾光層表面與該介電層表面齊平。 33.如請求項32之製作方法,其中於該平坦化製程後另 包含一形成微聚光鏡於該波導管上方之製程。A planarization process is performed to remove a portion of the light-receiving layer deposited on the surface of the dielectric layer such that the surface of the filter layer is flush with the surface of the dielectric layer. 33. The method of claim 32, wherein the planarizing process further comprises a process of forming a micro-concentrating mirror over the waveguide.
圖式: 28Schema: 28