TW202422125A - Transfer-printed micro-optical components - Google Patents

Transfer-printed micro-optical components Download PDF

Info

Publication number
TW202422125A
TW202422125A TW112138442A TW112138442A TW202422125A TW 202422125 A TW202422125 A TW 202422125A TW 112138442 A TW112138442 A TW 112138442A TW 112138442 A TW112138442 A TW 112138442A TW 202422125 A TW202422125 A TW 202422125A
Authority
TW
Taiwan
Prior art keywords
micro
optical
substrate
light
optical component
Prior art date
Application number
TW112138442A
Other languages
Chinese (zh)
Inventor
羅那德 S 庫可
威爾弗里德 諾爾
大衛 葛梅茲
魯杰羅 羅伊
Original Assignee
愛爾蘭商艾克斯瑟樂普林特有限公司
瑞士商炬光瑞士股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US18/062,844 external-priority patent/US20240118489A1/en
Application filed by 愛爾蘭商艾克斯瑟樂普林特有限公司, 瑞士商炬光瑞士股份有限公司 filed Critical 愛爾蘭商艾克斯瑟樂普林特有限公司
Publication of TW202422125A publication Critical patent/TW202422125A/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4219Mechanical fixtures for holding or positioning the elements relative to each other in the couplings; Alignment methods for the elements, e.g. measuring or observing methods especially used therefor
    • G02B6/422Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements
    • G02B6/4221Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements involving a visual detection of the position of the elements, e.g. by using a microscope or a camera
    • G02B6/4224Active alignment, i.e. moving the elements in response to the detected degree of coupling or position of the elements involving a visual detection of the position of the elements, e.g. by using a microscope or a camera using visual alignment markings, e.g. index methods
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12002Three-dimensional structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/12004Combinations of two or more optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/136Integrated optical circuits characterised by the manufacturing method by etching
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method
    • G02B6/138Integrated optical circuits characterised by the manufacturing method by using polymerisation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/4201Packages, e.g. shape, construction, internal or external details
    • G02B6/4204Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/42Coupling light guides with opto-electronic elements
    • G02B6/43Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Polarising Elements (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

An exemplary micro-optical component includes a micro-substrate and a micro-optical element disposed on the micro-substrate. The micro-optical element is structured to modify or process light. At least a portion of a component tether is physically attached to the micro-substrate or physically attached to the micro-optical element. The micro-optical component has a thickness less than 250 µm. Light can be processed by reflection, refraction, diffraction, frequency changes, polarization changes, color-temperature or frequency distribution changes, or phase changes. The micro-optical component can be disposed on a system substrate to form a micro-optical system. The system substrate can include a cavity and the micro-optical element can be disposed at least partially in the cavity. Micro-optical components can be passive optical micro-devices. A light-active element can be disposed on the micro-substrate to receive light from or emit light to the micro-optical element.

Description

已轉印之微光學組件Transferred micro-optical components

本揭示內容大體上係關於可轉印之微光學組件。The present disclosure generally relates to transferable micro-optical components.

光子系統使用光感測組件、發光組件及光調節組件來操縱通常用於電信中之應用的光(例如,光子)。此類系統經常依賴於使用化合物半導體之積體電路,以例如使用雷射及光學放大器來有效地產生且放大光。產生之光可例如用諸如鈮酸鋰之鹽進行調變且例如用具有回應於曝光產生電流之半導體p-n接面的光電二極體來偵測。光亦可例如使用利用諸如氮化矽之材料建構的波導或導光管或在對應於發射、調節或偵測到之光的期望光波長下實質上透明的光學元件來導引。Photonic systems use light sensing components, light emitting components, and light conditioning components to manipulate light (e.g., photons) typically for applications in telecommunications. Such systems often rely on integrated circuits using compound semiconductors to efficiently generate and amplify light, for example using lasers and optical amplifiers. The generated light can be modulated, for example, with salts such as lithium niobate and detected, for example, with photodiodes having semiconductor p-n junctions that generate current in response to exposure. Light can also be guided, for example, using waveguides or light pipes constructed using materials such as silicon nitride or optical elements that are substantially transparent at the desired wavelength of light corresponding to the light being emitted, conditioned, or detected.

現代矽晶圓係在極高解析度下進行處理,從而例如具有大小為10 nm或更小的特徵或具有相隔10 nm或更小的特徵或兩種情況皆有,以製造密集且快速之積體電路。此類小特徵大小係昂貴光微影工具之結果,該等工具之成本對於可用該等工具進行處理的矽積體電路(例如CMOS電路)之極大體積而言係正當的。矽積體電路之極大體積又引起低成本且相對大的源矽晶圓(例如直徑為300 mm)之開發。低成本且大矽源材料與複雜處理設備(特別地,高解析度遮掩與曝光設備)的組合實現當前存在於大部分電子裝置中的低成本且普遍存在之矽積體電路。Modern silicon wafers are processed at extremely high resolution, e.g., having features 10 nm or less in size or having features 10 nm or less apart, or both, to produce dense and fast integrated circuits. Such small feature sizes are a result of expensive photolithography tools, the cost of which is justified by the extremely large volumes of silicon integrated circuits (e.g., CMOS circuits) that can be processed with such tools. The extremely large volumes of silicon integrated circuits, in turn, have led to the development of low-cost and relatively large source silicon wafers (e.g., 300 mm in diameter). The combination of low-cost and bulk silicon source materials and sophisticated processing equipment (particularly, high-resolution masking and exposure equipment) has enabled the low-cost and ubiquitous silicon integrated circuits found in most electronic devices today.

然而,對於所有期望之半導體裝置及功能而言,矽並非最適宜的材料。舉例而言,諸如InP、GaAs及GaN之化合物半導體材料及許多其他III/V族材料組合可提供例如更大的電子移動性、優越的光發射或優越的感測器靈敏度,且因此更適合某些應用,尤其諸如高功率電氣裝置及光子裝置(例如,雷射及發光二極體)。因為此等應用經常係相對較近開發的且以比矽裝置相對低之體積進行製造,所以光微影處理設備之可用性及成本及化合物半導體材料之晶圓大小相對於矽有缺點。基本上,與矽相比,化合物半導體材料及處理更昂貴且以較低解析度製造(從而製造較大且更昂貴之化合物半導體組件)。在一些系統中,光子組件由例如CMOS電路之矽電路來控制。However, silicon is not the most suitable material for all desired semiconductor devices and functions. For example, compound semiconductor materials such as InP, GaAs and GaN and many other III/V material combinations can provide, for example, greater electron mobility, superior light emission or superior sensor sensitivity, and are therefore more suitable for certain applications, especially high-power electrical devices and photonic devices (e.g., lasers and LEDs). Because these applications are often relatively recently developed and manufactured at relatively low volumes than silicon devices, the availability and cost of photolithography processing equipment and the wafer size of compound semiconductor materials are disadvantageous relative to silicon. Basically, compound semiconductor materials and processing are more expensive and are manufactured at lower resolution than silicon (thus making compound semiconductor components larger and more expensive to manufacture). In some systems, photonic components are controlled by silicon circuits such as CMOS circuits.

諸如反射器、折射器或繞射器之光學元件亦可用於光子系統中。習知光學元件對於小型化光學系統及光子系統而言可為過大的。因此需要用於光子系統及光學系統之小的高解析度化合物半導體裝置、矽裝置及光學元件的結構、系統及方法。Optical components such as reflectors, refractors, or diffractors may also be used in photonic systems. Conventional optical components may be too large for miniaturized optical and photonic systems. Therefore, structures, systems, and methods for small, high-resolution compound semiconductor devices, silicon devices, and optical components for photonic and optical systems are needed.

本揭示內容尤其提供用於微光學元件、微光學組件及微光學系統之裝置、結構、系統及建構方法。該等裝置、結構或系統可包括光發射器、光偵測器、光處理器、光調節器及光傳輸器(諸如雷射、光電二極體、光電晶體、光學調變器、光學放大器及光學波導)。此等微光學結構對光子系統有用,該等光子系統諸如將電氣積體電路(例如,諸如CMOS之矽電路)與光學發射器(諸如發光二極體或LED及雷射)、光學感測器(諸如光電二極體)及光學結構(諸如反射鏡、部分反射鏡、棱鏡、透鏡、濾光片、漫射器、波束整形光學元件及光柵)組合的光子積體電路,該等光學結構提供光(例如,光子)之反射、折射、極化偵測或調節、濾光或繞射中之一或多種,由此對光子進行處理或調節。本揭示內容之實施例亦可包含用於將光子自一個位置傳輸至另一位置之波導或導光管。The present disclosure provides, inter alia, devices, structures, systems and construction methods for micro-optical elements, micro-optical assemblies and micro-optical systems. Such devices, structures or systems may include light emitters, light detectors, light processors, light modulators and light transmitters (e.g., lasers, photodiodes, phototransistors, optical modulators, optical amplifiers and optical waveguides). Such micro-optical structures are useful for photonic systems, such as photonic integrated circuits that combine electrical integrated circuits (e.g., silicon circuits such as CMOS) with optical emitters (such as light emitting diodes or LEDs and lasers), optical sensors (such as photodiodes), and optical structures (such as mirrors, partially reflecting mirrors, prisms, lenses, filters, diffusers, beam shaping optical elements and gratings) that provide one or more of reflection, refraction, polarization detection or modulation, filtering, or diffraction of light (e.g., photons), thereby processing or modulating the photons. Embodiments of the present disclosure may also include waveguides or light pipes for transporting photons from one location to another.

根據本揭示內容之實施例,一種微光學組件包含具有一微基板區之一微基板及安置於該微基板上之一微光學元件。該微光學元件可為調節光子或一或多種光子屬性但非電活性之被動光學組件。一組件繫帶之至少一部分可實體地附接至該微基板或實體地附接至該微光學元件。該組件繫帶例如對於一組件源晶圓上之一微光學組件可為完整的,或例如對於微轉印至一系統基板之一微光學組件可為破損的(例如,破裂的)或分開的。According to embodiments of the present disclosure, a micro-optical assembly includes a micro-substrate having a micro-substrate region and a micro-optical element disposed on the micro-substrate. The micro-optical element may be a passive optical component that modulates photons or one or more photonic properties but is not electrically active. At least a portion of an assembly tether may be physically attached to the micro-substrate or physically attached to the micro-optical element. The assembly tether may be intact, such as for a micro-optical assembly on an assembly source wafer, or may be damaged (e.g., cracked) or separated, such as for a micro-optical assembly microprinted to a system substrate.

該微光學組件可具有不大於250 µm (例如,小於250 µm、不大於200 µm、不大於150 µm、不大於100 µm、不大於75 µm、不大於50 µm、不大於25 µm或不大於10 µm)之一厚度(例如,一高度或一深度或兩者)。一微光學元件之一厚度、高度或深度可為一微基板及一微光學元件一起在正交於該微光學元件安置所在的一微基板表面之一方向上的組合高度、深度或厚度。該微光學元件可具有在該微基板上方之一微光學元件區,且該微基板區可大於該微光學元件區,該微基板區可等於該微光學元件區,或該微基板區可小於該微光學元件區。在一些實施例中,該微基板僅在一個維度上(例如,在平行於該微基板表面之一方向上)延伸超出一微光學元件。在一些實施例中,該微基板在兩個維度上(例如,在平行於該微基板表面之正交方向上)延伸超出該微光學元件。The micro-optical component may have a thickness (e.g., a height or a depth or both) of no more than 250 μm (e.g., less than 250 μm, no more than 200 μm, no more than 150 μm, no more than 100 μm, no more than 75 μm, no more than 50 μm, no more than 25 μm, or no more than 10 μm). A thickness, height, or depth of a micro-optical element may be the combined height, depth, or thickness of a micro-substrate and a micro-optical element together in a direction orthogonal to a surface of a micro-substrate on which the micro-optical element is disposed. The micro-optical element may have a micro-optical element area above the micro-substrate, and the micro-substrate area may be larger than the micro-optical element area, the micro-substrate area may be equal to the micro-optical element area, or the micro-substrate area may be smaller than the micro-optical element area. In some embodiments, the micro-substrate extends beyond a micro-optical element in only one dimension (e.g., in a direction parallel to the surface of the micro-substrate). In some embodiments, the micro-substrate extends beyond the micro-optical element in two dimensions (eg, in orthogonal directions parallel to the surface of the micro-substrate).

根據本揭示內容之實施例,該微光學元件可為一反射元件、一折射元件、一繞射元件、一頻率濾波器、一相變元件、一極化偵測器、一極化調節器(例如,一極化旋轉器或一極化濾波器)、一濾光片、一頻率轉換器或其任何組合。在一些實施例中,該微光學元件為一透鏡或一棱鏡。該微光學元件可安置於該微基板表面上或形成於該微基板中。該微光學元件可在垂直於該微基板表面之一方向上遠離該微基板延伸。According to embodiments of the present disclosure, the micro-optical element may be a reflective element, a refractive element, a diffraction element, a frequency filter, a phase change element, a polarization detector, a polarization modulator (e.g., a polarization rotator or a polarization filter), a filter, a frequency converter, or any combination thereof. In some embodiments, the micro-optical element is a lens or a prism. The micro-optical element may be disposed on the surface of the micro-substrate or formed in the micro-substrate. The micro-optical element may extend away from the micro-substrate in a direction perpendicular to the surface of the micro-substrate.

在一些實施例中,一微光學組件包含在該微基板的與該微光學元件相對之一側面上安置於該微基板上的一光主動元件,例如一電活性光產生、光調節或光響應元件(例如,結合接收或產生的電信號而產生光、響應光或調節光之光主動元件,例如光主動組件)。舉例而言,該微光學元件可安置於該微基板之一第一表面或第一側面上,且該光主動元件可安置於該微基板的與該微基板之該第一表面或該第一側面相對且實質上平行之一第二表面或第二側面上。該光主動元件可將光發送至該微光學元件或自該微光學元件接收光。光產生元件可為雷射或發光二極體,光響應元件可為光電二極體或光電晶體,且光調節元件可為光學放大器或光學調變器。在一些實施例中,該微基板包含一微對準標記,該微對準標記安置於排除該微光學元件區的該微基板區中。該微基板對經該微光學元件調節之光可為實質上透明的,該微基板對經該微光學元件調節之光可為實質上反射性的,或該微基板對經該微光學元件調節之光或雜散光或環境光可為實質上不透明的或進行吸收。In some embodiments, a micro-optical assembly includes a photoactive element, such as an electro-active light generating, light modulating or light responsive element (e.g., a photoactive element that generates light, responds to light or modulates light in conjunction with a received or generated electrical signal, such as a photoactive assembly) disposed on the micro-substrate on a side of the micro-substrate opposite the micro-optical element. For example, the micro-optical element may be disposed on a first surface or first side of the micro-substrate, and the photoactive element may be disposed on a second surface or second side of the micro-substrate opposite and substantially parallel to the first surface or first side of the micro-substrate. The photoactive element may transmit light to the micro-optical element or receive light from the micro-optical element. The light generating element may be a laser or a light emitting diode, the light responsive element may be a photodiode or a phototransistor, and the light modulating element may be an optical amplifier or an optical modulator. In some embodiments, the micro substrate includes a micro alignment mark disposed in a region of the micro substrate excluding the region of the micro optical element. The micro substrate may be substantially transparent to light modulated by the micro optical element, the micro substrate may be substantially reflective to light modulated by the micro optical element, or the micro substrate may be substantially opaque to or absorb light modulated by the micro optical element or stray light or ambient light.

在本揭示內容之一些實施例中,該微基板及該微光學元件為一體的。舉例而言,該微光學組件可為單塊的且可包含在共同建構或製造步驟中(例如藉由壓印、雙光子聚合或光微影術)形成之共同材料。In some embodiments of the present disclosure, the micro-substrate and the micro-optical element are integral. For example, the micro-optical component can be monolithic and can include common materials formed in a common construction or manufacturing step (e.g., by embossing, two-photon polymerization, or photolithography).

在一些實施例中,該微基板及該微光學元件包含不同材料,該微基板及該微光學元件包含黏附在一起之不同結構,或兩種情況皆有,且因此並非一體的或單塊的。在本揭示內容之一些實施例中,該微基板具有由該微基板長度乘以該微基板寬度界定之一微基板區,該微基板區不大於100,000µm 2(例如,不大於62,500 µm 2、小於62,500 µm 2、不大於40,000 µm 2、小於40,000 µm 2、不大於20,000 µm 2、不大於10,000 µm 2、不大於2,500 µm 2、不大於400 µm 2或不大於100 µm 2)。在一些實施例中,該微基板具有例如不小於2:1、不小於4:1、不小於5:1、不小於8:1或不小於10:1之一大縱橫比(長度對寬度)。在一些實施例中,該微基板具有不大於50 µm之一寬度及不小於100 µm、200 µm、250 µm或500 µm之一長度,或具有不大於100 µm之一寬度及不小於500 µm、750 µm或1000 µm之一長度。在一些實施例中,該微基板具有不大於200 µm之一寬度及不小於400 µm、600 µm、800 µm、1000 µm、1200 µm、1400 µm、1600 µm、1800 µm或2000 µm之一長度。 In some embodiments, the microsubstrate and the micro-optical element comprise different materials, the microsubstrate and the micro-optical element comprise different structures adhered together, or both, and are therefore not unitary or monolithic. In some embodiments of the present disclosure, the microsubstrate has a microsubstrate area defined by the microsubstrate length multiplied by the microsubstrate width, the microsubstrate area being no greater than 100,000 µm 2 (e.g., no greater than 62,500 µm 2 , less than 62,500 µm 2, no greater than 40,000 µm 2 , less than 40,000 µm 2 , no greater than 20,000 µm 2 , no greater than 10,000 µm 2 , no greater than 2,500 µm 2 , no greater than 400 µm 2 , or no greater than 100 µm 2 ). In some embodiments, the micro substrate has an aspect ratio (length to width) of, for example, not less than 2: 1, not less than 4: 1, not less than 5: 1, not less than 8: 1, or not less than 10: 1. In some embodiments, the micro substrate has a width of not more than 50 μm and a length of not less than 100 μm, 200 μm, 250 μm, or 500 μm, or has a width of not more than 100 μm and a length of not less than 500 μm, 750 μm, or 1000 μm. In some embodiments, the microsubstrate has a width of no greater than 200 µm and a length of no less than 400 µm, 600 µm, 800 µm, 1000 µm, 1200 µm, 1400 µm, 1600 µm, 1800 µm, or 2000 µm.

根據本揭示內容之實施例,一微光學組件包含一保護層或多個保護層。該保護層或該等保護層可建構成按期望與光相互作用。According to an embodiment of the present disclosure, a micro-optical component includes a protective layer or multiple protective layers. The protective layer or layers can be constructed to interact with light as desired.

在一些實施例中,該組件繫帶包含該保護層之一部分。在一些實施例中,該組件繫帶為一混合有機-無機繫帶。In some embodiments, the assembly tape comprises a portion of the protective layer. In some embodiments, the assembly tape is a hybrid organic-inorganic tape.

根據本揭示內容之實施例,一種微光學系統包含一系統基板及安置於該系統基板上之一微光學組件。該微光學組件對於該系統基板可為非原生的。在一些實施例中,該微光學元件在遠離該系統基板之一方向上延伸。在一些實施例中,該微光學系統包含一波導或導光管,該波導或導光管安置於該系統基板上或中且與該微光學元件光學連通。在一些實施例中,該系統基板包含一空腔,且該微光學元件至少部分地安置於該空腔中。According to an embodiment of the present disclosure, a micro-optical system includes a system substrate and a micro-optical component disposed on the system substrate. The micro-optical component may be non-native to the system substrate. In some embodiments, the micro-optical component extends in a direction away from the system substrate. In some embodiments, the micro-optical system includes a waveguide or light pipe disposed on or in the system substrate and optically connected to the micro-optical component. In some embodiments, the system substrate includes a cavity, and the micro-optical component is at least partially disposed in the cavity.

在一些實施例中,該微基板安置於該空腔中。在一些實施例中,該微光學元件及該微基板中之一者或兩者係例如用一黏合劑(諸如一光學清透黏合劑或一光學指數匹配黏合劑)黏附至該空腔之一表面(例如,側面或底板)。一些實施例包含安置於該系統基板中或上之一導光管,該導光管被安置成傳輸進入或離開該微光學元件之光。在一些實施例中,一微光學組件包含在該微基板的與該微光學元件之一側面上安置於該微基板上的一光主動元件,該系統基板為一半導體基板,且該半導體基板包含電連接至該光主動元件之一電子電路。該電子電路可電氣控制該光主動元件或對該光主動元件做出響應。In some embodiments, the micro-substrate is disposed in the cavity. In some embodiments, one or both of the micro-optical element and the micro-substrate are adhered to a surface (e.g., a side or a bottom plate) of the cavity, for example, with an adhesive (such as an optically clear adhesive or an optical index matching adhesive). Some embodiments include a light pipe disposed in or on the system substrate, the light pipe being disposed to transmit light entering or leaving the micro-optical element. In some embodiments, a micro-optical assembly includes an optically active element disposed on the micro-substrate on a side of the micro-substrate and the micro-optical element, the system substrate is a semiconductor substrate, and the semiconductor substrate includes an electronic circuit electrically connected to the optically active element. The electronic circuit can electrically control the optically active element or respond to the optically active element.

在本揭示內容之一些實施例中,該系統基板包含安置於該系統基板之一表面上或中的一微對準標記。該微對準標記可以與安置於該微光學組件中或上(例如安置於該微光學元件區外的該微基板上)之一對準標記對準的方式安置於該系統基板之該表面上或中。In some embodiments of the present disclosure, the system substrate includes a micro-alignment mark disposed on or in a surface of the system substrate. The micro-alignment mark can be disposed on or in the surface of the system substrate in a manner that is aligned with an alignment mark disposed in or on the micro-optical component (e.g., disposed on the micro-substrate outside the micro-optical element area).

在本揭示內容之一些實施例中,該微光學系統為一光子積體電路。In some embodiments of the present disclosure, the micro-optical system is a photonic integrated circuit.

在一些實施例中,該系統基板包含一空腔,且該微光學元件至少部分地安置於該空腔中。在一些實施例中,該微光學系統包含黏合劑,該黏合劑將該微光學元件黏附至該微基板或將該微光學組件黏附至該系統基板或黏附至該系統基板中之一空腔的一壁或底板(底部)。在一些實施例中,該微光學系統包含安置於該微光學元件、該微基板或該系統基板中之任一者上的一光學指數匹配材料(例如,一光學清透黏合劑)。一光學指數匹配材料或黏合劑可填充該微光學元件與該微基板之間或該微光學組件(例如,該微光學元件)與該系統基板之間(例如該系統基板中之一空腔中)的一間隙。In some embodiments, the system substrate includes a cavity and the micro-optical element is at least partially disposed in the cavity. In some embodiments, the micro-optical system includes an adhesive that adheres the micro-optical element to the micro-substrate or adheres the micro-optical assembly to the system substrate or to a wall or floor (bottom) of a cavity in the system substrate. In some embodiments, the micro-optical system includes an optical index matching material (e.g., an optically clear adhesive) disposed on any of the micro-optical element, the micro-substrate, or the system substrate. An optical index matching material or adhesive may fill a gap between the micro-optical element and the micro-substrate or between the micro-optical assembly (e.g., the micro-optical element) and the system substrate (e.g., in a cavity in the system substrate).

因此,根據本揭示內容之實施例,一系統基板中之一空腔具有延伸至該系統基板中之一或多個空腔側面(例如,壁),且該微光學元件安置成與該等空腔側面中之一或多者接觸。在一些實施例中,該微光學元件安置於該空腔中,但不接觸該等空腔側面中之任一者或該底板。在一些實施例中,該微光學元件伸出該空腔外,例如在該系統基板之一表面之上。在一些實施例中,該微基板至少部分地安置於該空腔中。在一些實施例中,該微基板獨占地安置於該空腔中。該微基板之一表面可與該系統基板之一表面實質上處於一共同平面中(例如,在製造公差內)。在一些實施例中,該空腔具有延伸至該系統基板中之一或多個空腔側面或壁,且該微基板安置成與該等空腔側面或壁中之一或多個接觸。在一些實施例中,該空腔具有在該系統基板中之一空腔底板(例如,空腔底部),且該微基板安置成與該空腔底板接觸,例如,用一黏合劑(諸如一光學指數匹配黏合劑)黏附至該空腔底板。Thus, according to embodiments of the present disclosure, a cavity in a system substrate has one or more cavity sides (e.g., walls) extending into the system substrate, and the micro-optical element is disposed in contact with one or more of the cavity sides. In some embodiments, the micro-optical element is disposed in the cavity but does not contact any of the cavity sides or the floor. In some embodiments, the micro-optical element extends out of the cavity, such as above a surface of the system substrate. In some embodiments, the micro-substrate is at least partially disposed in the cavity. In some embodiments, the micro-substrate is disposed exclusively in the cavity. A surface of the micro-substrate may be substantially in a common plane with a surface of the system substrate (e.g., within manufacturing tolerances). In some embodiments, the cavity has one or more cavity sides or walls extending into the system substrate, and the micro substrate is disposed in contact with one or more of the cavity sides or walls. In some embodiments, the cavity has a cavity floor (e.g., cavity bottom) in the system substrate, and the micro substrate is disposed in contact with the cavity floor, for example, adhered to the cavity floor with an adhesive (e.g., an optical index matching adhesive).

在根據本揭示內容的微光學系統之一些實施例中,該系統基板包含安置於該系統基板之一表面上的一結構性(例如,機械)停止器,且該微光學組件接觸或黏附至該結構性停止器。該結構性停止器可例如用光微影方式形成於該系統基板表面中或上,或可為例如藉由根據圖案蝕刻或壓印該系統基板而形成於該系統基板中之一空腔的一側(例如,壁)。該微基板或該微光學元件(或兩者)可鄰近於、接觸或黏附至結構性停止器。In some embodiments of micro-optical systems according to the present disclosure, the system substrate includes a structural (e.g., mechanical) stop disposed on a surface of the system substrate, and the micro-optical component contacts or adheres to the structural stop. The structural stop can be formed, for example, photolithographically in or on the system substrate surface, or can be a side (e.g., a wall) of a cavity formed in the system substrate, for example, by etching or embossing the system substrate according to a pattern. The micro-substrate or the micro-optical element (or both) can be adjacent to, contact, or adhere to the structural stop.

根據本揭示內容之實施例,一種微光學組件源晶圓包含:一源晶圓,該源晶圓包含由一或多個錨定部分隔開之一或多個犧牲部分;及一微光學組件,該微光學組件完全且直接地安置於該一或多個犧牲部分中之每一者上方且藉由一繫帶實體地附接至該一或多個錨定部分中之一者。According to an embodiment of the present disclosure, a micro-optical component source wafer includes: a source wafer including one or more sacrificial portions separated by one or more anchor portions; and a micro-optical component disposed entirely and directly above each of the one or more sacrificial portions and physically attached to one of the one or more anchor portions by a strap.

根據本揭示內容之實施例,一種製造一微光學系統之方法包含提供一微光學組件源晶圓、提供一印模、提供一系統基板、使該印模接觸至該微光學組件、用該印模自該微光學組件源晶圓移除該微光學組件、用該印模使該微光學組件接觸至該系統基板及自該微光學組件及該系統基板移除該印模。在一些實施例中,一黏合劑層安置於該系統基板上,且該微光學組件接觸且黏附至該黏合劑層及該系統基板。According to an embodiment of the present disclosure, a method of manufacturing a micro-optical system includes providing a micro-optical component source wafer, providing a stamp, providing a system substrate, contacting the stamp to the micro-optical component, removing the micro-optical component from the micro-optical component source wafer with the stamp, contacting the micro-optical component to the system substrate with the stamp, and removing the stamp from the micro-optical component and the system substrate. In some embodiments, an adhesive layer is disposed on the system substrate, and the micro-optical component contacts and adheres to the adhesive layer and the system substrate.

根據本揭示內容之實施例,一種製造一微光學系統之方法包含提供一微光學組件源晶圓、提供一第一印模及一第二印模、提供一系統基板、使該第一印模接觸至該微光學組件之一第一側面、用該第一印模自該微光學組件源晶圓移除該微光學組件、用該第二印模使該微光學組件接觸至該微光學組件的與該第一側面相對之一第二側面、用該第二印模使該微光學組件之該第一側面接觸至該系統基板及自該微光學組件及該系統基板移除該第二印模。According to an embodiment of the present disclosure, a method for manufacturing a micro-optical system includes providing a micro-optical component source wafer, providing a first stamp and a second stamp, providing a system substrate, making the first stamp contact a first side of the micro-optical component, removing the micro-optical component from the micro-optical component source wafer with the first stamp, making the micro-optical component contact a second side of the micro-optical component opposite to the first side with the second stamp, making the first side of the micro-optical component contact the system substrate with the second stamp, and removing the second stamp from the micro-optical component and the system substrate.

根據本揭示內容的一種製造一系統(例如,一微光學系統)之方法可包含:提供一微光學組件源晶圓,該微光學組件源晶圓具有由一或多個錨定部分隔開之一或多個犧牲部分;用一液體可固化聚合物塗佈該一或多個犧牲部分之至少一部分;形成一結構(例如,一微光學組件),其中形成該結構包含使用雙光子聚合以僅使該液體可固化聚合物之一部分固化以形成該結構之至少一部分,諸如一微光學組件;在該微光學組件與該一或多個錨定部分中之一者之間形成一組件繫帶;及移除該液體可固化聚合物之一未固化部分,以在該結構與該組件源晶圓之間形成一間隙且形成一可微轉印之結構。在一些實施例中,該犧牲部分係一空腔,且實施例包含將該液體可固化聚合物之至少一部分安置於該空腔中且僅使該空腔中之該液體可固化聚合物之一部分固化以在該空腔中形成該結構之至少一部分(例如,一微光學組件)。在本揭示內容之一些實施例中,方法可包含:提供一微光學組件源晶圓,該微光學組件源晶圓包含鄰近於一或多個錨定部分之一空腔;將一液體可固化聚合物之至少一部分安置於該空腔中;形成一結構(例如,一微光學組件),其中形成該結構包含使用雙光子聚合以僅使該液體可固化聚合物之一部分固化以形成該結構之至少一部分;在該結構與該一或多個錨定部分中之一者之間形成一組件繫帶;及(例如,自該空腔)移除該液體可固化聚合物之一未固化部分。A method of manufacturing a system (e.g., a micro-optical system) according to the present disclosure may include: providing a micro-optical component source wafer, the micro-optical component source wafer having one or more sacrificial portions separated by one or more anchor portions; coating at least a portion of the one or more sacrificial portions with a liquid curable polymer; forming a structure (e.g., a micro-optical component), wherein forming the structure includes using two-photon polymerization to cure only a portion of the liquid curable polymer to form at least a portion of the structure, such as a micro-optical component; forming an assembly ties between the micro-optical component and one of the one or more anchor portions; and removing an uncured portion of the liquid curable polymer to form a gap between the structure and the component source wafer and form a micro-transferable structure. In some embodiments, the sacrificial portion is a cavity, and embodiments include disposing at least a portion of the liquid curable polymer in the cavity and curing only a portion of the liquid curable polymer in the cavity to form at least a portion of the structure (e.g., a micro-optical component) in the cavity. In some embodiments of the present disclosure, a method may include providing a micro-optical component source wafer comprising a cavity adjacent to one or more anchor portions; placing at least a portion of a liquid curable polymer in the cavity; forming a structure (e.g., a micro-optical component), wherein forming the structure comprises using two-photon polymerization to cure only a portion of the liquid curable polymer to form at least a portion of the structure; forming an assembly ties between the structure and one of the one or more anchor portions; and removing an uncured portion of the liquid curable polymer (e.g., from the cavity).

根據本揭示內容之實施例,一種製造一系統(例如,一微光學系統)之方法可包含:提供一微光學組件源晶圓,該微光學組件源晶圓包含由一或多個錨定部分隔開之一或多個犧牲部分;用一液體可固化聚合物塗佈該一或多個犧牲部分之至少一部分;形成一結構(例如,一微光學組件),其中形成該結構包含使用壓印微影術形成該結構之至少一部分(例如,一微光學組件);及在該微光學組件與該一或多個錨定部分中之一者之間形成一組件繫帶。According to an embodiment of the present disclosure, a method of manufacturing a system (e.g., a micro-optical system) may include: providing a micro-optical component source wafer, the micro-optical component source wafer including one or more sacrificial portions separated by one or more anchor portions; coating at least a portion of the one or more sacrificial portions with a liquid curable polymer; forming a structure (e.g., a micro-optical component), wherein forming the structure includes forming at least a portion of the structure (e.g., a micro-optical component) using imprint lithography; and forming an assembly tie between the micro-optical component and one of the one or more anchor portions.

根據本揭示內容之實施例,一種製造一系統(例如,一微光學系統)之方法可包含:提供一微光學組件源晶圓,該微光學組件源晶圓包含由一或多個錨定部分隔開之一或多個犧牲部分;在該一或多個犧牲部分中之一者中形成一模;用一液體可固化聚合物塗佈包括該模的該等犧牲部分之至少一部分;形成一結構(例如,一微光學組件),其中形成該結構包含使該液體可固化聚合物固化;及在該結構與該一或多個錨定部分中之一者之間形成一組件繫帶。可藉由蝕刻該犧牲部分中之一固體材料來形成該模。According to an embodiment of the present disclosure, a method of manufacturing a system (e.g., a micro-optical system) may include: providing a micro-optical component source wafer, the micro-optical component source wafer including one or more sacrificial portions separated by one or more anchor portions; forming a mold in one of the one or more sacrificial portions; coating at least a portion of the sacrificial portions including the mold with a liquid curable polymer; forming a structure (e.g., a micro-optical component), wherein forming the structure includes curing the liquid curable polymer; and forming an assembly tie between the structure and one of the one or more anchor portions. The mold may be formed by etching a solid material in the sacrificial portion.

根據本揭示內容之實施例,一種製造一系統(例如,一微光學系統)之方法可包含:提供一微光學組件源晶圓,該微光學組件源晶圓包含鄰近一錨定部分之一空腔;使用壓印微影術在該空腔中形成一模,其中使用壓印微影術包含用一液體可固化聚合物塗佈該空腔且使該液體可固化聚合物固化;形成一結構(例如,一微光學組件),其中形成該結構包含將一材料安置於該模中,該材料可與該模有差別地蝕刻;在該微光學組件與該等錨定部分中之一者之間形成一組件繫帶;及蝕刻該已固化聚合物以釋離該可轉印結構。該空腔可為一犧牲部分。According to an embodiment of the present disclosure, a method of manufacturing a system (e.g., a micro-optical system) may include: providing a micro-optical component source wafer, the micro-optical component source wafer including a cavity adjacent to an anchor portion; forming a mold in the cavity using imprint lithography, wherein using imprint lithography includes coating the cavity with a liquid curable polymer and curing the liquid curable polymer; forming a structure (e.g., a micro-optical component), wherein forming the structure includes disposing a material in the mold that can be etched differentially from the mold; forming an assembly tie between the micro-optical component and one of the anchor portions; and etching the cured polymer to release the transferable structure. The cavity may be a sacrificial portion.

在本揭示內容之一些實施例中,一種微光學組件包含具有一微基板區之一微基板及安置於該微基板之該微基板區上的一微光學元件。該微光學元件可具有在該微基板上方之一微光學元件區,且該微基板區可大於該微光學元件區。根據本揭示內容之實施例,該組件繫帶可與形成該結構(例如,微光學組件)在一共同步驟中形成,或可在額外沉積及處理(例如,圖案化)步驟中形成。在一些實施例中,該組件繫帶包含與形成該結構在一共同步驟中形成之繫帶部分,且包含使用額外沉積及處理(例如,圖案化)步驟形成的包括不同材料之額外繫帶部分,例如以形成包含多種不同材料的混合繫帶,該等不同材料諸如有機(例如,聚合物)材料及無機(例如,矽氧化物或氮化物)材料。In some embodiments of the present disclosure, a micro-optical assembly includes a micro-substrate having a micro-substrate region and a micro-optical element disposed on the micro-substrate region of the micro-substrate. The micro-optical element may have a micro-optical element region above the micro-substrate, and the micro-substrate region may be larger than the micro-optical element region. According to embodiments of the present disclosure, the assembly ties may be formed in a common step with forming the structure (e.g., micro-optical assembly), or may be formed in additional deposition and processing (e.g., patterning) steps. In some embodiments, the component ties include ties portions formed in a common step with forming the structure, and include additional ties portions comprising different materials formed using additional deposition and processing (e.g., patterning) steps, for example to form hybrid ties comprising a plurality of different materials, such as organic (e.g., polymer) materials and inorganic (e.g., silicon oxide or nitride) materials.

本文描述之方法可用於製造微光學系統,但不限於此類微光學系統且可例如用於製造非光學微系統。在一些實施例中,本揭示內容之結構可為非光學微組件,例如具有在微米範圍內之尺寸(例如,小於或等於250 µm、小於250 µm、不大於200 µm、不大於150 µm、不大於10 µm、不大於75 µm、不大於50 µm、不大於25 µm或不大於10 µm的高度、寬度或長度之任何組合)的可微轉印之非光學微組件。The methods described herein can be used to fabricate micro-optical systems, but are not limited to such micro-optical systems and can be used, for example, to fabricate non-optical microsystems. In some embodiments, the structures of the present disclosure can be non-optical microcomponents, such as micro-transferable non-optical microcomponents having dimensions in the micrometer range (e.g., any combination of height, width, or length less than or equal to 250 μm, less than 250 μm, not more than 200 μm, not more than 150 μm, not more than 10 μm, not more than 75 μm, not more than 50 μm, not more than 25 μm, or not more than 10 μm).

在一些實施例中,在例如藉由微轉印將該微光學組件印刷至一組件基板之後,本揭示內容之組件包括一破損(例如,破裂)或分開的繫帶。In some embodiments, after printing the micro-optical component onto a component substrate, such as by microtransfer printing, the components of the present disclosure include a damaged (eg, cracked) or separated ligament.

本揭示內容之實施例提供對高度整合之光學系統及光子系統有用的可微轉印之微光學組件、系統、來源及方法。Embodiments of the present disclosure provide micro-printable micro-optical components, systems, sources and methods useful for highly integrated optical and photonic systems.

優先權申請案Priority application

本申請案主張於2022年10月7日申請之美國臨時專利第63/414,423號之權益,該美國臨時專利之揭示內容特此以全文引用之方式併入本文中。This application claims the benefit of U.S. Provisional Patent No. 63/414,423, filed on October 7, 2022, the disclosure of which is hereby incorporated by reference in its entirety.

本揭示內容之某些實施例尤其提供用於微光學元件、微光學組件及微光學系統之裝置、結構、系統及方法。微光學結構對光子系統有用,該等光子系統諸如將電氣積體電路(例如,諸如CMOS之矽電路)與光學發射器(諸如發光二極體及雷射)、光學感測器(諸如光電二極體及光電晶體)、光學放大器、光學調變器及被動光學結構(例如諸如反射鏡、部分反射鏡、漫射器及棱鏡的反射器、諸如透鏡、波束整形光學元件、濾光片、頻率轉換器的折射器及諸如光柵的繞射器)組合的光子積體電路,該等光學結構提供光子之反射、折射、繞射、轉換或濾光,由此對光子進行重定向(redirecting)、處理或調節。本揭示內容之實施例亦可包含用於將光子自一個位置傳輸至另一位置之光學波導或導光管。傳播通過自由空間(例如,真空或諸如大氣之氣體)或通過具有恆定光學指數之固體或液體材料的光子在本文中亦被稱為光、光線或光束。經處理或經調節之光為方向、頻率、相位、頻率分佈、極化或傳播特性例如藉由利用光學結構之反射、折射、轉換、濾光或繞射改變的光(例如,光子、光線或光束)。光學裝置或結構與光子相互作用。本揭示內容之實施例提供微光學元件,該等微光學元件過小而不能使用已知方法及材料建構且定位於光子系統中,且因此可用於建構使用先前技術之方法不能製造的光子系統。Certain embodiments of the present disclosure provide, among other things, devices, structures, systems, and methods for micro-optical elements, micro-optical assemblies, and micro-optical systems. Micro-optical structures are useful for photonic systems such as photonic integrated circuits that combine electrical integrated circuits (e.g., silicon circuits such as CMOS) with optical emitters (e.g., light emitting diodes and lasers), optical sensors (e.g., photodiodes and phototransistors), optical amplifiers, optical modulators, and passive optical structures (e.g., reflectors such as mirrors, partial mirrors, diffusers, and prisms, refractors such as lenses, beam shaping optics, filters, frequency converters, and diverters such as gratings) that provide reflection, refraction, diversion, conversion, or filtering of photons, thereby redirecting, processing, or conditioning the photons. Embodiments of the present disclosure may also include optical waveguides or light pipes for transporting photons from one location to another. Photons propagating through free space (e.g., a vacuum or a gas such as atmosphere) or through a solid or liquid material with a constant optical index are also referred to herein as light, light, or beam. Processed or conditioned light is light (e.g., photons, light, or beam) whose direction, frequency, phase, frequency distribution, polarization, or propagation properties are changed, such as by reflection, refraction, conversion, filtering, or diffraction of an optical structure. Optical devices or structures interact with photons. Embodiments of the present disclosure provide micro-optical elements that are too small to be constructed using known methods and materials and are positioned in photonic systems, and therefore can be used to construct photonic systems that cannot be made using methods of the prior art.

光學發射器、放大器、調變器或感測器可包含使用製造設施及(例如與矽製造設施相容的)材料用諸如矽之半導體或諸如GaN、GaAs或InP之化合物半導體或諸如鈮酸鋰之其他光敏材料製造的半導體組件。半導體可包含主動電路或裝置,例如電晶體、光學感測器、光學放大器或諸如雷射、發光二極體(LED)或光電二極體之光學光發射器。在一些實施例中,本文揭示之裝置、結構及系統包含矽基板或包含矽電路之矽基板。矽電路可連接至非矽半導體組件以製成非均質模組,例如用於光發射器或光響應器之光控制電路、光調節電路或光響應電路。Optical emitters, amplifiers, modulators, or sensors may include semiconductor components fabricated using fabrication facilities and materials (e.g., compatible with silicon fabrication facilities) with semiconductors such as silicon or compound semiconductors such as GaN, GaAs, or InP, or other photosensitive materials such as lithium niobate. Semiconductors may include active circuits or devices such as transistors, optical sensors, optical amplifiers, or optical light emitters such as lasers, light emitting diodes (LEDs), or photodiodes. In some embodiments, the devices, structures, and systems disclosed herein include a silicon substrate or a silicon substrate including a silicon circuit. Silicon circuits can be connected to non-silicon semiconductor components to make heterogeneous modules, such as light control circuits, light modulation circuits, or light response circuits for light emitters or light responders.

調節光之光學結構(諸如本揭示內容之微光學元件)可包含例如玻璃、聚合物或矽。微光學元件對一或多個期望頻率之光(諸如由本揭示內容之微光學元件、光發射器或光感測器調節、產生或感測的光)可為至少部分透明的(例如,至少50%透明、至少60%透明、至少70%透明、至少80%透明、至少90%透明或至少95%透明)。光學結構可包含安置於光學結構之一或多個表面上的多個層或塗層,諸如指數匹配塗層、反射塗層(諸如薄銀層或鋁層)、相變層、極化敏感層或抗反射層。光可為例如可見光、紅外光、紫外光、頻率在300 GHz與3000 THz之間或波長為10 nm至1000 µm的任何電磁輻射,且通常為用微光學元件可或故意調節或以其他方式處理的任何頻率之任何電磁波。一或多個微光學元件安置所在之基板對一或多個期望頻率之光可為至少部分透明的(例如,透明) (例如,至少50%透明、至少60%透明、至少70%透明、至少80%透明、至少90%透明或至少95%透明)。在一些實施例中,一或多個微光學元件安置所在之基板對於一或多個期望頻率之光可為至少部分反射的(例如,反射) (例如,至少50%反射、至少60%反射、至少70%反射、至少80%反射、至少90%反射或至少95%反射)。在一些實施例中,一或多個微光學元件安置所在之基板對一或多個期望頻率之光可為至少部分吸光的(例如,不透明) (例如,至少50%吸光、至少60%吸光、至少70%吸光、至少80%吸光、至少90%吸光或至少95%吸光)。An optical structure that modulates light (such as a micro-optical element of the present disclosure) may include, for example, glass, a polymer, or silicon. The micro-optical element may be at least partially transparent (e.g., at least 50% transparent, at least 60% transparent, at least 70% transparent, at least 80% transparent, at least 90% transparent, or at least 95% transparent) to light of one or more desired frequencies (such as light modulated, generated, or sensed by a micro-optical element, light emitter, or light sensor of the present disclosure). The optical structure may include a plurality of layers or coatings disposed on one or more surfaces of the optical structure, such as an index matching coating, a reflective coating (such as a thin silver layer or aluminum layer), a phase change layer, a polarization sensitive layer, or an anti-reflection layer. The light may be, for example, visible light, infrared light, ultraviolet light, any electromagnetic radiation with a frequency between 300 GHz and 3000 THz or a wavelength of 10 nm to 1000 μm, and generally any electromagnetic wave of any frequency that can be or is intentionally modulated or otherwise processed with a micro-optical element. The substrate on which the one or more micro-optical elements are disposed may be at least partially transparent (e.g., transparent) to light of one or more desired frequencies (e.g., at least 50% transparent, at least 60% transparent, at least 70% transparent, at least 80% transparent, at least 90% transparent, or at least 95% transparent). In some embodiments, the substrate on which the one or more micro-optical elements are disposed may be at least partially reflective (e.g., reflective) to light of one or more desired frequencies (e.g., at least 50% reflective, at least 60% reflective, at least 70% reflective, at least 80% reflective, at least 90% reflective, or at least 95% reflective). In some embodiments, the substrate in which one or more micro-optical elements are disposed can be at least partially absorptive (e.g., opaque) to light of one or more desired frequencies (e.g., at least 50% absorptive, at least 60% absorptive, at least 70% absorptive, at least 80% absorptive, at least 90% absorptive, or at least 95% absorptive).

根據本揭示內容之實施例且如圖1A至圖1D所示,微光學組件10包含具有微基板表面13之微基板12。經結構化以調節光50之微光學元件14可安置於微基板12之微基板表面13上。微基板表面13亦可為微基板12的與微光學元件14相對之側面,或係指微基板12之兩側(例如,相對側面),微光學元件14安置於或形成於該兩側中之至少一者上或中。微基板表面13可為微基板12的用於處置微光學元件10之側面,例如該側面具有如在下文論述之微轉印印模60。微光學元件14與微基板12可為一體的。微光學元件14可例如用黏合劑黏附至微基板表面13。在本揭示內容之實施例中,微基板12提供可用於實現微轉印之結構,尤其在微光學元件14可難以在可用微系統中處置(例如,操縱、安置、定位或設置)的情況下。在一些實施例中,微基板12具有小於微光學元件14之厚度(或高度)的厚度(或高度)。在一些實施例中,微基板12具有不大於20 µm、不大於10 µm、不大於5 µm、不大於4 µm、不大於2 µm或不大於1 µm之厚度(或高度)。According to an embodiment of the present disclosure and as shown in FIGS. 1A to 1D , a micro-optical assembly 10 includes a micro-substrate 12 having a micro-substrate surface 13. A micro-optical element 14 structured to modulate light 50 may be disposed on the micro-substrate surface 13 of the micro-substrate 12. The micro-substrate surface 13 may also be a side of the micro-substrate 12 opposite to the micro-optical element 14, or may refer to two sides (e.g., opposite sides) of the micro-substrate 12, with the micro-optical element 14 disposed on or formed in at least one of the two sides. The micro-substrate surface 13 may be a side of the micro-substrate 12 on which the micro-optical element 10 is disposed, such as a side having a micro-transfer stamp 60 as discussed below. The micro-optical element 14 may be integral with the micro-substrate 12. The micro-optical element 14 may be adhered to the micro-substrate surface 13, for example, with an adhesive. In embodiments of the present disclosure, the micro-substrate 12 provides a structure that can be used to achieve micro-transfer, particularly where the micro-optical element 14 may be difficult to handle (e.g., manipulate, position, locate, or place) in an available microsystem. In some embodiments, the micro-substrate 12 has a thickness (or height) that is less than the thickness (or height) of the micro-optical element 14. In some embodiments, the micro-substrate 12 has a thickness (or height) of no greater than 20 μm, no greater than 10 μm, no greater than 5 μm, no greater than 4 μm, no greater than 2 μm, or no greater than 1 μm.

微光學元件14可為不需要外部動力(例如,電力)之被動光學結構。微光學組件10可包含組件繫帶11之至少一部分,該至少一部分實體地附接至微基板12或實體地附接至微光學元件14。組件繫帶11可為破損(例如,破裂)或分開的。在正交於微光學元件14安置所在的微基板12之表面之方向D上,微光學組件10可具有不大於250 µm (例如,小於250 µm、不大於200 µm、不大於150 µm、不大於100 µm、不大於75 µm、不大於50 µm、不大於25 µm或不大於10 µm)的厚度H (例如,微光學組件10之高度或深度)。使用先前技術之技術不能將具有此種大小或厚度之微光學組件10容易地或準確地微組裝至微光學系統中。因此,本揭示內容之實施例實現將大體積之微光學組件10精確地微組裝至較小且較不昂貴之光子系統中。The micro-optical element 14 may be a passive optical structure that does not require external power (e.g., electricity). The micro-optical assembly 10 may include at least a portion of an assembly tether 11 that is physically attached to the micro-substrate 12 or physically attached to the micro-optical element 14. The assembly tether 11 may be damaged (e.g., broken) or separated. In a direction D orthogonal to the surface of the micro-substrate 12 on which the micro-optical element 14 is disposed, the micro-optical assembly 10 may have a thickness H (e.g., the height or depth of the micro-optical assembly 10) of not more than 250 μm (e.g., less than 250 μm, not more than 200 μm, not more than 150 μm, not more than 100 μm, not more than 75 μm, not more than 50 μm, not more than 25 μm, or not more than 10 μm). Micro-optical components 10 of this size or thickness cannot be easily or accurately microassembled into micro-optical systems using prior art techniques. Therefore, embodiments of the present disclosure enable accurate microassembly of large-volume micro-optical components 10 into smaller and less expensive photonic systems.

微光學元件14可具有在微基板表面13上或上方之微光學元件區18。微基板表面13可具有大於微光學元件區18之微基板區16,如圖1B及圖1D所示,因此微基板12在平行於微基板表面13之方向上延伸超出微光學元件14以形成至微光學元件14之伸出部分,該伸出部分可用於在不觸碰微光學元件14本身的情況下將微光學元件14保持在適當位置或拾取或以其他方式機械操縱微光學元件14 (此可減少由於對微光學組件10之任何機械操縱或與微光學元件14接觸而可能出現的微光學元件14之受損效能或損傷)。在一些實施例中,微基板區16等於或小於微光學元件區18。在一些此類實施例中,可藉由接觸微基板12的與微光學元件14相對之側面來拾取、保持或操縱微光學組件10。微基板12可具有不大於100,000 µm 2(例如,不大於62,500 µm 2、小於62,500 µm 2,不大於40,000 µm 2、小於40,000 µm 2,不大於20,000 µm 2,不大於10,000 µm 2,不大於2,500 µm 2,不大於400 µm 2,或不大於100 µm 2)之微基板區16。在一些實施例中,微基板12具有例如不小於2:1、不小於4:1、不小於5:1、不小於8:1或不小於10:1之大縱橫比(長度對寬度)。在一些實施例中,微基板12具有不大於50 µm之寬度及不小於100 µm、200 µm、250 µm或500 µm之長度,或不大於100 µm之寬度及不小於200 µm、500 µm、750 µm或1000 µm之長度。在一些實施例中,微基板12具有不大於200 µm之寬度及不小於400 µm、600 µm、800 µm、1000 µm、1200 µm、1400 µm、1600 µm、1800 µm或2000 µm之長度。例如在光主動元件20 (諸如微雷射)具有大縱橫比的情況下或在微光學元件14具有大縱橫比的情況下,大縱橫比微基板12可為有用的。具有此類小區域及/或大縱橫比之微光學組件10可難以或不可能使用先前技術之技術來建構或組裝。然而,使用本揭示內容之結構及方法,可將此類微光學組件10整合至微光學系統70 (諸如光子系統或光子積體電路)中,從而在效能提高的情況下提供減小之大小及降低之成本。 The micro-optical element 14 may have a micro-optical element area 18 on or above the micro-substrate surface 13. The micro-substrate surface 13 may have a micro-substrate area 16 that is larger than the micro-optical element area 18, as shown in FIG. 1B and FIG. 1D, so that the micro-substrate 12 extends beyond the micro-optical element 14 in a direction parallel to the micro-substrate surface 13 to form an extension to the micro-optical element 14, which can be used to hold the micro-optical element 14 in place or pick up or otherwise mechanically manipulate the micro-optical element 14 without touching the micro-optical element 14 itself (this can reduce the damage performance or damage to the micro-optical element 14 that may occur due to any mechanical manipulation of the micro-optical assembly 10 or contact with the micro-optical element 14). In some embodiments, the micro-substrate area 16 is equal to or smaller than the micro-optical element area 18. In some such embodiments, the micro-optical assembly 10 can be picked up, held, or manipulated by contacting the side of the micro-substrate 12 opposite the micro-optical element 14. The micro-substrate 12 can have a micro-substrate area 16 of no greater than 100,000 μm 2 (e.g., no greater than 62,500 μm 2 , less than 62,500 μm 2 , no greater than 40,000 μm 2 , less than 40,000 μm 2 , no greater than 20,000 μm 2 , no greater than 10,000 μm 2 , no greater than 2,500 μm 2 , no greater than 400 μm 2 , or no greater than 100 μm 2 ). In some embodiments, the micro substrate 12 has a large aspect ratio (length to width) of, for example, not less than 2: 1, not less than 4: 1, not less than 5: 1, not less than 8: 1, or not less than 10: 1. In some embodiments, the micro substrate 12 has a width of not more than 50 μm and a length of not less than 100 μm, 200 μm, 250 μm, or 500 μm, or a width of not more than 100 μm and a length of not less than 200 μm, 500 μm, 750 μm, or 1000 μm. In some embodiments, the microsubstrate 12 has a width of no greater than 200 μm and a length of no less than 400 μm, 600 μm, 800 μm, 1000 μm, 1200 μm, 1400 μm, 1600 μm, 1800 μm, or 2000 μm. A high aspect ratio microsubstrate 12 may be useful, for example, where the optically active element 20 (e.g., a microlaser) has a large aspect ratio or where the micro-optical element 14 has a large aspect ratio. Micro-optical components 10 having such small areas and/or large aspect ratios may be difficult or impossible to construct or assemble using prior art techniques. However, using the structures and methods of the present disclosure, such micro-optical components 10 may be integrated into a micro-optical system 70 (such as a photonic system or photonic integrated circuit), thereby providing reduced size and reduced cost with improved performance.

微光學組件10可包含微對準標記15 (基準標記),該等標記安置於微基板12上或中以幫助對準微光學系統70中之系統基板40上之微光學組件10,如下文將進一步論述的。微基板表面13可具有排除微光學元件區18之微基板區16,該微基板區吸收或漫射雜散光50例如以減少微光學系統70中之不想要反射。微基板表面13之此種區可為黑色的,例如用吸收光50之材料(諸如碳黑)塗佈。因此,微基板12可具有光透明或光反射的部分及吸光性(例如,光吸收或光吸附)的部分。在一些實施例中,微基板12可具有光透明的部分及光反射的其他部分。圖案化之微基板12可例如藉由逐圖案之材料沉積(諸如例如使用光微影、塗佈或噴墨沉積方法將光反射或光吸收材料蒸發)來製造。The micro-optical assembly 10 may include micro-alignment marks 15 (fiducial marks) disposed on or in the micro-substrate 12 to assist in aligning the micro-optical assembly 10 on the system substrate 40 in the micro-optical system 70, as will be discussed further below. The micro-substrate surface 13 may have a micro-substrate region 16 excluding the micro-optical element region 18, which absorbs or diffuses stray light 50, for example to reduce unwanted reflections in the micro-optical system 70. Such a region of the micro-substrate surface 13 may be black, for example coated with a material that absorbs light 50, such as carbon black. Thus, the micro-substrate 12 may have portions that are light transparent or light reflective and portions that are light absorptive (e.g., light absorbing or light absorbing). In some embodiments, the micro-substrate 12 may have portions that are light transparent and other portions that are light reflective. The patterned microsubstrate 12 may be fabricated, for example, by pattern-wise material deposition such as evaporation of light-reflecting or light-absorbing material using, for example, photolithography, painting or inkjet deposition methods.

在本揭示內容之一些實施例中,與微光學元件14相反,微基板12可傳輸但不故意調節(例如,重定向或變換)光50。特別地,在一些實施例中,排除微光學元件區18之微基板區16不欲操縱光50或以其他方式調節光50,且在一些實施例中,不接收光50。具有光學設計知識之人員將了解,任何真實世界系統經受環境光50或不想要的光50反射或傳播,且此種光50可撞擊排除微光學元件區18之微基板區16。為了減少此等不想要的效應,排除微光學元件區18之微基板區16可例如用諸如碳黑之黑色材料的塗層來吸收光50。在一些實施例中,微基板12之微光學元件區18可為微光學元件14之一部分(例如,微光學元件14可包含微基板12的在微光學元件區18中之部分)。In some embodiments of the present disclosure, in contrast to the micro-optical elements 14, the micro-substrate 12 may transmit but not intentionally condition (e.g., redirect or transform) light 50. In particular, in some embodiments, the micro-substrate areas 16 excluding the micro-optical element areas 18 are not intended to manipulate or otherwise condition the light 50, and in some embodiments, do not receive light 50. Those with knowledge of optical design will appreciate that any real-world system experiences ambient light 50 or unwanted light 50 reflections or propagation, and such light 50 may strike the micro-substrate areas 16 excluding the micro-optical element areas 18. To reduce these unwanted effects, the micro-substrate areas 16 excluding the micro-optical element areas 18 may absorb the light 50, for example, with a coating of a black material such as carbon black. In some embodiments, the micro-optical device region 18 of the micro-substrate 12 may be a portion of the micro-optical device 14 (eg, the micro-optical device 14 may include a portion of the micro-substrate 12 in the micro-optical device region 18 ).

在本揭示內容之一些實施例中,結合微光學元件14,微基板12可調節(例如,重定向或變換)光50。舉例而言,微基板12可具有反射塗層19 (或可為反射性的,如圖7B所示),可將光50折射,可包含對光50濾光之磷光體或染料,可包含作為光頻率轉換器的吸收且再發射光50之磷光體或量子點,或可包含影響光50極化之材料(例如,具有對準之分子的聚合物)。微基板12可具有實質上平行之相對側面(例如,如圖所示)或可具有不平行之相對側面。微基板12可具有實質上平坦之側面(例如,微基板表面13,諸如圖中所示)或可具有非平面或經結構化之側面。In some embodiments of the present disclosure, in conjunction with micro-optical elements 14, microsubstrates 12 can condition (e.g., redirect or transform) light 50. For example, microsubstrates 12 can have a reflective coating 19 (or can be reflective, as shown in FIG. 7B ), can refract light 50, can include phosphors or dyes that filter light 50, can include phosphors or quantum dots that absorb and re-emit light 50 as optical frequency converters, or can include materials that affect the polarization of light 50 (e.g., polymers with aligned molecules). Microsubstrates 12 can have substantially parallel opposing sides (e.g., as shown) or can have non-parallel opposing sides. Microsubstrates 12 can have substantially flat sides (e.g., microsubstrate surfaces 13, as shown) or can have non-planar or structured sides.

微光學元件14可為被動光學元件,該被動光學元件藉由例如使入射在微光學元件14上之光50反射、部分反射、濾光、頻率轉換、改變相位、改變極化、折射或繞射來調節光50 (例如在微光學元件14之光學表面或面上調節與微光學元件14相交之光線、光束或光子50)。微光學元件14可為反射鏡、部分反射鏡或繞射光柵且可塗佈具有諸如抗反射塗層之光學塗層以減少不想要之光學效應,或可合併經由光學干涉將期望頻率之光50濾除之被動光學材料,諸如濾光片或多個層。在一些實施例中,微光學元件14為透鏡(例如,具有光學功率之小透鏡)或棱鏡。在一些實施例中,微光學元件14為微透鏡、微透鏡陣列,或包含多個微透鏡。在一些實施例中,微光學元件14為微光學件(例如,微透鏡或微繞射光柵)之陣列。微光學元件14可包含螢光或磷光材料塗層以吸收且再發射光50。微光學元件14可改變入射光50之相位或頻率分佈或兩者。微光學元件14可為光濾波器。微光學元件14可將入射光50聚焦或散焦。微光學元件14可為菲涅耳透鏡。在一些實施例中,微光學元件14可將光50自平行於微基板表面13之方向(水平)重定向至正交於微基板表面13之方向D (垂直),例如如圖1C所示。在一些實施例中,由微光學元件14調節之光50穿過微基板12,且微基板12對此種光50係實質上透明的。舉例而言,微基板12對由微光學元件14調節的穿過微基板12之光50具有不小於50%、75%、80%、85%、90%或95%之透明度。在一些實施例中,由微光學元件14調節之光50被微基板12實質上反射,且微基板12對於此種光50為實質上反射性的。舉例而言,微基板12對於由微光學元件14調節的入射在微基板12上之光50具有不小於50%、75%、80%、85%、90%或95%之反射性。在一些實施例中,微光學元件14可將光50自平行於微基板表面13之方向重定向至平行於微基板表面13之一不同方向,例如在平行於微基板表面13之正交方向上。在一些實施例中,微光學元件14可將傳入光50反射至平行於傳入光50且與該傳入光相反之方向。The micro-optical element 14 may be a passive optical element that conditions light 50 (e.g., conditions light rays, beams, or photons 50 that intersect the micro-optical element 14 at an optical surface or face of the micro-optical element 14) by, for example, reflecting, partially reflecting, filtering, frequency converting, changing phase, changing polarization, refracting, or diffusing light 50 incident on the micro-optical element 14. The micro-optical element 14 may be a reflector, a partially reflector, or a diffraction grating and may be coated with an optical coating such as an anti-reflective coating to reduce unwanted optical effects, or may incorporate a passive optical material such as a filter or multiple layers that filters light 50 of a desired frequency through optical interference. In some embodiments, the micro-optical element 14 is a lens (e.g., a small lens with optical power) or a prism. In some embodiments, the micro-optical element 14 is a micro-lens, an array of micro-lenses, or includes a plurality of micro-lenses. In some embodiments, the micro-optical element 14 is an array of micro-optical components (e.g., micro-lenses or micro-diversion gratings). The micro-optical element 14 may include a coating of fluorescent or phosphorescent material to absorb and re-emit light 50. The micro-optical element 14 may change the phase or frequency distribution or both of the incident light 50. The micro-optical element 14 may be an optical filter. The micro-optical element 14 may focus or defocus the incident light 50. The micro-optical element 14 may be a Fresnel lens. In some embodiments, the micro-optical element 14 can redirect light 50 from a direction parallel to the micro-substrate surface 13 (horizontal) to a direction D (vertical) orthogonal to the micro-substrate surface 13, such as shown in FIG. 1C. In some embodiments, the light 50 conditioned by the micro-optical element 14 passes through the micro-substrate 12, and the micro-substrate 12 is substantially transparent to such light 50. For example, the micro-substrate 12 has a transparency of not less than 50%, 75%, 80%, 85%, 90%, or 95% to the light 50 conditioned by the micro-optical element 14 passing through the micro-substrate 12. In some embodiments, the light 50 conditioned by the micro-optical element 14 is substantially reflected by the micro-substrate 12, and the micro-substrate 12 is substantially reflective to such light 50. For example, the micro-substrate 12 has a reflectivity of not less than 50%, 75%, 80%, 85%, 90%, or 95% for light 50 incident on the micro-substrate 12 conditioned by the micro-optical element 14. In some embodiments, the micro-optical element 14 can redirect the light 50 from a direction parallel to the micro-substrate surface 13 to a different direction parallel to the micro-substrate surface 13, such as in an orthogonal direction parallel to the micro-substrate surface 13. In some embodiments, the micro-optical element 14 can reflect the incoming light 50 to a direction parallel to and opposite to the incoming light 50.

在圖1A至圖1D所示之實施例中,微基板12在平行於微基板表面13之兩個維度X及Y上延伸超出微光學元件14。在一些實施例中且如圖2所示,微基板12僅在平行於微基板表面13之一個維度(如所示之方向X)上延伸超出微光學元件14。藉由僅在一個維度上提供微基板12之微基板表面13伸出部分,微光學組件10可一起更緊密地安置於光子系統中,例如,在正交於微基板表面13伸出部分之方向的方向上一起更緊密地安置。In the embodiments shown in Figures 1A-1D, the micro-substrate 12 extends beyond the micro-optical elements 14 in two dimensions X and Y parallel to the micro-substrate surface 13. In some embodiments and as shown in Figure 2, the micro-substrate 12 extends beyond the micro-optical elements 14 in only one dimension (direction X as shown) parallel to the micro-substrate surface 13. By providing the micro-substrate 12 with a micro-substrate surface 13 extension portion in only one dimension, the micro-optical assembly 10 can be more closely arranged together in a photonic system, for example, more closely arranged together in a direction orthogonal to the direction of the micro-substrate surface 13 extension portion.

圖1A至圖2圖示微光學元件14,該等微光學元件可將平行於微基板表面13傳播之光50重定向至垂直於微基板表面13之方向, 反之亦然。圖3圖示微光學元件14,該等微光學元件可將平行於微基板表面13傳播之光50重定向至亦平行於微基板表面13之一不同方向。在一些此類實施例中,由微光學元件14調節之光50平行於微基板12傳播,且微基板12對此光50或環境光或雜散光50係實質上不透明的或進行吸收。舉例而言,微基板12可吸收不小於入射在微基板12上之光50的50%、75%、80%、85%、90%或95%。 1A-2 illustrate micro-optical elements 14 that can redirect light 50 propagating parallel to the microsubstrate surface 13 to a direction perpendicular to the microsubstrate surface 13, and vice versa . FIG. 3 illustrates micro-optical elements 14 that can redirect light 50 propagating parallel to the microsubstrate surface 13 to a different direction also parallel to the microsubstrate surface 13. In some such embodiments, the light 50 modulated by the micro-optical elements 14 propagates parallel to the microsubstrate 12, and the microsubstrate 12 is substantially opaque or absorbs this light 50 or ambient light or stray light 50. For example, the microsubstrate 12 can absorb not less than 50%, 75%, 80%, 85%, 90%, or 95% of the light 50 incident on the microsubstrate 12.

圖1A至圖3圖示具有適合於藉由反射或折射來調節光50之平坦表面的微光學元件14。圖4及圖5圖示具有適合於透鏡(例如,雙凸透鏡、雙凹透鏡、凸透鏡或凹透鏡)之彎曲表面的微光學元件14。此類曲線可為球面的、非球面的,或具有任意表面形狀。因此,微光學元件14可為透鏡,例如球面透鏡、非球面透鏡或具有任意表面形狀之透鏡。如圖4所示,配置雙凹透鏡以調節(例如,折射聚焦)平行於微基板表面13傳播之光50。如圖5所示,配置凸透鏡以調節(例如,聚焦)垂直於微基板表面13傳播之光50。本揭示內容之微光學元件14可將入射光50聚焦、散焦或隨機地重新分配(例如,漫射)。微基板12可為漫射器。1A to 3 illustrate a micro-optical element 14 having a flat surface suitable for conditioning light 50 by reflection or refraction. FIGS. 4 and 5 illustrate a micro-optical element 14 having a curved surface suitable for a lens (e.g., a biconvex lens, a biconcave lens, a convex lens, or a concave lens). Such a curve can be spherical, aspherical, or have an arbitrary surface shape. Thus, the micro-optical element 14 can be a lens, such as a spherical lens, an aspherical lens, or a lens with an arbitrary surface shape. As shown in FIG. 4 , a biconcave lens is configured to condition (e.g., refract and focus) light 50 propagating parallel to the micro-substrate surface 13. As shown in FIG. 5 , a convex lens is configured to condition (e.g., focus) light 50 propagating perpendicular to the micro-substrate surface 13. The micro-optical element 14 of the present disclosure can focus, defocus, or randomly redistribute (eg, diffuse) the incident light 50. The micro-substrate 12 can be a diffuser.

在一些實施例中且如圖1A至圖5所示,微光學元件14在正交於微基板表面13之方向上遠離微基板12 (例如,在上方或在下方)延伸。在一些實施例中且如圖6所示,微光學元件14並不遠離微基板12延伸,而改為整合至例如微基板表面13中以形成安置於微基板12之微基板表面13上或中的繞射光柵。在一些實施例中,微光學元件14係菲涅耳透鏡。In some embodiments and as shown in Figures 1A to 5, the micro-optical element 14 extends away from the micro-substrate 12 (e.g., above or below) in a direction normal to the micro-substrate surface 13. In some embodiments and as shown in Figure 6, the micro-optical element 14 does not extend away from the micro-substrate 12, but is instead integrated into the micro-substrate surface 13 to form a diffraction grating disposed on or in the micro-substrate surface 13 of the micro-substrate 12. In some embodiments, the micro-optical element 14 is a Fresnel lens.

圖7A及圖7B圖示包含光主動元件20之本揭示內容之微光學組件10,該光主動元件例如在微基板12的與微光學元件14相對之側面(例如,在微基板12的與微基板表面13相對之側面)上安置於微基板12上的光產生元件(諸如雷射,例如垂直空腔表面發射雷射或發光二極體)、光響應元件(光感測器,諸如光電二極體或光電晶體)或光調變元件(諸如光學放大器或調變器)。此類光主動元件20可發射光50至微光學元件14中,感測傳播至微光學元件14外之光50,或調節通過微光學元件14傳輸之光50。光主動元件20可在微基板12及微光學元件14如下所述地形成之後安置於微基板12的與微光學元件14相對之側面上,例如藉由在將微光學組件10自微光學組件源晶圓30微轉印至系統基板40之前或之後自一光主動元件源晶圓微轉印至微基板12上。因此,光主動元件20可包含或附接至破損的(例如,破裂的)或分開的光主動元件繫帶21 (展示於圖7A及圖7B中)。圖7B圖示塗覆至微光學元件14之表面以重定向接收自或發送至光主動元件20之光50的反射塗層19。微基板12可具有實質上平行且光滑之相對側面,例如形成一基板,如在顯示基板及半導體晶圓中發現的。(在圖7A及圖7B中,為清楚起見,關於圖1A至圖5倒轉地展示微光學元件14。)7A and 7B illustrate a micro-optical assembly 10 of the present disclosure including a photoactive element 20, such as a light generating element (e.g., a laser, such as a vertical cavity surface emitting laser or a light emitting diode), a light responsive element (a photo sensor, such as a photodiode or a phototransistor), or a light modulating element (e.g., an optical amplifier or a modulator) disposed on a micro-substrate 12 on a side of the micro-substrate 12 opposite to the micro-optical element 14 (e.g., on a side of the micro-substrate 12 opposite to the micro-substrate surface 13). Such a photoactive element 20 can emit light 50 into the micro-optical element 14, sense light 50 propagating out of the micro-optical element 14, or modulate light 50 transmitted through the micro-optical element 14. The optically active element 20 may be disposed on the side of the micro-substrate 12 opposite the micro-optical element 14 after the micro-substrate 12 and the micro-optical element 14 are formed as described below, for example by micro-transferring from an optically active element source wafer to the micro-substrate 12 before or after micro-transferring the micro-optical assembly 10 from the micro-optical assembly source wafer 30 to the system substrate 40. Thus, the optically active element 20 may include or be attached to a damaged (e.g., cracked) or separated optically active element strap 21 (shown in FIGS. 7A and 7B). FIG. 7B illustrates a reflective coating 19 applied to the surface of the micro-optical element 14 to redirect light 50 received from or transmitted to the optically active element 20. The micro-substrate 12 may have substantially parallel and smooth opposite sides, for example forming a substrate, such as found in display substrates and semiconductor wafers. (In FIGS. 7A and 7B , the micro-optical element 14 is shown inverted with respect to FIGS. 1A to 5 for clarity.)

在本揭示內容之一些實施例中,微基板12及微光學元件14為一體的且成整體,例如包含具有不同部分之單個結構,可包含相同材料,可為相同材料,或可用共同材料在共同製程中(例如在一或多個共同製造步驟中)製成。微光學組件10可為單塊的。舉例而言,在一些實施例中,微光學組件10包含可固化聚合物,諸如光阻劑、環氧樹脂或樹脂。在一些實施例中,微基板12包含不同於微光學元件14之材料且可在不同時間使用不同步驟製成,或可包含在不同時間在不同地點由黏附在一起之不同材料製成的不同結構,例如微光學元件14可用光學清透黏合劑黏附至微基板12之微基板表面13。在一些實施例中,黏合劑可為金屬,例如反射金屬或焊料。微基板12可具有實質上平行之相對側面(如圖所示)或可具有不平行之相對側面。舉例而言,在一些實施例中,微基板12包含實質上透明之氧化物,諸如二氧化矽,且微光學元件14包含可固化聚合物。在一些實施例中,微基板12對光50並非實質上透明的,且可包含例如陶瓷或光吸收樹脂。微光學組件10之微基板12及微光學元件14中之一者或兩者可藉由射出成型、衝壓、蝕刻、雙光子聚合、微米或奈米壓印、壓印微影術(例如,奈米壓印微影術)或單獨或同時的各種光微影處理步驟中之任一者製成,該等步驟包括但不限於噴塗、旋塗、刮刀塗佈、漏斗塗佈、簾塗佈、蒸發塗佈、濺鍍、剝蝕、遮掩、蝕刻及固化中之任一者或組合。In some embodiments of the present disclosure, the microsubstrate 12 and the micro-optical element 14 are integral and unitary, e.g., comprise a single structure having different portions, may comprise the same material, may be the same material, or may be made from a common material in a common process (e.g., in one or more common manufacturing steps). The micro-optical assembly 10 may be monolithic. For example, in some embodiments, the micro-optical assembly 10 comprises a curable polymer, such as a photoresist, epoxy, or resin. In some embodiments, the microsubstrate 12 comprises a material different from the micro-optical element 14 and may be made at different times using different steps, or may comprise different structures made from different materials bonded together at different times at different locations, e.g., the micro-optical element 14 may be bonded to the microsubstrate surface 13 of the microsubstrate 12 using an optically clear adhesive. In some embodiments, the adhesive may be a metal, such as a reflective metal or solder. The microsubstrate 12 may have substantially parallel opposing sides (as shown) or may have non-parallel opposing sides. For example, in some embodiments, the microsubstrate 12 comprises a substantially transparent oxide, such as silicon dioxide, and the micro-optical element 14 comprises a curable polymer. In some embodiments, the microsubstrate 12 is not substantially transparent to light 50 and may comprise, for example, a ceramic or a light absorbing resin. One or both of the micro-substrate 12 and the micro-optical element 14 of the micro-optical assembly 10 can be made by injection molding, stamping, etching, two-photon polymerization, micro- or nano-imprinting, imprint lithography (e.g., nano-imprint lithography), or any of a variety of photolithographic processing steps, either alone or simultaneously, including but not limited to any one or a combination of spraying, spin coating, doctor blade coating, funnel coating, curtain coating, evaporation coating, sputtering, stripping, masking, etching, and curing.

圖8A至圖8D圖示微光學組件10之微光學組件源晶圓30。如圖8A至圖8D所示,微光學組件10可藉由提供由固定器32 (例如,微光學組件源晶圓30之錨定部分32)隔開的具有犧牲部分34或間隙36之組件源晶圓30或基板來建構。若犧牲部分34經蝕刻以形成間隙36,則微光學組件10可藉由連接至固定器32之組件繫帶11懸浮在間隙36上方。微光學元件14可在遠離犧牲部分34或間隙36之方向上延伸(如圖8A所示),可延伸至犧牲部分34或間隙36中(如圖8B及圖8D所示),或兩者皆有(如圖8C所示)。在一些實施例中,微光學元件10可使用安置於共同微基板12上之多個微光學元件14 (例如,如圖8C所示)來操縱或以其他方式處理多個光束50。在一些實施例中,微光學元件10可使用安置於微基板12上之單一共同微光學元件14來操縱或以其他方式處理多個光束50。圖8D圖示具有棱鏡之微光學組件10結構,該棱鏡具有用於使在棱鏡外之光50反射穿過微基板12的光反射表面。8A-8D illustrate a micro-optical component source wafer 30 of a micro-optical component 10. As shown in FIGS. 8A-8D, the micro-optical component 10 can be constructed by providing a component source wafer 30 or substrate having a sacrificial portion 34 or a gap 36 separated by a fixture 32 (e.g., an anchoring portion 32 of the micro-optical component source wafer 30). If the sacrificial portion 34 is etched to form the gap 36, the micro-optical component 10 can be suspended above the gap 36 by a component strap 11 connected to the fixture 32. The micro-optical element 14 can extend in a direction away from the sacrificial portion 34 or the gap 36 (as shown in FIG. 8A), can extend into the sacrificial portion 34 or the gap 36 (as shown in FIGS. 8B and 8D), or both (as shown in FIG. 8C). In some embodiments, the micro-optical element 10 may use multiple micro-optical elements 14 disposed on a common micro-substrate 12 (e.g., as shown in FIG. 8C ) to steer or otherwise process multiple light beams 50. In some embodiments, the micro-optical element 10 may use a single common micro-optical element 14 disposed on a micro-substrate 12 to steer or otherwise process multiple light beams 50. FIG. 8D illustrates a micro-optical assembly 10 structure having a prism having a light reflecting surface for reflecting light 50 outside the prism through the micro-substrate 12.

在一些實施例中,微光學組件10塗佈有一材料,諸如聚合物或無機氧化物或氮化物(諸如二氧化矽或氮化矽),該材料可與犧牲部分34或微光學組件源晶圓30之材料有差別地蝕刻。例如使用光微影方法及材料來處理該材料,包括遮掩及蝕刻或在一些實施例中藉由清洗。此方法對於無機材料特別有用,但亦可供有機材料使用。在一些實施例中,以液體狀態塗佈材料,對材料進行光微影處理,接著使材料固化。(液體材料可在光微影處理之前軟固化。)在一些實施例中,以液體狀態塗佈材料,對材料整形,接著使材料固化。材料可以但未必在整形之前軟固化。有機材料(例如聚合物)可藉由微米壓印(微成型)進行整形(例如用主模,諸如光微影建構之矽主模),接著固化(用處於適當位置的模或在移除模之後),或藉由雙光子聚合進行整形,以形成微光學組件10。微光學組件10可在微成型之後進行光微影處理,例如以在組件源晶圓30之表面上方將多個微光學組件10分段或提供額外的光學或保護包覆層。可對額外層進行圖案化。In some embodiments, the micro-optical component 10 is coated with a material, such as a polymer or an inorganic oxide or nitride (such as silicon dioxide or silicon nitride), which can be etched differently from the material of the sacrificial portion 34 or the micro-optical component source wafer 30. For example, the material is processed using photolithographic methods and materials, including masking and etching or in some embodiments by cleaning. This method is particularly useful for inorganic materials, but can also be used for organic materials. In some embodiments, the material is applied in a liquid state, the material is photolithographically processed, and then the material is cured. (Liquid materials can be soft-cured before photolithographic processing.) In some embodiments, the material is applied in a liquid state, the material is shaped, and then the material is cured. The material can but is not necessarily soft-cured before shaping. Organic materials (e.g., polymers) may be shaped by microimprinting (micromolding) (e.g., using a master mold, such as a photolithographically constructed silicon master mold), followed by curing (with the mold in place or after removal of the mold), or shaped by two-photon polymerization to form micro-optical components 10. Micro-optical components 10 may be photolithographically processed after micromolding, for example to segment multiple micro-optical components 10 or to provide additional optical or protective coatings over the surface of the component source wafer 30. Additional layers may be patterned.

一旦微光學組件10建構,即可藉由蝕刻犧牲部分34對該等微光學組件進行下蝕刻,以形成間隙36且藉由組件繫帶11使微光學組件10懸浮在間隙36及組件源晶圓30上方。在一些實施例中,微基板12或微光學元件14可與包含犧牲部分34之材料有差別地蝕刻。舉例而言,微基板12或微光學元件14可包含二氧化矽或氮化矽之層,在犧牲部分34及組件源晶圓30上方安置該層且對該層圖案化,且犧牲部分34可包含諸如矽之半導體。接著例如藉由微米壓印且固化一聚合物層或使用雙光子聚合使一聚合物層固化來形成微光學元件14,接著包覆該微光學元件以保護固化之聚合物材料免於犧牲部分34蝕刻製程。Once the micro-optical components 10 are constructed, they can be etched down by etching the sacrificial portions 34 to form gaps 36 and suspended above the gaps 36 and the component source wafer 30 by the component ties 11. In some embodiments, the micro-substrate 12 or micro-optical elements 14 can be etched differently from the material comprising the sacrificial portions 34. For example, the micro-substrate 12 or micro-optical elements 14 can include a layer of silicon dioxide or silicon nitride that is disposed and patterned over the sacrificial portions 34 and the component source wafer 30, and the sacrificial portions 34 can include a semiconductor such as silicon. The micro-optical element 14 is then formed, for example, by micro-imprinting and curing a polymer layer or curing a polymer layer using two-photon polymerization, and then encapsulating the micro-optical element to protect the cured polymer material from the sacrificial portion 34 etching process.

在一些實施例中,組件源晶圓30之犧牲部分34經光微影處理以形成實體結構(諸如壓痕或坑,例如倒置之錐體),如犧牲部分34之材料(例如諸如結晶矽之材料)中的模。犧牲部分34之結構化表面例如藉由濺鍍、蒸發、旋塗、噴塗或狹縫塗佈而塗佈有微光學組件10之材料,接著例如藉由光微影處理或藉由微米壓印及固化進行整形,以在犧牲部分34上建構微光學組合10。接著蝕刻犧牲部分34以使微光學組件10懸浮在犧牲部分34及組件源晶圓30上方。因此,取決於所用之建構方法,微光學元件14可朝著微光學組件源晶圓30或遠離微光學組件源晶圓30自微基板12延伸。模且因此微光學元件14相對於微基板12之特定角可由犧牲部分34之結晶性質界定,例如由於相對於微光學組件源晶圓30之結晶取向的(例如,快)蝕刻平面之結晶取向。In some embodiments, the sacrificial portion 34 of the component source wafer 30 is photolithographically processed to form a physical structure (such as an indentation or pit, such as an inverted pyramid) such as a mold in the material of the sacrificial portion 34 (such as a material such as crystalline silicon). The structured surface of the sacrificial portion 34 is coated with the material of the micro-optical component 10, such as by sputtering, evaporation, spin coating, spray coating, or slit coating, and then shaped, such as by photolithographic processing or by micro-imprinting and curing, to build the micro-optical assembly 10 on the sacrificial portion 34. The sacrificial portion 34 is then etched so that the micro-optical component 10 is suspended above the sacrificial portion 34 and the component source wafer 30. Thus, depending on the construction method used, the micro-optical element 14 may extend from the micro-substrate 12 towards the micro-optical component source wafer 30 or away from the micro-optical component source wafer 30. The specific angle of the micro-optical element 14 relative to the micro-substrate 12 may therefore be defined by the crystalline properties of the sacrificial portion 34, for example due to the crystalline orientation of the (e.g., fast) etch plane relative to the crystalline orientation of the micro-optical component source wafer 30.

微光學組件10可以多種方式建構。在本揭示內容之一些實施例中且如圖9A至圖9D所示,由固定器32隔開之空腔42例如使用光微影方法及材料而形成於組件源晶圓30中,且(例如,藉由旋塗、噴塗、漏斗或簾塗佈,或使用噴墨沉積支柱)用液體的未固化聚合物37塗佈,以將組合源晶圓30之表面平坦化或至少塗佈或部分填充空腔42,如圖9A所示。接著使未固化聚合物37曝露於輻射39且例如使用雙光子聚合(例如,直接雷射寫入)使該未固化聚合物固化,如圖9B所示,以使三維結構(例如,已固化聚合物38)固化,從而形成具有微基板12、微光學元件14及組件繫帶11之微光學組件10,如圖9C所示。接著洗滌(清洗)除去未固化聚合物37,如圖9D所示,以形成用組件繫帶11附接至固定器32且在空腔42中懸浮在間隙36上方之微光學元件10以準備進行微轉印。在一些此類實施例中,微光學組件10為一體的(例如,單塊的)且包含單一的材料及結構。此種雙光子聚合方法可用於建構圖8A至圖8D所示之微光學組件10結構中之任一者。The micro-optical assembly 10 can be constructed in a variety of ways. In some embodiments of the present disclosure and as shown in Figures 9A-9D, cavities 42 separated by fixtures 32 are formed in the assembly source wafer 30, for example using photolithographic methods and materials, and are coated with a liquid uncured polymer 37 (e.g., by spin coating, spray coating, funnel or curtain coating, or using inkjet deposition pillars) to planarize the surface of the assembly source wafer 30 or at least coat or partially fill the cavities 42, as shown in Figure 9A. The uncured polymer 37 is then exposed to radiation 39 and cured, for example, using two-photon polymerization (e.g., direct laser writing), as shown in FIG. 9B , to cure the three-dimensional structure (e.g., cured polymer 38) to form a micro-optical assembly 10 having a micro-substrate 12, a micro-optical element 14, and an assembly ligament 11, as shown in FIG. 9C . The uncured polymer 37 is then washed (cleaned) away, as shown in FIG. 9D , to form a micro-optical element 10 attached to a fixture 32 with an assembly ligament 11 and suspended above a gap 36 in a cavity 42 in preparation for microtransfer. In some such embodiments, the micro-optical assembly 10 is unitary (e.g., monolithic) and comprises a single material and structure. This two-photon polymerization method can be used to construct any of the micro-optical components 10 structures shown in FIG. 8A to FIG. 8D .

在本揭示內容之一些實施例中且如圖10A至圖10C所示,由固定器32隔開之犧牲部分34形成於組件源晶圓30中(例如使用光微影方法及材料),且用液體未固化聚合物37塗佈(例如,藉由旋塗、噴塗、漏斗或簾塗佈,或使用噴墨沉積裝置),以平坦化組件源晶圓30之表面或至少塗佈或部分覆蓋犧牲部分34,如圖10A所示。接著對未固化聚合物37進行微米壓印(例如,用壓印印模61使用壓印微影術),且例如使用熱或輻射39 (如圖9B所示)使未固化聚合物固化,以在移除壓印印模61之前或之後使三維結構(例如,已固化聚合物38)固化,從而形成微光學組件10及組件繫帶11,如圖10C所示。在一些實施例中,未固化聚合物37首先在壓印之前或期間且在最終硬固化之前被軟固化。接著用蝕刻劑蝕刻犧牲部分34,如圖10D所示,以形成由組件繫帶11附接至固定器32且懸浮在間隙36上方之微光學組件10以準備進行微轉印。在一些此類實施例中,微光學組件10為一體的(例如,單塊的)且包含單一的材料及結構。犧牲部分34之材料可與已固化聚合物38有差別地蝕刻。在一些實施例中,保護或包覆塗層可安置於犧牲部分34上(且視情況固定器32上)或已固化聚合物38上方,以保護微光學組件10不受蝕刻劑影響。In some embodiments of the present disclosure and as shown in Figures 10A to 10C, sacrificial portions 34 separated by fixtures 32 are formed in the component source wafer 30 (for example, using photolithography methods and materials) and coated with a liquid uncured polymer 37 (for example, by spin coating, spraying, funnel or curtain coating, or using an inkjet deposition device) to planarize the surface of the component source wafer 30 or at least coat or partially cover the sacrificial portions 34, as shown in Figure 10A. The uncured polymer 37 is then micro-imprinted (e.g., using imprint lithography with an imprint stamp 61), and the uncured polymer is cured, for example, using heat or radiation 39 (as shown in FIG. 9B ), to cure the three-dimensional structure (e.g., cured polymer 38) before or after removing the imprint stamp 61, thereby forming the micro-optical component 10 and component ties 11, as shown in FIG. 10C . In some embodiments, the uncured polymer 37 is first soft-cured before or during imprinting and before the final hard cure. The sacrificial portion 34 is then etched with an etchant, as shown in FIG. 10D , to form the micro-optical component 10 attached to the fixture 32 by the component ties 11 and suspended above the gap 36 in preparation for micro-transfer printing. In some such embodiments, micro-optical assembly 10 is unitary (e.g., monolithic) and comprises a single material and structure. The material of sacrificial portion 34 may be etched differently from cured polymer 38. In some embodiments, a protective or encapsulating coating may be disposed on sacrificial portion 34 (and optionally on fixture 32) or over cured polymer 38 to protect micro-optical assembly 10 from etchants.

圖11A至圖11D圖示類似於圖10至圖10D之結構及方法,該等結構及方法具有可保護微基板12及微光學元件14不受用於蝕刻犧牲部分34之蝕刻劑影響的保護層35 (例如,包覆層)。舉例而言,保護層35可為無機材料,諸如二氧化矽或氮化矽。可在犧牲部分34且視情況固定器32上方對此材料之圖案化層進行圖案化(如圖11A所示)。在蝕刻犧牲部分34以形成間隙36 (如圖11D所示)之前,微基板12及微元件14可在保護層35 (如圖11B所示)及保護層35的圖案化之額外塗層上方形成,該額外塗層安置於微基板12及微光學元件14上方且保護該兩者(如圖11C所示)。儘管圖9A至圖9C中未示出,但在此類實施例中亦可設置保護層35以保護微基板12及微光學元件14。保護層35亦可提供結構完整性,例如使微基板12及微光學元件14堅固,且提供期望之光學效應。在一些此類實施例中,微光學組件10未必為一體的且可例如包含不同的材料(例如,無機保護層35材料及有機或聚合物材料)。11A-11D illustrate structures and methods similar to those of FIGS. 10-10D with a protective layer 35 (e.g., a capping layer) that protects the micro substrate 12 and micro-optical elements 14 from the etchant used to etch the sacrificial portion 34. For example, the protective layer 35 may be an inorganic material such as silicon dioxide or silicon nitride. A patterned layer of this material may be patterned over the sacrificial portion 34 and optionally the fixture 32 (as shown in FIG. 11A ). Before etching the sacrificial portion 34 to form the gap 36 (as shown in FIG. 11D ), the micro substrate 12 and the micro element 14 may be formed over the protective layer 35 (as shown in FIG. 11B ) and a patterned additional coating of the protective layer 35, which is disposed over the micro substrate 12 and the micro optical element 14 and protects both (as shown in FIG. 11C ). Although not shown in FIGS. 9A to 9C , in such embodiments, a protective layer 35 may also be provided to protect the micro substrate 12 and the micro optical element 14. The protective layer 35 may also provide structural integrity, such as making the micro substrate 12 and the micro optical element 14 strong, and provide a desired optical effect. In some such embodiments, the micro-optical component 10 is not necessarily unitary and may, for example, include different materials (eg, an inorganic protective layer 35 material and an organic or polymer material).

圖12A至圖12E圖示本揭示內容之實施例,該等實施例使用光微影製程以在組件源晶圓30中形成模,且微光學組件10可在該模上形成。與根據圖10A至圖11D之實施例相同,由固定器32隔開之犧牲部分34係例如使用光微影方法及材料在組件源晶圓30中形成,如圖12A所示。接著逐圖案地蝕刻犧牲部分34 (例如使用安置於犧牲部分34上的圖案化之光阻劑)以形成作為微光學元件14之倒轉的模,如圖12B所示。可在模上安置且圖案化可選保護層35,如圖12E所示。將一材料(例如諸如二氧化矽或氮化矽之無機材料,諸如聚合物之有機材料) (具有或不具保護層35)安置於圖案化之犧牲部分34上且進行圖案化以形成微光學組件10之至少一部分,如圖12C所示。接著可蝕刻犧牲部分34以用附接至固定器32之組件繫帶11使微光學組件10懸浮在間隙36上方。在一些此類實施例中,微光學組件10可為一體的(例如,單塊的)且包含單一材料及結構,或如圖12E所指示,可包含額外的不同材料,諸如保護層35。犧牲部分34之材料可與微光學組件10之材料有差別地蝕刻。在一些實施例中,犧牲部分34為組件源晶圓30之一部分且可包含諸如矽之半導體材料,該半導體材料可相對於組件源晶圓30晶體平面蝕刻以形成模。12A to 12E illustrate embodiments of the present disclosure that use a photolithographic process to form a mold in a component source wafer 30, and a micro-optical component 10 can be formed on the mold. As in the embodiment according to FIGS. 10A to 11D , sacrificial portions 34 separated by fixtures 32 are formed in the component source wafer 30, for example, using photolithographic methods and materials, as shown in FIG. 12A . The sacrificial portions 34 are then pattern-etched (e.g., using a patterned photoresist disposed on the sacrificial portions 34) to form a mold that is the inverse of the micro-optical element 14, as shown in FIG. 12B . An optional protective layer 35 can be disposed and patterned on the mold, as shown in FIG. 12E . A material (e.g., an inorganic material such as silicon dioxide or silicon nitride, an organic material such as a polymer) is disposed on the patterned sacrificial portion 34 (with or without a protective layer 35) and patterned to form at least a portion of the micro-optical component 10, as shown in FIG12C. The sacrificial portion 34 may then be etched to suspend the micro-optical component 10 above the gap 36 with the component ties 11 attached to the fixture 32. In some such embodiments, the micro-optical component 10 may be unitary (e.g., monolithic) and include a single material and structure, or may include additional different materials, such as a protective layer 35, as indicated in FIG12E. The material of the sacrificial portion 34 may be etched differently from the material of the micro-optical component 10. In some embodiments, the sacrificial portion 34 is a portion of the component source wafer 30 and may include a semiconductor material, such as silicon, which may be etched relative to the crystal plane of the component source wafer 30 to form a pattern.

在一些實施例中且如圖12F所示,例如如圖9A所示,可藉由對形成於微光學組件源晶圓30中之空腔42進行塗佈來建構模。接著用壓印印模61來壓印空腔42中的液體未固化聚合物37,使該未固化聚合物固化,且移除壓印印模61,以模及犧牲部分34,形成如圖12B所示。除了蝕刻步驟(例如,移除已固化聚合物38)可使用不同蝕刻劑之外,圖12C及圖12D所示的步驟之剩餘部分可如所示地進行。若微光學組件10包含已固化聚合物38,則保護層35可實現對犧牲部分34 (已固化部分38)之差異蝕刻。In some embodiments and as shown in FIG. 12F , the mold may be constructed by coating the cavity 42 formed in the micro-optical component source wafer 30, such as that shown in FIG. 9A . The liquid uncured polymer 37 in the cavity 42 is then imprinted with an imprinting stamp 61 , the uncured polymer is cured, and the imprinting stamp 61 is removed to form the mold and sacrificial portion 34 as shown in FIG. 12B . The remainder of the steps shown in FIG. 12C and FIG. 12D may be performed as shown, except that the etching step (e.g., removal of the cured polymer 38 ) may use a different etchant. If the micro-optical component 10 includes the cured polymer 38 , the protective layer 35 may enable differential etching of the sacrificial portion 34 (cured portion 38 ).

根據本揭示內容之實施例,可將不同的雙光子聚合、微米壓印及/或光微影方法組合以在微光學組件10或微光學組件10之不同部分中形成不同的微光學元件14,例如在圖8C之微光學組件10中形成不同的微光學元件14,例如首先製成在圖12A至圖12C中發現之結構,接著進行圖10A至圖10C (或圖11A至圖11C)所示之步驟,接著進行圖9D、圖10D、圖11D及圖12D之蝕刻步驟。According to an embodiment of the present disclosure, different two-photon polymerization, micro-imprinting and/or photolithography methods can be combined to form different micro-optical elements 14 in the micro-optical component 10 or different parts of the micro-optical component 10, for example, to form different micro-optical elements 14 in the micro-optical component 10 of Figure 8C, for example, first making the structure found in Figures 12A to 12C, then performing the steps shown in Figures 10A to 10C (or Figures 11A to 11C), and then performing the etching steps of Figures 9D, 10D, 11D and 12D.

在一些實施例中,組件繫帶11可僅包含有機材料,例如,如圖10C所示,或僅包含無機材料,例如,如圖11C所示。在一些實施例中,組件繫帶11為包含有機材料及無機材料兩者之混合繫帶,如圖13所示。圖13圖示微基板12及包含塗佈在底部有機層上之頂部無機層(或 反之亦然)的組件繫帶11。混合組件繫帶11可具有污染顆粒較少的經改良破裂特性。 In some embodiments, the assembly tape 11 may include only organic materials, for example, as shown in FIG. 10C , or only inorganic materials, for example, as shown in FIG. 11C . In some embodiments, the assembly tape 11 is a hybrid tape including both organic and inorganic materials, as shown in FIG. 13 . FIG. 13 illustrates a micro substrate 12 and an assembly tape 11 including a top inorganic layer coated on a bottom organic layer (or vice versa ). The hybrid assembly tape 11 may have improved fracture characteristics with fewer contaminating particles.

了解雙光子聚合、微米壓印及光微影術之人員將了解,本文描述的用於製造微光學組件10之方法在可形成之不同微光學結構上不受限制。特別地,可使用此等技術建構各種各樣的微光學元件14。此外,在本揭示內容之微光學元件14中可使用多種材料且可將塗層塗覆至該等微光學元件。使用此等技術亦可建構非光學的可微轉印之組件、裝置及結構。Those familiar with two-photon polymerization, microimprinting, and photolithography will appreciate that the methods described herein for fabricating micro-optical assemblies 10 are not limited in the different micro-optical structures that can be formed. In particular, a wide variety of micro-optical elements 14 can be constructed using these techniques. Furthermore, a variety of materials can be used in the micro-optical elements 14 of the present disclosure and coatings can be applied to the micro-optical elements. Non-optical micro-transferable components, devices, and structures can also be constructed using these techniques.

自微光學元件14之表面反射或折射的光束50之位置可藉由包含微光學組件10之微光學系統70中的對應定位之光主動元件20或諸如導光管44 (例如,光學波導)之光傳輸元件來調適,如圖14A所示。圖14A圖示例如藉由微轉印安置於系統基板40上之微光學組件10。微光學組件10之微光學元件14安置於系統基板40上,且與例如藉由逐圖案蝕刻形成於系統基板40中的空腔42對準且至少部分地在該空腔內。空腔42可具有多個空腔壁及一空腔底板。微基板12安置於系統基板40之系統基板表面43上,例如排除微光學元件區18的微基板12之微基板區16之至少某一部分可利用或不用黏合劑而黏附至系統基板40之系統基板表面43。微光學元件14可安置成與光主動元件20及光傳輸結構(諸如形成於系統基板40中之導光管44)對準,以使用微光學元件14用光學方式導引至或來自光主動元件20之光50。導光管44可導引自與導光管44及系統基板40對準地安置之光纖纜線54進入或離開微光學系統70的光50。在一些實施例中,光纖纜線54安置成與系統基板40中之導光管44對準(例如,如圖14A所示)。在一些實施例中,光纖纜線54安置成與系統基板40上之導光管44對準(例如,如圖14B所示)。在一些實施例中,光纖纜線54安置成與傳播通過系統基板40之上或上方的自由空間之光50 (例如,如圖15所示)。The position of the light beam 50 reflected or refracted from the surface of the micro-optical element 14 can be adapted by a correspondingly positioned optically active element 20 or a light transmission element such as a light pipe 44 (e.g., an optical waveguide) in a micro-optical system 70 including a micro-optical assembly 10, as shown in FIG. 14A. FIG. 14A illustrates a micro-optical assembly 10 disposed on a system substrate 40, for example, by microtransfer printing. The micro-optical element 14 of the micro-optical assembly 10 is disposed on the system substrate 40 and is aligned with and at least partially within a cavity 42 formed in the system substrate 40, for example, by pattern etching. The cavity 42 may have a plurality of cavity walls and a cavity floor. The micro-substrate 12 is disposed on a system substrate surface 43 of the system substrate 40, e.g., at least a portion of the micro-substrate region 16 of the micro-substrate 12 excluding the micro-optical element region 18 may be adhered to the system substrate surface 43 of the system substrate 40 with or without an adhesive. The micro-optical element 14 may be disposed in alignment with the optically active element 20 and light transmission structures, such as light pipes 44 formed in the system substrate 40, to optically guide light 50 to or from the optically active element 20 using the micro-optical element 14. The light pipe 44 may guide light 50 into or out of the micro-optical system 70 from an optical fiber cable 54 disposed in alignment with the light pipe 44 and the system substrate 40. In some embodiments, the optical fiber cable 54 is disposed in alignment with the light pipe 44 in the system substrate 40 (e.g., as shown in FIG. 14A ). In some embodiments, the optical fiber cable 54 is positioned to align with the light pipe 44 on the system substrate 40 (e.g., as shown in FIG. 14B ). In some embodiments, the optical fiber cable 54 is positioned to align with the light 50 propagating through free space on or above the system substrate 40 (e.g., as shown in FIG. 15 ).

圖14B圖示光主動元件20安置於系統基板40之空腔42中且光50經由微光學系統70之微光學元件14發射至或接收自在系統基板表面43上之導光管44的實施例。在一些實施例中且如圖14B所示,光50可經由安置於系統基板表面43上之導光管44 (例如,圖案化之氮化矽波導)在系統基板表面43上方傳輸。導光管44可用光學清透或指數匹配黏合劑46連接至微光學元件14。圖14C圖示微光學元件14接觸、直接黏附至或用黏合劑黏附至空腔42之一側面(例如,壁)的實施例。微光學元件14相對於系統基板40 (或諸如在系統基板40中或上之導光管44的結構)之此種置放可增強微光學系統70之光學效能。圖14D圖示在微基板12黏附至空腔42之底板(例如,利用或不用黏合劑)的情況下處於空腔42中之微光學組件10,其中微光學元件14在系統基板表面43上方延伸。圖14E圖示在微基板12黏附至空腔42之底板(例如,利用或不用黏合劑)的情況下處於空腔42中之微光學組件10,其中微基板表面13與系統基板表面43實質上平行且處於共同平面中,例如在製造限制及公差內。FIG. 14B illustrates an embodiment in which the optically active element 20 is disposed in the cavity 42 of the system substrate 40 and light 50 is emitted to or received from a light pipe 44 on the system substrate surface 43 through the micro-optical element 14 of the micro-optical system 70. In some embodiments and as shown in FIG. 14B , the light 50 can be transmitted over the system substrate surface 43 through the light pipe 44 (e.g., a patterned silicon nitride waveguide) disposed on the system substrate surface 43. The light pipe 44 can be connected to the micro-optical element 14 with an optically clear or index matching adhesive 46. FIG. 14C illustrates an embodiment in which the micro-optical element 14 contacts, is directly adhered to, or is adhered with an adhesive to a side (e.g., a wall) of the cavity 42. Such placement of the micro-optical element 14 relative to the system substrate 40 (or a structure such as a light pipe 44 in or on the system substrate 40) can enhance the optical performance of the micro-optical system 70. FIG. 14D illustrates the micro-optical assembly 10 in the cavity 42 with the micro-substrate 12 adhered to the floor of the cavity 42 (e.g., with or without an adhesive), wherein the micro-optical element 14 extends above the system substrate surface 43. FIG. 14E illustrates the micro-optical assembly 10 in the cavity 42 with the micro-substrate 12 adhered to the floor of the cavity 42 (e.g., with or without an adhesive), wherein the micro-substrate surface 13 and the system substrate surface 43 are substantially parallel and in a common plane, e.g., within manufacturing constraints and tolerances.

在一些實施例中且如圖15所示,光50可穿過自由空間(例如,局部環境)在系統基板表面43上方傳輸,且可由一或多個微光學元件14調節且由微光學系統70中之光主動元件20發射或接收。光主動元件20可經由電極26 (例如,以光微影方式界定的導電接線)與微電子組件22相互作用,以對來自光主動元件20之電信號做出回應或使用電信號來控制光主動元件20。在一些實施例中且如圖14B所示,光50可至及自安置於系統基板40上之微光學組件10及光主動元件20傳播通過導光管44,而非通過自由空間。系統基板40可包含安置於系統基板40上或中之微對準標記15 (基準標記)以幫助將微光學組件10與微光學系統70中之系統基板40對準。(為了清楚起見,微光學組件10在所有圖式中未與微對準標記15一起展示。)微對準標記15可使用光微影方法及材料製成,例如圖案化且反射或吸光的金屬標記。In some embodiments and as shown in FIG15, light 50 may be transmitted through free space (e.g., the local environment) over system substrate surface 43 and may be conditioned by one or more micro-optical elements 14 and emitted or received by optically active elements 20 in micro-optical system 70. Optically active elements 20 may interact with microelectronic components 22 via electrodes 26 (e.g., photolithographically defined conductive wires) to respond to or use electrical signals to control optically active elements 20. In some embodiments and as shown in FIG14B, light 50 may propagate through light pipes 44 to and from micro-optical components 10 and optically active elements 20 disposed on system substrate 40, rather than through free space. The system substrate 40 may include micro-alignment marks 15 (fiducial marks) disposed on or in the system substrate 40 to help align the micro-optical component 10 with the system substrate 40 in the micro-optical system 70. (For clarity, the micro-optical component 10 is not shown with the micro-alignment marks 15 in all figures.) The micro-alignment marks 15 can be made using photolithography methods and materials, such as patterned and reflective or light-absorbing metal marks.

此外,在一些實施例中,對於微光學系統70且如圖16A、圖16B及圖14A至圖14C所示,光50可至及自微光學組件10及光主動元件20傳播通過安置於系統基板40中之導光管44。如圖16A所示,微光學組件10可包含兩個或更多個微光學元件14,該等微光學元件安置於微基板12上且經配置以調節來自空腔42及安置於系統基板表面43上方的自由空間中(或穿過導光管44)之光50。微光學組件10可包含諸如微透鏡之多個透鏡,或諸如微棱鏡之多個反射器,或一或多個透鏡及一或多個反射器。共同微光學組件10中之微光學元件14可具有不同大小,例如如圖16B所示。圖16B圖示具有四個微光學元件14 (例如,棱鏡)之微光學組件10,其中在微基板12之兩個相對側面之每一側面上具有兩個微光學元件14。微基板12之一個側面上的微光學元件14可具有不同於微基板12之相對側面上的微光學元件14之大小。在一些實施例中,微光學組件10之多個微光學元件14可被視為單個複合微光學元件14。微光學組件10可調節單個光束50或多個光束50,如圖16B所示。如圖16B及圖16C所示,具有單個微基板12之微光學組件10可包含安置於單個微基板12上之兩個或更多更微光學組件14,視情況具有在單個微基板12的與微光學元件14相對之側面上安置於單個微基板12上的兩個或更多個光主動元件20。Additionally, in some embodiments, for the micro-optical system 70 and as shown in FIGS. 16A , 16B, and 14A-14C, light 50 may propagate to and from the micro-optical assembly 10 and the optically active element 20 through a light pipe 44 disposed in the system substrate 40. As shown in FIG. 16A , the micro-optical assembly 10 may include two or more micro-optical elements 14 disposed on a micro-substrate 12 and configured to condition light 50 from the cavity 42 and in free space disposed above the system substrate surface 43 (or through the light pipe 44). The micro-optical assembly 10 may include a plurality of lenses such as micro-lenses, or a plurality of reflectors such as micro-prisms, or one or more lenses and one or more reflectors. The micro-optical elements 14 in a common micro-optical assembly 10 may have different sizes, for example as shown in FIG. 16B . FIG. 16B illustrates a micro-optical assembly 10 having four micro-optical elements 14 (e.g., prisms), with two micro-optical elements 14 on each of two opposing sides of a micro-substrate 12. The micro-optical elements 14 on one side of a micro-substrate 12 may have a different size than the micro-optical elements 14 on the opposing side of the micro-substrate 12. In some embodiments, the multiple micro-optical elements 14 of a micro-optical assembly 10 may be considered as a single composite micro-optical element 14. The micro-optical assembly 10 may condition a single light beam 50 or multiple light beams 50, as shown in FIG. 16B . As shown in Figures 16B and 16C, the micro-optical component 10 having a single micro-substrate 12 may include two or more micro-optical components 14 disposed on the single micro-substrate 12, and optionally have two or more optically active elements 20 disposed on the single micro-substrate 12 on the side of the single micro-substrate 12 opposite to the micro-optical element 14.

微光學元件14可在朝著系統基板40之方向上延伸(例如,進入系統基板40中)或遠離系統基板40 (例如,在如圖1C所示之方向D上遠離系統基板表面43)延伸。更一般地,光50可傳播通過系統基板40中之波導(例如,導光管44),如圖14A所示,光50可傳播通過安置於系統基板40上之波導(例如,導光管44) (例如,通過安置於系統基板表面43上之導光管44),如圖14B所示,或在一方向上通過系統基板表面43上方的自由空間,該方向平行於系統基板表面43,如圖15所示,或正交於系統基板表面43,如圖14A至圖14D及圖16A至圖16C所示。微光學元件14可將平行於系統基板表面43之光50重定向,在系統基板40上方或內,或可將平行於系統基板表面43行進之光50重定向至正交於系統基板表面43之方向(或 反之亦然)。在一些實施例中且如圖16A及圖16B所示,微光學元件14可將平行於系統基板表面43傳播且在該系統基板表面之上的光50重定向成平行於系統基板40且在該系統基板內傳播的光50。如圖16D至圖16G及圖16I至16K所示,共同微光學組件10中之微光學元件14可為或可包括不同類型之微光學元件14,例如,與諸如棱鏡之反射器耦接且安置於共同光路徑的透鏡。圖16D圖示凸透鏡且圖16E圖示與棱鏡組合之凹透鏡。凸透鏡可為光準直或光收集透鏡(例如,光學件)且凹透鏡可為漫射或光束擴展透鏡(例如,光學件)。通常,微光學元件14可為任何波束整形透鏡。圖16F圖示包含凸面小透鏡之陣列的微光學元件14。圖16G圖示包含凹面小透鏡之陣列的微光學元件14。圖16H至圖16K圖示包含棱鏡之微光學元件14,該棱鏡具有用於提供光準直或光束整形的非平面(例如,非平坦)反射(或折射)表面。非平面表面亦可包含多個光整形元件,諸如微型小透鏡。圖16H圖示微光學組件10之微光學元件14,該微光學元件包含在空腔42中的具有非平坦表面之棱鏡。圖16I圖示包含微光學組件10,其包含為處於空腔42中的在微基板12之一側上全部為平坦表面之棱鏡的微光學元件14且包含處於系統基板表面43上方的在微基板12之相對側面上具有非平坦反射表面的棱鏡。圖16J圖示類似圖16I之微光學組件10,除了具有非平坦反射表面之微光學元件14棱鏡在系統基板表面43上方在相反的水平方向上反射光50之外。圖16K圖示具有凹微透鏡及凸微透鏡兩者之微光學組件10,該微光學組件用微基板12的與凹微透鏡及凸微透鏡相對之側面上的平坦反射表面將來自各個棱鏡之光50整形。通常,導光管44可將光50輸送(例如,傳輸)例如至光纖纜線54,或在一些實施例中至另一微光學組件20或微光學系統70,例如,如圖15及圖16L所示。在圖16L中,例如,光主動元件20為光發射器及光感測器。通常,本揭示內容之實施例可包含微光學組件10,該微光學組件包括安置於共同光50路徑中的不同大小及/或不同類型之一或多個不同的微光學元件14。微光學元件14可安置於微基板12之共同側上,安置於微基板12之相對側面上,或兩者皆有,例如,在微光學組件10包含三個、四個或更多個微光學元件14的情況下,例如如例如圖16A至圖16D所示。在一些實施例中,微光學組件10包含三個、四個或更多個微光學元件14。在一些實施例中,微光學組件10經結構化以處理、調節、重定向或變換多個光50射束,將多個光50射束整合為共同光50射束,或將光50射束劃分成多個獨立的光50射束。 The micro-optical element 14 can extend in a direction toward the system substrate 40 (e.g., into the system substrate 40) or away from the system substrate 40 (e.g., away from the system substrate surface 43 in direction D as shown in FIG. 1C). More generally, the light 50 can propagate through a waveguide (e.g., light pipe 44) in the system substrate 40, as shown in FIG. 14A, through a waveguide (e.g., light pipe 44) disposed on the system substrate 40 (e.g., through a light pipe 44 disposed on the system substrate surface 43), as shown in FIG. 14B, or through free space above the system substrate surface 43 in a direction that is parallel to the system substrate surface 43, as shown in FIG. 15, or orthogonal to the system substrate surface 43, as shown in FIGS. 14A-14D and 16A-16C. The micro-optical element 14 can redirect light 50 that is parallel to the system substrate surface 43, above or within the system substrate 40, or can redirect light 50 that is traveling parallel to the system substrate surface 43 to a direction orthogonal to the system substrate surface 43 (or vice versa ). In some embodiments and as shown in FIGS. 16A and 16B , the micro-optical element 14 can redirect light 50 that is propagating parallel to and above the system substrate surface 43 to light 50 that is propagating parallel to and within the system substrate 40. As shown in FIGS. 16D-16G and 16I-16K , the micro-optical element 14 in the common micro-optical assembly 10 can be or can include different types of micro-optical elements 14, for example, a lens coupled with a reflector such as a prism and disposed in a common optical path. FIG. 16D illustrates a convex lens and FIG. 16E illustrates a concave lens combined with a prism. The convex lens may be a light collimating or light collecting lens (e.g., an optical element) and the concave lens may be a diffusing or beam expanding lens (e.g., an optical element). In general, the micro-optical element 14 may be any beam shaping lens. FIG. 16F illustrates a micro-optical element 14 comprising an array of convex small lenses. FIG. 16G illustrates a micro-optical element 14 comprising an array of concave small lenses. FIG. 16H to FIG. 16K illustrate a micro-optical element 14 comprising a prism having a non-planar (e.g., non-flat) reflective (or refractive) surface for providing light collimation or beam shaping. The non-planar surface may also include a plurality of light shaping elements, such as micro-small lenses. FIG16H illustrates a micro-optical element 14 of a micro-optical assembly 10 including a prism with a non-planar surface in a cavity 42. FIG16I illustrates a micro-optical assembly 10 including a micro-optical element 14 that is a prism with an entirely planar surface on one side of a micro-substrate 12 in a cavity 42 and including a prism with a non-planar reflective surface on an opposite side of the micro-substrate 12 above a system substrate surface 43. FIG16J illustrates a micro-optical assembly 10 similar to FIG16I, except that the micro-optical element 14 prism with a non-planar reflective surface reflects light 50 in an opposite horizontal direction above the system substrate surface 43. FIG. 16K illustrates a micro-optical assembly 10 having both concave and convex microlenses that shapes light 50 from each prism using a flat reflective surface on the side of the micro-substrate 12 opposite the concave and convex microlenses. Typically, a light pipe 44 can transport (e.g., transmit) the light 50, for example, to an optical fiber cable 54, or in some embodiments to another micro-optical assembly 20 or a micro-optical system 70, for example, as shown in FIG. 15 and FIG. 16L. In FIG. 16L, for example, the optically active elements 20 are light emitters and light sensors. Typically, embodiments of the present disclosure can include a micro-optical assembly 10 that includes one or more different micro-optical elements 14 of different sizes and/or different types disposed in a common light 50 path. The micro-optical elements 14 may be disposed on a common side of the micro-substrate 12, on opposite sides of the micro-substrate 12, or both, for example, in the case where the micro-optical assembly 10 includes three, four, or more micro-optical elements 14, such as, for example, as shown in, for example, FIGS. 16A-16D . In some embodiments, the micro-optical assembly 10 includes three, four, or more micro-optical elements 14. In some embodiments, the micro-optical assembly 10 is structured to process, condition, redirect, or transform multiple light 50 beams, integrate multiple light 50 beams into a common light 50 beam, or split a light 50 beam into multiple independent light 50 beams.

在一些實施例中,空腔42可用一材料(諸如光學指數匹配材料)填充或部分填充,以減少來自空腔42或微光學元件14之表面的雜散反射。光學指數匹配材料可為在微光學組件10安置於系統基板40上且微光學元件14安置於空腔42中(例如,如圖12A所示)之前或之後作為液體安置於空腔42中之可固化聚合物,接著可固化。In some embodiments, the cavity 42 may be filled or partially filled with a material, such as an optical index matching material, to reduce stray reflections from the surface of the cavity 42 or the micro-optical element 14. The optical index matching material may be a curable polymer that is disposed as a liquid in the cavity 42 before or after the micro-optical assembly 10 is disposed on the system substrate 40 and the micro-optical element 14 is disposed in the cavity 42 (e.g., as shown in FIG. 12A ), and then may be cured.

在各種實施例中,系統基板40可為半導體(例如,矽或化合物半導體)、玻璃、聚合物、樹脂、陶瓷、藍寶石或印刷電路板。安置於系統基板40上之微電子組件22可為積體電路,例如微轉印之未封裝裸晶粒,且可處理接收自或提供至光主動元件20之電信號。微電子組件22可使用光微影製程在矽(或其他半導體)晶圓上建構。光主動元件20可針對化合物半導體晶圓(諸如InP、GaAs、GaN及其多種合金)使用光微影製程來建構。In various embodiments, the system substrate 40 may be a semiconductor (e.g., silicon or compound semiconductor), glass, polymer, resin, ceramic, sapphire, or a printed circuit board. The microelectronic components 22 disposed on the system substrate 40 may be integrated circuits, such as micro-transferred unpackaged bare dies, and may process electrical signals received from or provided to the optical active element 20. The microelectronic components 22 may be constructed on a silicon (or other semiconductor) wafer using a photolithography process. The optical active element 20 may be constructed using a photolithography process for a compound semiconductor wafer (e.g., InP, GaAs, GaN, and various alloys thereof).

通常,本揭示內容之組件可使用微轉印以自組件源晶圓30移除組件(例如,微光學組件10、光主動元件20及微電子組件22)且將該等組件安置於系統基板40上來組裝,由此破壞(例如,破裂)或分開用於將在組件源晶圓30的蝕刻之犧牲部分34或空腔42 (例如,間隙36)上方處於適當位置的組件保持至組件源晶圓30之錨定部分(固定器32)的組件繫帶11。微轉印可用於微組裝微米級組件。舉例而言,微光學組件10、光主動元件20及微電子組件22中之任一者可具有在系統基板表面43上方的不大於兩百µm、不大於一百µm、不大於五十µm、不大於二十µm、不大於十µm、不大於五µm、不大於三µm或不大於兩個µm的橫向範圍,及不大於一百µm、不大於五十µm、不大於二十µm、不大於十µm、不大於五µm、不大於兩µm或不大於一微米的厚度。Typically, the components of the present disclosure may be assembled using microtransfer printing to remove components (e.g., micro-optical components 10, optical active elements 20, and microelectronic components 22) from a component source wafer 30 and place the components on a system substrate 40, thereby destroying (e.g., breaking) or separating component ties 11 used to hold the components in place over an etched sacrificial portion 34 or cavity 42 (e.g., gap 36) of the component source wafer 30 to an anchoring portion (fixture 32) of the component source wafer 30. Microtransfer printing may be used to micro-assemble micron-scale components. For example, any of the micro-optical component 10, the optically active element 20, and the microelectronic component 22 may have a lateral extent of no more than two hundred µm, no more than one hundred µm, no more than fifty µm, no more than twenty µm, no more than ten µm, no more than five µm, no more than three µm, or no more than two µm above the system substrate surface 43, and a thickness of no more than one hundred µm, no more than fifty µm, no more than twenty µm, no more than ten µm, no more than five µm, no more than two µm, or no more than one micron.

圖17A至圖20圖示可用於建構本揭示內容之實施例的方法及結構。在步驟100中為微光學系統70中之每一裝置提供源晶圓,且在步驟110中自組件(例如,微光學組件10、微電子組件22及光主動元件20中的任何一或多者)的源晶圓(例如,微光學組件源晶圓30)釋離該等組件。如圖17A所示,在步驟120中提供微轉印印模60且在步驟130中使該微轉印印模接觸至組件(例如,微光學組件10)。微轉印印模60可包含具有結構化遠端之印模支柱62,該印模支柱接觸微基板12,視情況不接觸微光學元件14,例如接觸排除微光學元件區18的微基板區16,從而避免微光學元件14之可能毀壞。在步驟140中,如圖17B所示,用微轉印印模60自組件源晶圓30移除組件(例如,微光學組件10),從而使組件繫帶11斷裂或分離。如圖17C所示,在步驟160中提供系統基板40,且在步驟170中用微轉印印模60將組件(例如,微光學組件10)安置於系統基板40上。如圖17D所示,接著可在步驟180中移除微轉印印模60以建構微光學系統70。視情況在微轉印該等組件之前將一黏合層安置於系統基板40上,以將該等組件黏附至系統基板表面43。該黏合層可在將該等組件微轉印至黏合劑之後固化。17A to 20 illustrate methods and structures that may be used to construct embodiments of the present disclosure. In step 100, a source wafer is provided for each device in the micro-optical system 70, and in step 110, components (e.g., any one or more of the micro-optical components 10, the microelectronic components 22, and the optical active elements 20) are released from their source wafers (e.g., the micro-optical component source wafer 30). As shown in FIG. 17A, in step 120, a micro-transfer stamp 60 is provided and in step 130, the micro-transfer stamp is contacted to the component (e.g., the micro-optical component 10). The micro-transfer stamp 60 may include a stamp support 62 with a structured distal end, the stamp support contacting the micro-substrate 12, and optionally not contacting the micro-optical element 14, for example contacting the micro-substrate area 16 excluding the micro-optical element area 18, thereby avoiding possible damage to the micro-optical element 14. In step 140, as shown in FIG. 17B, the micro-transfer stamp 60 is used to remove the component (e.g., micro-optical component 10) from the component source wafer 30, thereby breaking or separating the component ties 11. As shown in FIG. 17C, a system substrate 40 is provided in step 160, and the component (e.g., micro-optical component 10) is placed on the system substrate 40 in step 170 using the micro-transfer stamp 60. 17D, the micro-transfer stamp 60 may then be removed in step 180 to construct the micro-optical system 70. Optionally, an adhesive layer is disposed on the system substrate 40 prior to micro-transfer printing the components to adhere the components to the system substrate surface 43. The adhesive layer may be cured after micro-transfer printing the components to the adhesive.

圖17A至圖17D圖示用於將微光學組件10微組裝至系統基板40上之製程,其中微光學元件14在遠離系統基板40之方向上延伸。圖18A至圖18D圖示用於將微光學組件10微組裝至系統基板40上之類似步驟及製程,其中微光學元件14在朝著系統基板40之方向上延伸,例如進入系統基板40之空腔42中且與該空腔對準。在此製程中,微轉印印模60之印模支柱62之遠端無需為結構化的且可為平面的,如圖18A至圖18D所示,且可接觸微基板12的與微光學元件14相對之側面。17A to 17D illustrate a process for microassembling the micro-optical component 10 onto the system substrate 40, wherein the micro-optical element 14 extends in a direction away from the system substrate 40. FIG. 18A to 18D illustrate similar steps and processes for microassembling the micro-optical component 10 onto the system substrate 40, wherein the micro-optical element 14 extends in a direction toward the system substrate 40, such as into and aligned with the cavity 42 of the system substrate 40. In this process, the distal ends of the stamp pillars 62 of the microtransfer stamp 60 need not be structured and can be planar, as shown in FIG. 18A to 18D, and can contact the side of the microsubstrate 12 opposite the micro-optical element 14.

在一些實施例中,建構遠離組件源晶圓30延伸(例如由於製造限制)之微光學元件14而在空腔42中將該微光學元件安置至系統基板40上可為期望的。在一些此類實施例中,在用微轉印印模60拾取微光學組件10之後且在將微光學組件10印刷至系統基板40上之前,可將微光學組件10倒置(例如,翻轉)。此倒置可用印模至印模轉移來實現。在此種轉移中,第一微轉印印模60A用於自組件源晶圓30拾取微光學組件10 (例如圖17B所示之步驟140,例如,藉由使微基板表面13接觸第一印模支柱62A),在可選步驟150中,第二微轉印印模60B使微基板12的與微基板表面13相對之側面接觸第二印模支柱62B以將微光學組件10自第一微轉印印模60A轉移至第二微轉印印模60B,如圖19A所示。如圖19B所示,移除第一微轉印印模60A,且在步驟170中,第二微轉印印模60B接著使微光學組件10接觸第二印模支柱62B以將微基板表面13黏附至系統基板表面43,如圖19C所示。接著在步驟180中移除第二微轉印印模60B。In some embodiments, it may be desirable to construct a micro-optical element 14 that extends away from the component source wafer 30 (e.g., due to manufacturing constraints) and to position the micro-optical element on the system substrate 40 in the cavity 42. In some such embodiments, the micro-optical component 10 may be inverted (e.g., flipped) after picking up the micro-optical component 10 with the micro-transfer stamp 60 and before printing the micro-optical component 10 on the system substrate 40. This inversion may be accomplished using a stamp-to-stamp transfer. In such a transfer, the first micro-transfer stamp 60A is used to pick up the micro-optical component 10 from the component source wafer 30 (e.g., step 140 shown in FIG. 17B , for example, by contacting the micro-substrate surface 13 to the first stamp support 62A), and in an optional step 150, the second micro-transfer stamp 60B contacts the side of the micro-substrate 12 opposite the micro-substrate surface 13 to the second stamp support 62B to transfer the micro-optical component 10 from the first micro-transfer stamp 60A to the second micro-transfer stamp 60B, as shown in FIG. 19A . As shown in FIG. 19B , the first micro-transfer stamp 60A is removed, and in step 170, the second micro-transfer stamp 60B then contacts the micro-optical component 10 to the second stamp support 62B to adhere the micro-substrate surface 13 to the system substrate surface 43, as shown in FIG. 19C . Then, in step 180, the second micro-transfer stamp 60B is removed.

微光學組件10可用多種方式中之任一者來建構,在圖10A至圖10D、圖11A至圖11D及圖12至圖12F中及在圖21之流程圖中圖示了該等方式之實例。參考此等圖式,在步驟200中提供組件源晶圓30,例如半導體晶圓,諸如如半導體及顯示器產業中已知的矽或其他基板。視情況,在步驟210中在微光學組件源晶體30中形成空腔42。在一些實施例中,空腔42係空的。在其他實施例中,空腔42填充有犧牲材料以形成犧牲部分34。在一些實施例中,在步驟220中用諸如聚合物之液體材料(例如,液體可固化及未固化聚合物37,諸如樹脂、環氧樹脂或光阻劑)塗佈微光學組件源晶圓30。液體未固化聚合物37可為但未必為軟固化的。塗佈可用例如噴塗、旋塗、狹縫塗佈、漏斗塗佈或用噴墨裝置來進行。微光學組件源晶圓30可由液體未固化聚合物37塗層極化且可填充任何空腔42,從而形成犧牲部分34。圖9A圖示用液體未固化聚合物37填充空腔42以形成犧牲部分34的實施例。圖10A、圖11A及圖12A圖示用固體犧牲材料填充空腔42以形成犧牲部分34的實施例。在用固體犧牲材料填充空腔42的情況下,可在犧牲部分34上方圖案化保護層35 (例如,透明的無機介電質或反射金屬)。The micro-optical component 10 may be constructed in any of a variety of ways, examples of which are illustrated in FIGS. 10A-10D , 11A-11D , and 12-12F , and in the flow chart of FIG. 21 . Referring to these figures, a component source wafer 30, such as a semiconductor wafer, such as silicon or other substrate as known in the semiconductor and display industries, is provided in step 200 . Optionally, a cavity 42 is formed in the micro-optical component source crystal 30 in step 210 . In some embodiments, the cavity 42 is empty. In other embodiments, the cavity 42 is filled with a sacrificial material to form a sacrificial portion 34 . In some embodiments, the micro-optical component source wafer 30 is coated with a liquid material such as a polymer (e.g., a liquid curable and uncured polymer 37, such as a resin, epoxy, or photoresist) in step 220. The liquid uncured polymer 37 may be, but is not necessarily, soft-cured. Coating may be performed, for example, by spraying, spin coating, slit coating, funnel coating, or using an inkjet device. The micro-optical component source wafer 30 may be polarized by the coating of the liquid uncured polymer 37 and may fill any cavities 42, thereby forming a sacrificial portion 34. FIG. 9A illustrates an embodiment of filling the cavities 42 with the liquid uncured polymer 37 to form the sacrificial portion 34. 10A, 11A and 12A illustrate an embodiment in which the cavity 42 is filled with a solid sacrificial material to form the sacrificial portion 34. In the case of filling the cavity 42 with a solid sacrificial material, a protective layer 35 (eg, a transparent inorganic dielectric or a reflective metal) may be patterned over the sacrificial portion 34.

在步驟230中,形成微光學元件14或微基板12 (或兩者,包括在微光學組件10中)。在一些實施例中,使用雙光子聚合以使液體未固化聚合物37固化來形成微光學元件14或微基板12或兩者,以製成形成包含已固化聚合物38之固體結構的三維結構,例如如圖9B所示。此技術之一優點為結構(例如,微光學元件14)可形成於空腔42中。在一些實施例中,使用壓印印模61 (例如,使用奈米壓印微影術)來形成微光學元件14或微基板12或兩者,以在處於組件源晶圓30上方之液體未固化聚合物37中形成三維結構,使該液體未固化聚合物固化以形成已固化聚合物38結構,例如如圖10B及圖11B所示。三維結構可形成微基板12、微光學元件14及組件繫帶11中之任何一或多個。在保護層35存在的情況下(在圖11A中示出),可對保護層35圖案化以形成組件繫帶11。組件繫帶11可包含保護層35、已固化聚合物38或兩者。若需要且如圖11C所示,保護層35亦可設置在微光學元件14及微基板12上方以保護該兩者。保護層35亦可提供光學益處,例如光學指數不同於微光學元件14的層或抗反射層。保護層35可包含例如包含具有不同光學指數之不同材料或層的多個層。In step 230, the micro-optical element 14 or micro-substrate 12 (or both, included in the micro-optical assembly 10) is formed. In some embodiments, the micro-optical element 14 or micro-substrate 12 or both are formed using two-photon polymerization to cure the liquid uncured polymer 37 to produce a three-dimensional structure that forms a solid structure including the cured polymer 38, such as shown in FIG. 9B. One advantage of this technique is that the structure (e.g., the micro-optical element 14) can be formed in the cavity 42. In some embodiments, the micro-optical element 14 or micro-substrate 12 or both are formed using an imprint stamp 61 (e.g., using nanoimprint lithography) to form the three-dimensional structure in the liquid uncured polymer 37 above the assembly source wafer 30, and the liquid uncured polymer is cured to form a cured polymer 38 structure, such as shown in FIG. 10B and FIG. 11B. The three-dimensional structure may form any one or more of the micro-substrate 12, the micro-optical element 14, and the assembly ties 11. Where a protective layer 35 is present (shown in FIG. 11A ), the protective layer 35 may be patterned to form the assembly ties 11. The assembly ties 11 may include the protective layer 35, the cured polymer 38, or both. If desired and as shown in FIG. 11C , the protective layer 35 may also be disposed over the micro-optical element 14 and the micro-substrate 12 to protect both. The protective layer 35 may also provide optical benefits, such as a layer having an optical index different from that of the micro-optical element 14 or an anti-reflective layer. The protective layer 35 may include, for example, a plurality of layers including different materials or layers having different optical indices.

一旦液體未固化聚合物37固化以製成三維已固化聚合物38結構,即可在步驟240中例如藉由清洗(例如,在使用雙光子聚合的情況下,如圖9D中)或藉由蝕刻(在犧牲部分34包含固體材料的情況下,如圖10D及圖11D中)移除犧牲部分34以形成間隙36,以形成印刷就緒之微光學組件10。Once the liquid uncured polymer 37 is cured to form a three-dimensional cured polymer 38 structure, the sacrificial portion 34 can be removed in step 240 to form a gap 36, for example by cleaning (for example, when two-photon polymerization is used, as in Figure 9D) or by etching (when the sacrificial portion 34 includes a solid material, as in Figures 10D and 11D) to form a printed micro-optical component 10.

在一些實施例中且如圖12A至圖12D所示,在步驟210中且如圖12B所示,可將一模(例如,形狀、凹陷或坑)蝕刻至犧牲部分34中。舉例而言,犧牲部分34可包含可各向異性蝕刻之材料(諸如矽)且蝕刻平面由犧牲部分34之晶體結構界定。如圖12C所示,在步驟230中,可在該模中且在犧牲部分34上方沉積微光學組件10之材料,例如步驟220中的隨後固化之聚合物,或在一些實施例中,沉積一無機材料(諸如二氧化矽或氮化矽)且對該無機材料圖案化。如圖12D所示,接著可蝕刻犧牲部分34以形成間隙36且提供微光學組件10以準備進行微轉印。In some embodiments and as shown in Figures 12A-12D, in step 210 and as shown in Figure 12B, a pattern (e.g., a shape, depression, or pit) may be etched into the sacrificial portion 34. For example, the sacrificial portion 34 may include an anisotropically etchable material such as silicon and the etch plane is defined by the crystal structure of the sacrificial portion 34. As shown in Figure 12C, in step 230, the material of the micro-optical component 10 may be deposited in the pattern and over the sacrificial portion 34, such as a polymer that is subsequently cured in step 220, or in some embodiments, an inorganic material such as silicon dioxide or silicon nitride may be deposited and patterned. As shown in FIG. 12D , the sacrificial portion 34 may then be etched to form the gap 36 and provide the micro-optical assembly 10 ready for micro-transfer printing.

在一些實施例中,犧牲部分34可藉由在微光學組件源基板30中之空腔42中沉積液體之可固化聚合物而製成,例如在圖9A中。接著可用壓印印模61來壓印液體之可固化聚合物37,如在圖12F中,使該可固化聚合物固化,且移除壓印印模61以形成圖12B所示之模。若使用無機材料(諸如二氧化矽)來形成微光學組件10,則可與微光學組件10有差別地蝕刻該模以釋離微光學組件10。此方法具有實現使用光微影術及使用不可各向異性蝕刻之組件源晶圓30材料(諸如玻璃)不容易建構之模結構(形狀)的優點。因此,此類方法提供具有廣泛多種形狀且使用處理時間更少之較便宜材料的微光學組件10。In some embodiments, the sacrificial portion 34 may be made by depositing a liquid curable polymer in the cavity 42 in the micro-optical component source substrate 30, such as in FIG. 9A. An imprinting stamp 61 may then be used to imprint the liquid curable polymer 37, such as in FIG. 12F, the curable polymer is cured, and the imprinting stamp 61 is removed to form the mold shown in FIG. 12B. If an inorganic material (such as silicon dioxide) is used to form the micro-optical component 10, the mold may be etched differentially from the micro-optical component 10 to release the micro-optical component 10. This method has the advantage of achieving mold structures (shapes) that are not easily constructed using photolithography and using component source wafer 30 materials that are not anisotropically etchable (such as glass). Thus, such methods provide micro-optical components 10 having a wide variety of shapes and using less expensive materials with less processing time.

轉印至系統基板40之組件(例如,微光學組件10)對於系統基板40為非原生的。在系統基板40為半導體(例如,矽)的實施例中,可在系統基板40中或上建構一電路(例如,如圖15所示之原生微電子組件24)且該電路對於系統基板40為原生的,而非微轉印至如所示之系統基板40,該系統基板具有用於處理接收自或提供至光主動元件20之電信號的圖15中之非原生微電子組件22。The components (e.g., micro-optical components 10) transferred to the system substrate 40 are non-native to the system substrate 40. In embodiments where the system substrate 40 is a semiconductor (e.g., silicon), a circuit (e.g., a native microelectronic component 24 as shown in FIG. 15 ) can be constructed in or on the system substrate 40 and is native to the system substrate 40, rather than micro-transferred to the system substrate 40 as shown, which has the non-native microelectronic component 22 in FIG. 15 for processing electrical signals received from or provided to the optically active element 20.

如本文所用,基板原生之裝置係例如藉由對例如藉由濺鍍或氣相沉積而直接沉積在基板上之材料層進行光微影處理而形成於基板上。形成於原生基板(例如,組件源基板30)上且接著被轉移至第二基板之裝置對於第二基板(例如,系統基板40)為非原生的。As used herein, a device that is native to a substrate is formed on a substrate, for example, by photolithographic processing of a layer of material that is deposited directly on the substrate, for example, by sputtering or vapor deposition. Devices that are formed on a native substrate (e.g., component source substrate 30) and then transferred to a second substrate are non-native to the second substrate (e.g., system substrate 40).

本揭示內容之實施例提供用於微組裝非均質組件(例如,微光學組件10、非原生微電子組件22及光主動元件20)之裝置及方法,該等非均質組件可全部包含不同於系統基板40之材料的材料。在一些實施例中,非均質微光學系統70包含不同材料,例如,包含半導體材料之不同組件,該等半導體材料諸如不同的化合物半導體材料,諸如安置於共同系統基板40 (例如玻璃、陶瓷、印刷電路板或矽)上之GaAs、InP、GaN。系統基板40可包含原生半導體電路。使用非原生材料使最佳材料能夠用於每一組件且避免組件光微影處理不相容性。Embodiments of the present disclosure provide apparatus and methods for microassembling heterogeneous components (e.g., micro-optical components 10, non-native microelectronic components 22, and optical active elements 20) that may all comprise materials different than the material of the system substrate 40. In some embodiments, the heterogeneous micro-optical system 70 comprises different materials, for example, different components comprising semiconductor materials, such as different compound semiconductor materials, such as GaAs, InP, GaN disposed on a common system substrate 40 (e.g., glass, ceramic, printed circuit board, or silicon). The system substrate 40 may include native semiconductor circuits. Using non-native materials enables the best material to be used for each component and avoids component photolithography processing incompatibilities.

本文中描述了結構及方法之各種實施例,其包括諸如微光學組件10之印刷組件(例如,由該等印刷組件製成)。印刷可包括或可為微轉印。如本文所用,微轉印涉及使用轉移裝置(例如,黏彈性彈性體微轉印印模60,諸如聚二甲基矽氧烷(PDMS)微轉印印模60)使用受控黏附來轉移組件。舉例而言,例示性轉移裝置可使用對轉移裝置(例如,微轉印印模60)與組件(諸如微光學組件10)之間的黏附的動力學速率相依或剪力輔助控制。希望在某些實施例中,在方法被描述為包括微轉印一組件的情況下,存在使用不同轉移方法的其他類似實施例。在根據某些實施例之方法中,真空工具、靜電工具或其他轉移裝置用於印刷微光學組件10,例如藉由接觸排除微光學元件區18的微基板區16中之微基板12。Various embodiments of structures and methods are described herein, which include printed components such as micro-optical components 10 (e.g., made from such printed components). Printing may include or may be microtransfer printing. As used herein, microtransfer printing involves using a transfer device (e.g., a viscoelastic elastomer microtransfer stamp 60, such as a polydimethylsiloxane (PDMS) microtransfer stamp 60) to transfer a component using controlled adhesion. For example, an exemplary transfer device may use kinetic rate-dependent or shear-assisted control of adhesion between a transfer device (e.g., a microtransfer stamp 60) and a component (such as a micro-optical component 10). It is expected that in some embodiments, where the method is described as including microtransfer printing a component, there are other similar embodiments using different transfer methods. In methods according to some embodiments, a vacuum tool, an electrostatic tool or other transfer device is used to print the micro-optical assembly 10, for example by contacting the micro-substrate 12 in the micro-substrate area 16 excluding the micro-optical element area 18.

系統基板40可為例如可微轉印之模組的模組模板。舉例而言,可組合地使用印刷(例如,微轉印)及其他處理(例如,光微影處理)以組裝且光學互連系統基板40上之微光學組件10以形成一模組,該模組本身可轉移(例如,印刷,諸如微轉印)至另一較大的目標基板。在系統基板40為模組基板的一些此類實施例中,系統基板40對於模組源晶圓可為原生的。接著可藉由蝕刻(例如,利用氣體或液體蝕刻劑)自模組源晶圓釋離系統基板40 (例如,使得系統基板藉由繫帶自模組源晶圓懸浮),接著進行印刷(例如,利用彈性體印模)。圖15圖示安置於本身可為可印刷模組之系統基板40上及中的配置。The system substrate 40 may be, for example, a module template for a module that may be micro-transferable. For example, printing (e.g., micro-transfer printing) and other processing (e.g., photolithography) may be used in combination to assemble and optically interconnect the micro-optical components 10 on the system substrate 40 to form a module, which may itself be transferred (e.g., printed, such as micro-transfer printed) to another larger target substrate. In some such embodiments where the system substrate 40 is a module substrate, the system substrate 40 may be native to a module source wafer. The system substrate 40 may then be released from the module source wafer by etching (e.g., using a gas or liquid etchant) (e.g., so that the system substrate is suspended from the module source wafer by strapping), followed by printing (e.g., using an elastomeric stamp). Figure 15 illustrates a configuration disposed on and in a system substrate 40 which may itself be a printable module.

在一些實施例中,微基板12包含安置於該微基板中之微光學元件14。舉例而言,微基板12及微光學元件14可彼此成整體。In some embodiments, the micro-substrate 12 includes a micro-optical element 14 disposed therein. For example, the micro-substrate 12 and the micro-optical element 14 may be integral with each other.

在一些實施例中,用於印刷微光學組件10之印模具有用於避免接觸專用微光學元件14之結構化支柱,接觸可使微光學元件損壞或另外損害微光學元件之後續效能。舉例而言,印模可具有吸盤構型。在一些實施例中,具有自微基板12朝著組件源晶圓30延伸之微光學元件14的微光學組件10允許使用具有未結構化支柱之印模或其他類似轉移裝置而沒有對微光學元件14造成損害的危險。In some embodiments, a stamp used to print the micro-optical assembly 10 is useful to avoid contact with structured pillars of a dedicated micro-optical element 14, which could damage the micro-optical element or otherwise impair the subsequent performance of the micro-optical element. For example, the stamp can have a suction cup configuration. In some embodiments, a micro-optical assembly 10 having micro-optical elements 14 extending from a micro-substrate 12 toward an assembly source wafer 30 allows the use of a stamp or other similar transfer device having unstructured pillars without the risk of damaging the micro-optical element 14.

適合將組件印刷至系統基板40上之微轉印製程的實例描述於以下各者中:題為 Optical Systems Fabricated by Printing-Based Assembly之美國專利第8,722,458號、題為 Engineered Substrates for Semiconductor Epitaxy and Methods of Fabricating the Same之美國專利第9,362,113號、題為 Apparatus and Methods for Micro-Transfer-Printing之美國專利第號9,358,775、在2015年8月10日申請的題為 Compound Micro-Assembly Strategies and Devices之美國專利申請案第14/822,868號及題為 Stamp with Structured Posts之美國專利第9,704,821號,其中之每一者特此以全文引用方式併入本文中。 Examples of microtransfer printing processes suitable for printing components onto the system substrate 40 are described in the following: U.S. Patent No. 8,722,458, entitled Optical Systems Fabricated by Printing-Based Assembly , U.S. Patent No. 9,362,113, entitled Engineered Substrates for Semiconductor Epitaxy and Methods of Fabricating the Same , U.S. Patent No. 9,358,775, entitled Apparatus and Methods for Micro-Transfer-Printing , U.S. Patent Application No. 14/822,868, entitled Compound Micro-Assembly Strategies and Devices , filed on August 10, 2015, and U.S. Patent No. 9,704,821, entitled Stamp with Structured Posts , each of which is hereby incorporated by reference in its entirety.

希望揭示內容之系統、裝置、方法及製程涵蓋使用來自本文描述之實施例的資訊開發之變化及改編。本文描述之系統、裝置、方法及製程之改編及/或修改可由一般熟習相關技術者來執行。It is intended that the disclosed systems, apparatuses, methods, and processes cover variations and adaptations developed using the information from the embodiments described herein. Adaptations and/or modifications of the systems, apparatuses, methods, and processes described herein may be performed by one of ordinary skill in the relevant art.

在整個說明書中,在物件、裝置及系統被描述為具有、包括或包含特定組件的情況下,或在製程及方法被描述為具有、包括或包含特定步驟的情況下,希望,另外,存在基本上由所列舉組件組成或由所列舉組件組成的根據本揭示內容之某些實施例的物件、裝置及系統,且存在基本上由所列舉處理步驟組成或由所列舉處理步驟組成的根據本揭示內容之某些實施例的製程及方法。Throughout the specification, where objects, devices, and systems are described as having, including, or comprising specific components, or where processes and methods are described as having, including, or comprising specific steps, it is intended that, in addition, there are objects, devices, and systems according to certain embodiments of the present disclosure that consist essentially of or consist of the enumerated components, and there are processes and methods according to certain embodiments of the present disclosure that consist essentially of or consist of the enumerated processing steps.

應理解,步驟之次序或執行某些動作之次序並不重要,只要不喪失可操作性即可。此外,可同時實施兩個或更多個步驟或動作。It should be understood that the order of steps or the order in which certain actions are performed is not important, as long as operability is not lost. In addition, two or more steps or actions can be implemented simultaneously.

本揭示內容之某些實施例在上文進行描述。然而,明確指出,本揭示內容不限於彼等實施例,而是對本揭示內容中明確描述的內容之添加及修改亦欲包括在揭示內容之範疇內。此外,應理解,在不背離揭示內容之精神及範疇的情況下,本揭示內容中描述之各個實施例之特徵並不相互排斥且可以各種組合及排列存在,即使此等組合或排列不夠明確。已經描述了非均質晶圓結構、非均質半導體結構、該等結構之製造方法及該等結構之使用方法的某些實現方式,一般熟習此項技術者現在將了解,可使用合併揭示內容之概念的其他實現方式。因此,揭示內容不應限於某些實現方式,而應僅由以下申請專利範圍之精神及範疇限制。Certain embodiments of the present disclosure are described above. However, it is expressly noted that the present disclosure is not limited to those embodiments, and additions and modifications to the contents expressly described in the present disclosure are also intended to be included in the scope of the disclosure. In addition, it should be understood that the features of the various embodiments described in the present disclosure are not mutually exclusive and may exist in various combinations and arrangements without departing from the spirit and scope of the disclosure, even if such combinations or arrangements are not clear enough. Certain implementations of inhomogeneous wafer structures, inhomogeneous semiconductor structures, methods of manufacturing such structures, and methods of using such structures have been described, and those generally familiar with this technology will now understand that other implementations that incorporate the concepts of the disclosure can be used. Therefore, the disclosure should not be limited to certain implementations, but should be limited only by the spirit and scope of the following patent application scope.

10:微光學組件 11:組件繫帶 12:微基板 13:微基板表面 14:微光學組件 15:微對準標記 16:微基板區 18:微光學元件區 19:反射塗層 20:光主動元件 21:光主動元件繫帶 22:微電子組件/非原生微電子組件 24:原生微電子組件 26:電極 30:微光學組件源晶圓 32:固定器/錨定部分 34:犧牲部分/犧牲材料 35:保護層 36:間隙 37:未固化聚合物 38:已固化聚合物 39:輻射 40:系統基板 42:空腔 43:系統基板表面 44:導光管 46:黏合劑 50:光/光束/光線/光子 54:光纖纜線 60:微轉印印模 60A:第一微轉印印模 60B:第二微轉印印模 61:壓印印模 62:印模支柱 62A:第一印模支柱 62B:第二印模支柱 70:微光學系統 100:提供組件源晶圓之步驟 110:自組件源晶圓釋離組件之步驟 120:提供印模之步驟 130:使組件接觸印模之步驟 140:用印模自組件源晶圓移除組件之步驟 150:用印模至印模轉移將組件倒置之步驟 160:提供系統基板之步驟 170:用印模使組件接觸至系統基板之步驟 180:移除印模之步驟 200:提供組件源晶圓之步驟 210:在組件源晶圓中形成空腔之步驟 220:用聚合物塗佈空腔及組件源晶圓之步驟 230:使聚合物逐圖案固化以形成微光學組件之步驟 240:清洗未固化聚合物/蝕刻犧牲部分之步驟 D:正交方向 H:高度/厚度 X:維度/方向 Y:維度/方向 10: Micro-optical component 11: Component ties 12: Micro-substrate 13: Micro-substrate surface 14: Micro-optical component 15: Micro-alignment mark 16: Micro-substrate area 18: Micro-optical component area 19: Reflective coating 20: Optically active component 21: Optically active component ties 22: Micro-electronic component/non-native micro-electronic component 24: Native micro-electronic component 26: Electrode 30: Micro-optical component source wafer 32: Fixture/anchoring part 34: Sacrificial part/sacrificial material 35: Protective layer 36: Gap 37: Uncured polymer 38: Cured polymer 39: Radiation 40: System substrate 42: Cavity 43: System substrate surface 44: Light guide 46: Adhesive 50: Light/beam/light/photon 54: Optical fiber cable 60: Micro-transfer stamp 60A: First micro-transfer stamp 60B: Second micro-transfer stamp 61: Imprinting stamp 62: Stamp support 62A: First stamp support 62B: Second stamp support 70: Micro-optical system 100: Step of providing a component source wafer 110: Step of releasing a component from a component source wafer 120: Step of providing a stamp 130: Step of contacting a component with the stamp 140: Step of removing a component from a component source wafer using the stamp 150: Step of inverting the component using a stamp-to-stamp transfer 160: Step of providing a system substrate 170: Step of contacting the component to the system substrate using a stamp 180: Step of removing the stamp 200: Step of providing a component source wafer 210: Step of forming a cavity in the component source wafer 220: Step of coating the cavity and the component source wafer with a polymer 230: Step of curing the polymer pattern by pattern to form a micro-optical component 240: Step of cleaning uncured polymer/etching sacrificial portions D: Orthogonal direction H: Height/Thickness X: Dimension/Direction Y: Dimension/Direction

本文中呈現圖式以用於說明目的,而非用於限制。圖式未必按比例繪製。藉由參考結合附圖進行之以下描述,揭示內容之先前及其他目標、態樣、特徵及優點將變得更加明顯且可更好地理解,在附圖中: 根據本揭示內容之說明性實施例,圖1A為微光學組件之透視圖,圖1B為該微光學組件之平面圖,且圖1C為該微光學組件之橫截面; 根據本揭示內容之說明性實施例,圖1D為對應於圖1A至圖1C之微基板及微光學元件之區的平面圖; 根據本揭示內容之說明性實施例,圖2為微光學組件之透視圖; 根據本揭示內容之說明性實施例,圖3為反射或折射微光學組件之透視圖; 根據本揭示內容之說明性實施例,圖4及圖5為折射微光學組件之透視圖; 根據本揭示內容之說明性實施例,圖6為繞射微光學組件之透視圖; 根據本揭示內容之說明性實施例,圖7A為包含光主動元件之微光學組件的透視圖且圖7B為該微光學組件的橫截面; 根據本揭示內容之說明性實施例,圖8A至圖8D為具有懸浮在界定間隙之蝕刻犧牲層上方的不同已釋離微光學組件之微光學組件源晶圓的橫截面; 根據本揭示內容之說明性實施例,圖9A至圖9D為結構之連續橫截面,該等橫截面圖示用於使用雙光子聚合建構具有懸浮在間隙上方的已釋離微光學組件之微光學組件源晶圓的步驟; 根據本揭示內容之說明性實施例,圖10A至圖10D為結構之連續橫截面,該等橫截面圖示用於使用奈米壓印微影術在組件源晶圓上建構懸浮在界定間隙之蝕刻犧牲層上方的已釋離微光學組件的步驟; 根據本揭示內容之說明性實施例,圖11A至圖11D為圖示用於在組件源晶圓上建構具有保護層之已釋離微光學組件之步驟的連續橫截面; 根據本揭示內容之說明性實施例,圖12A至圖12D為結構之連續橫截面,該等橫截面圖示用於用模在組件源晶圓上建構已釋離微光學組件的步驟; 根據本揭示內容之說明性實施例,圖12E為圖示在組件源晶圓之犧牲層中的塗佈有保護層之模的橫截面; 根據本揭示內容之說明性實施例,圖12F為圖示使用壓印(例如,奈米壓印)微影術在組件源晶圓之犧牲層中形成模的橫截面; 根據本揭示內容之說明性實施例,圖13為在組件源晶圓之犧牲部分上的微光學組件及混合繫帶的橫截面; 根據本揭示內容之說明性實施例,圖14A為包含微光學組件之微光學系統的橫截面,該微光學組件具有至少部分地處於系統基板中之空腔中的微光學元件; 根據本揭示內容之說明性實施例,圖14B為包含微光學組件之微光學系統的橫截面,該微光學組件具有至少部分地處於系統基板中之空腔中的光主動元件及在空腔上方之微光學元件; 根據本揭示內容之說明性實施例,圖14C為包含微光學組件之微光學系統的橫截面,該微光學組件具有至少部分地處於系統基板中之空腔中且接觸或黏附至空腔之壁的微光學元件; 根據本揭示內容之說明性實施例,圖14D為包含微光學組件之微光學系統的橫截面,該微光學組件至少部分地處於系統基板中之空腔中且接觸或黏附至空腔之底板; 根據本揭示內容之說明性實施例,圖14E為包含微光學組件之微光學系統的橫截面,該微光學組件具有至少部分地處於系統基板中之空腔中且接觸或黏附至空腔之底板的微基板; 根據本揭示內容之說明性實施例,圖15為例如光子積體電路之微光學系統的透視圖; 根據本揭示內容之說明性實施例,圖16A至圖16L為微光學系統的橫截面; 根據本揭示內容之說明性實施例,圖17A至圖17D為建構微光學系統時的連續結構之橫截面; 根據本揭示內容之說明性實施例,圖18A至圖18D為建構微光學系統時的連續結構之橫截面; 根據本揭示內容之說明性實施例,圖19A至圖19C為使用印模至印模轉移建構微光學系統時的連續結構之橫截面;且 圖20及圖21為根據本揭示內容之說明性實施例的流程圖。 The drawings presented herein are for illustrative purposes only and not for limitation. The drawings are not necessarily drawn to scale. The foregoing and other objects, aspects, features, and advantages of the disclosure will become more apparent and better understood by reference to the following description in conjunction with the accompanying drawings, in which: According to an illustrative embodiment of the disclosure, FIG. 1A is a perspective view of a micro-optical assembly, FIG. 1B is a plan view of the micro-optical assembly, and FIG. 1C is a cross-section of the micro-optical assembly; According to an illustrative embodiment of the disclosure, FIG. 1D is a plan view of the area of the micro-substrate and micro-optical elements corresponding to FIGS. 1A to 1C; According to an illustrative embodiment of the disclosure, FIG. 2 is a perspective view of a micro-optical assembly; According to an illustrative embodiment of the disclosure, FIG. 3 is a perspective view of a reflective or refractive micro-optical assembly; According to an illustrative embodiment of the present disclosure, FIGS. 4 and 5 are perspective views of a refractive micro-optical assembly; According to an illustrative embodiment of the present disclosure, FIG. 6 is a perspective view of a diffractive micro-optical assembly; According to an illustrative embodiment of the present disclosure, FIG. 7A is a perspective view of a micro-optical assembly including an optically active element and FIG. 7B is a cross-section of the micro-optical assembly; According to an illustrative embodiment of the present disclosure, FIGS. 8A to 8D are cross-sections of a micro-optical assembly source wafer having different released micro-optical assemblies suspended above an etched sacrificial layer defining a gap; According to an illustrative embodiment of the present disclosure, FIGS. 9A to 9D are sequential cross-sections of a structure illustrating steps for constructing a micro-optical component source wafer having a released micro-optical component suspended above a gap using two-photon polymerization; According to an illustrative embodiment of the present disclosure, FIGS. 10A to 10D are sequential cross-sections of a structure illustrating steps for constructing a released micro-optical component suspended above an etched sacrificial layer defining a gap on a component source wafer using nanoimprint lithography; According to an illustrative embodiment of the present disclosure, FIGS. 11A to 11D are sequential cross-sections illustrating steps for constructing a released micro-optical component with a protective layer on a component source wafer; According to an illustrative embodiment of the present disclosure, FIGS. 12A to 12D are sequential cross-sections of structures illustrating steps for constructing a released micro-optical component on a component source wafer using a mold; According to an illustrative embodiment of the present disclosure, FIG. 12E is a cross-section illustrating a mold coated with a protective layer in a sacrificial layer of a component source wafer; According to an illustrative embodiment of the present disclosure, FIG. 12F is a cross-section illustrating the formation of a mold in a sacrificial layer of a component source wafer using imprint (e.g., nanoimprint) lithography; According to an illustrative embodiment of the present disclosure, FIG. 13 is a cross-section of a micro-optical assembly and a hybrid ligament on a sacrificial portion of a component source wafer; According to an illustrative embodiment of the present disclosure, FIG. 14A is a cross-section of a micro-optical system including a micro-optical assembly having a micro-optical element at least partially located in a cavity in a system substrate; According to an illustrative embodiment of the present disclosure, FIG. 14B is a cross-section of a micro-optical system including a micro-optical assembly having an optically active element at least partially located in a cavity in a system substrate and a micro-optical element above the cavity; According to an illustrative embodiment of the present disclosure, FIG. 14C is a cross-section of a micro-optical system including a micro-optical assembly having a micro-optical element at least partially located in a cavity in a system substrate and contacting or adhering to a wall of the cavity; According to an illustrative embodiment of the present disclosure, FIG. 14D is a cross-section of a micro-optical system including a micro-optical assembly having a micro-optical element at least partially located in a cavity in a system substrate and contacting or adhering to a bottom plate of the cavity; According to an illustrative embodiment of the present disclosure, FIG. 14E is a cross-section of a micro-optical system including a micro-optical component having a micro-substrate at least partially located in a cavity in a system substrate and contacting or adhering to a bottom plate of the cavity; According to an illustrative embodiment of the present disclosure, FIG. 15 is a perspective view of a micro-optical system such as a photonic integrated circuit; According to an illustrative embodiment of the present disclosure, FIGS. 16A to 16L are cross-sections of a micro-optical system; According to an illustrative embodiment of the present disclosure, FIGS. 17A to 17D are cross-sections of a continuous structure when constructing a micro-optical system; According to an illustrative embodiment of the present disclosure, FIGS. 18A to 18D are cross-sections of a continuous structure when constructing a micro-optical system; According to an illustrative embodiment of the present disclosure, FIGS. 19A to 19C are cross-sections of a continuous structure when constructing a micro-optical system using stamp-to-stamp transfer; and FIGS. 20 and 21 are flow charts of an illustrative embodiment of the present disclosure.

10:微光學組件 10: Micro-optical components

11:組件繫帶 11: Assembly straps

12:微基板 12: Micro substrate

13:微基板表面 13: Micro substrate surface

14:微光學組件 14: Micro-optical components

15:微對準標記 15: Micro-alignment mark

Claims (45)

一種微光學組件,該微光學組件包含: 一微基板; 一微光學元件,該微光學元件安置於該微基板上;及 一組件繫帶之至少一部分,該組件繫帶之該至少一部分實體地附接至該微基板或實體地附接至該微光學元件, 其中該微光學組件具有不大於250 µm (例如,不小於250 µm、不大於200 µm、不大於150 µm、不大於100 µm、不大於75 µm、不大於50 µm、不大於25 µm或不大於10 µm)之一厚度。 A micro-optical assembly comprising: a micro-substrate; a micro-optical element disposed on the micro-substrate; and at least a portion of an assembly tether, the at least a portion of the assembly tether being physically attached to the micro-substrate or physically attached to the micro-optical element, wherein the micro-optical assembly has a thickness of not more than 250 µm (e.g., not less than 250 µm, not more than 200 µm, not more than 150 µm, not more than 100 µm, not more than 75 µm, not more than 50 µm, not more than 25 µm, or not more than 10 µm). 如請求項1之微光學組件,其中該組件繫帶為一破損(例如,破裂)或分離之組件繫帶。A micro-optical component as claimed in claim 1, wherein the component strap is a damaged (e.g., cracked) or detached component strap. 如請求項1或請求項2之微光學組件,其中該微基板僅在一個維度上延伸超出該微光學元件。A micro-optical assembly as claimed in claim 1 or claim 2, wherein the micro-substrate extends beyond the micro-optical element in only one dimension. 如前述請求項中任一項之微光學組件,其中該微基板在兩個維度上延伸超出該微光學元件。A micro-optical assembly as claimed in any preceding claim, wherein the micro-substrate extends beyond the micro-optical element in two dimensions. 如前述請求項中任一項之微光學組件,其中該微光學元件為一反射元件、一折射元件、一繞射元件、一頻率濾波器、一相變元件、一極化偵測器元件、一極化調節器元件、一頻率轉換器或其任何組合。A micro-optical assembly as claimed in any of the preceding claims, wherein the micro-optical element is a reflective element, a refractive element, a diffractive element, a frequency filter, a phase change element, a polarization detector element, a polarization modulator element, a frequency converter or any combination thereof. 如前述請求項中任一項之微光學組件,其中該微光學元件形成於該微基板中。A micro-optical assembly as claimed in any of the preceding claims, wherein the micro-optical element is formed in the micro-substrate. 如前述請求項中任一項之微光學組件,其中該微光學元件在垂直於該微基板之一表面的一方向上遠離該微基板延伸。A micro-optical assembly as claimed in any of the preceding claims, wherein the micro-optical element extends away from the micro-substrate in a direction perpendicular to a surface of the micro-substrate. 如前述請求項中任一項之微光學組件,該微光學組件包含一光產生元件或一光響應元件,該光產生元件或該光響應元件在該微基板的與該微光學元件相對之一側面上安置於該微基板上。A micro-optical component as claimed in any of the preceding claims, comprising a light generating element or a light responding element, wherein the light generating element or the light responding element is disposed on the micro-substrate on a side of the micro-substrate opposite to the micro-optical element. 如前述請求項中任一項之微光學組件,其中該光產生元件為一雷射或發光二極體且該光響應元件為一光電二極體。A micro-optical assembly as claimed in any preceding claim, wherein the light generating element is a laser or a light emitting diode and the light responsive element is a photodiode. 如前述請求項中任一項之微光學組件,其中該微基板包含一微對準標記,該微對準標記安置於排除微光學元件區之微基板區中。A micro-optical assembly as claimed in any of the preceding claims, wherein the micro-substrate comprises a micro-alignment mark disposed in a micro-substrate region excluding a micro-optical device region. 如前述請求項中任一項之微光學組件,其中該微基板對經該微光學元件調節之光係實質上透明的。A micro-optical assembly as claimed in any of the preceding claims, wherein the micro-substrate is substantially transparent to light modulated by the micro-optical element. 如前述請求項中任一項之微光學組件,其中該微基板對經該微光學元件調節之光係實質上不透明的、進行反射、濾光或吸收。A micro-optical assembly as claimed in any of the preceding claims, wherein the micro-substrate is substantially opaque to, reflects, filters or absorbs light modulated by the micro-optical element. 如前述請求項中任一項之微光學組件,其中該微基板及該微光學元件為一體的(例如,係單塊的且包含在一共同步驟中形成之一共同材料)。A micro-optical assembly as claimed in any of the preceding claims, wherein the micro-substrate and the micro-optical element are unitary (eg, monolithic and comprise a common material formed in a common step). 如前述請求項中任一項之微光學組件,其中該微基板及該微光學元件包含不同材料,或其中該微基板及該微光學元件包含黏附在一起的不同結構。A micro-optical assembly as claimed in any of the preceding claims, wherein the micro-substrate and the micro-optical element comprise different materials, or wherein the micro-substrate and the micro-optical element comprise different structures bonded together. 如前述請求項中任一項之微光學組件,其中(i)該微基板具有不大於100,000 µm 2(例如,不大於62,500 µm 2、小於62,500 µm 2、不大於40,000 µm 2、小於40,000 µm 2、不大於20,000 µm 2、不大於10,000 µm 2、不大於2,500 µm 2、不大於400 µm 2或不大於100 µm 2)之一微基板區,(ii)該微基板具有一大縱橫比(長度對寬度) (例如,不小於2:1、不小於4:1、不小於5:1、不小於8:1或不小於10:1),(iii) (a)該微基板具有不大於50 µm之一寬度及不小於100 µm (例如,不小於200 µm、250 µm或500 µm)之一長度,(b)該微基板具有不大於100 µm之一寬度及不小於500 µm (例如,不小於750 µm或1000 µm)之一長度,或(c)該微基板具有不大於200 µm之一寬度及不小於400 µm (例如,不小於600 µm、800 µm、1000 µm、1200 µm、1400 µm、1600 µm、1800 µm或2000 µm)之一長度,或(iv) (i)及(ii)兩者。 A micro-optical component as claimed in any of the preceding claims, wherein (i) the microsubstrate has a microsubstrate area of no greater than 100,000 µm 2 (e.g., no greater than 62,500 µm 2 , less than 62,500 µm 2 , no greater than 40,000 µm 2 , less than 40,000 µm 2 , no greater than 20,000 µm 2 , no greater than 10,000 µm 2 , no greater than 2,500 µm 2 , no greater than 400 µm 2 , or no greater than 100 µm 2 ), (ii) the microsubstrate has a large aspect ratio (length to width) (e.g., no less than 2:1, no less than 4:1, no less than 5:1, no less than 8:1, or no less than 10:1), (iii) (a) the microsubstrate has a microsubstrate area of no greater than 50 (a) the micro substrate has a width of no more than 100 µm and a length of no less than 100 µm (e.g., no less than 200 µm, 250 µm or 500 µm), (b) the micro substrate has a width of no more than 100 µm and a length of no less than 500 µm (e.g., no less than 750 µm or 1000 µm), or (c) the micro substrate has a width of no more than 200 µm and a length of no less than 400 µm (e.g., no less than 600 µm, 800 µm, 1000 µm, 1200 µm, 1400 µm, 1600 µm, 1800 µm or 2000 µm), or (iv) both (i) and (ii). 如前述請求項中任一項之微光學組件,該微光學組件包含一保護層或多個保護層。A micro-optical component as claimed in any of the preceding claims, comprising a protective layer or multiple protective layers. 如請求項16之微光學組件,其中該保護層或該等保護層被建構成按期望與光相互作用。A micro-optical component as claimed in claim 16, wherein the protective layer or layers are constructed to interact with light as desired. 如請求項16或請求項17之微光學組件,其中該組件繫帶包含該保護層之一部分。A micro-optical component as claimed in claim 16 or claim 17, wherein the component strap includes a portion of the protective layer. 如前述請求項中任一項之微光學組件,其中該組件繫帶為一混合有機-無機繫帶。A micro-optical component as claimed in any preceding claim, wherein the component ties are a hybrid organic-inorganic ties. 一種微光學系統,該微光學系統包含: 一系統基板;及 根據請求項1至19中任一項之一微光學組件,該微光學組件安置於該系統基板上,其中該微光學組件對於該系統基板為非原生的。 A micro-optical system, comprising: a system substrate; and a micro-optical component according to any one of claims 1 to 19, the micro-optical component being disposed on the system substrate, wherein the micro-optical component is non-native to the system substrate. 如請求項20之微光學系統,其中該微光學元件在遠離該系統基板之一方向上延伸。A micro-optical system as claimed in claim 20, wherein the micro-optical element extends in a direction away from the system substrate. 如請求項20或請求項21之微光學系統,該微光學系統包含一波導或導光管,該波導或導光管安置於該系統基板上或中且與該微光學元件光學連通。A micro-optical system as claimed in claim 20 or claim 21, wherein the micro-optical system comprises a waveguide or a light pipe, which is disposed on or in the system substrate and is optically connected to the micro-optical element. 如請求項20至22中任一項之微光學系統,其中該系統基板包含一空腔,且該微光學元件至少部分地安置於該空腔中。A micro-optical system as in any one of claims 20 to 22, wherein the system substrate comprises a cavity and the micro-optical element is at least partially disposed in the cavity. 如請求項20至23中任一項之微光學系統,該微光學系統包含安置於該系統基板中或上之一導光管,該導光管被安置成傳輸進入或離開該微光學元件之光。A micro-optical system as in any one of claims 20 to 23, the micro-optical system comprising a light pipe disposed in or on the system substrate, the light pipe being arranged to transmit light entering or leaving the micro-optical element. 如請求項20至24中任一項之微光學系統,其中該系統基板包含一微對準標記,該微對準標記安置於該系統基板之一表面上或中。A micro-optical system as in any of claims 20 to 24, wherein the system substrate includes a micro-alignment mark disposed on or in a surface of the system substrate. 如請求項25之微光學系統,其中安置於該系統基板之該表面上或中的該微對準標記與安置於在該微光學元件區外的該微基板中或上之一對準標記對準。A micro-optical system as claimed in claim 25, wherein the micro-alignment mark disposed on or in the surface of the system substrate is aligned with an alignment mark disposed in or on the micro-substrate outside the micro-optical element area. 如請求項20至26中任一項之微光學系統,其中該系統基板包含一空腔,且該微光學元件至少部分地安置於該空腔中。A micro-optical system as in any one of claims 20 to 26, wherein the system substrate comprises a cavity and the micro-optical element is at least partially disposed in the cavity. 如請求項27之微光學系統,其中該空腔具有延伸至該系統基板中之一或多個空腔側面,且該微光學元件安置成與該等空腔側面中之一或多者接觸。A micro-optical system as in claim 27, wherein the cavity has one or more cavity sides extending into the system substrate, and the micro-optical element is arranged to contact one or more of the cavity sides. 如請求項20至28中任一項之微光學系統,其中該系統基板包含一空腔,且該微基板至少部分地安置於該空腔中。A micro-optical system as in any one of claims 20 to 28, wherein the system substrate comprises a cavity and the micro-substrate is at least partially disposed in the cavity. 如請求項29之微光學系統,其中該空腔具有延伸至該系統基板中之一或多個空腔側面,且該微光學基板安置成與該一或多個空腔側面中之一或多者接觸。A micro-optical system as in claim 29, wherein the cavity has one or more cavity sides extending into the system substrate, and the micro-optical substrate is positioned to contact one or more of the one or more cavity sides. 如請求項27至30中任一項之微光學系統,該微光學系統包含安置於該空腔中之一光學指數匹配材料或安置於該空腔中的將該微光學元件黏附至該空腔之一表面之一黏合劑。A micro-optical system as in any one of claims 27 to 30, the micro-optical system comprising an optical index matching material disposed in the cavity or an adhesive disposed in the cavity for adhering the micro-optical element to a surface of the cavity. 如請求項20至31中任一項之微光學系統,該微光學系統包含安置於該空腔中的將該微基板黏附至該空腔之一表面之一黏合劑。A micro-optical system as in any one of claims 20 to 31, comprising an adhesive disposed in the cavity for adhering the micro-substrate to a surface of the cavity. 如請求項20至32中任一項之微光學系統,其中該微基板之一表面與該系統基板之一表面實質上處於一共同平面中。A micro-optical system as in any one of claims 20 to 32, wherein a surface of the micro substrate and a surface of the system substrate are substantially in a common plane. 如請求項20至33中任一項之微光學系統,該微光學系統包含一光產生元件或一光響應元件,該光產生元件或該光響應元件在該微基板的與該微光學元件相對之一側面上安置於該微基板上,其中該系統基板為一半導體基板,且其中該半導體基板包含電連接至該光產生元件或該光響應元件之一電子電路。A micro-optical system as claimed in any one of claims 20 to 33, the micro-optical system comprising a light generating element or a light response element, the light generating element or the light response element being disposed on the micro-substrate on a side of the micro-substrate opposite to the micro-optical element, wherein the system substrate is a semiconductor substrate, and wherein the semiconductor substrate comprises an electronic circuit electrically connected to the light generating element or the light response element. 如請求項20至34中任一項之微光學系統,其中該系統基板包含安置於該系統基板之一表面上的一結構止擋件,且該微光學組件接觸或黏附至該結構止擋件。A micro-optical system as in any one of claims 20 to 34, wherein the system substrate includes a structural stopper disposed on a surface of the system substrate, and the micro-optical component contacts or adheres to the structural stopper. 如請求項20至35中任一項之微光學系統,其中該微光學系統為一光子積體電路。A micro-optical system as claimed in any one of claims 20 to 35, wherein the micro-optical system is a photonic integrated circuit. 一種微光學組件源晶圓,該微光學組件源晶圓包含: 一源晶圓,該源晶圓包含由一或多個錨定部分隔開之一或多個犧牲部分;及 根據請求項1至19中任一項之一微光學組件,該微光學組件完全且直接地安置於該一或多個犧牲部分中之每一者上方且由一組件繫帶之至少一部分附接至該一或多個錨定部分中之一者。 A micro-optical component source wafer, the micro-optical component source wafer comprising: a source wafer, the source wafer comprising one or more sacrificial portions separated by one or more anchoring portions; and a micro-optical component according to any one of claims 1 to 19, the micro-optical component being disposed completely and directly over each of the one or more sacrificial portions and attached to one of the one or more anchoring portions by at least a portion of an assembly strap. 一種製造一微光學系統之方法,該方法包含: 提供根據請求項37之一微光學組件源晶圓; 提供一印模; 提供一系統基板; 使該印模接觸至該微光學組件; 用該印模自該微光學組件源晶圓移除該微光學組件; 用該印模使該微光學組件接觸至該系統基板;及 自該微光學組件及該系統基板移除該印模。 A method for manufacturing a micro-optical system, the method comprising: providing a micro-optical component source wafer according to claim 37; providing a stamp; providing a system substrate; contacting the stamp to the micro-optical component; removing the micro-optical component from the micro-optical component source wafer with the stamp; contacting the micro-optical component to the system substrate with the stamp; and removing the stamp from the micro-optical component and the system substrate. 一種製造一微光學系統之方法,該方法包含: 提供根據請求項37之一微光學組件源晶圓; 提供一第一印模及一第二印模; 提供一系統基板; 使該第一印模接觸至該微光學組件之一第一側面; 用該第一印模自該微光學組件源晶圓移除該微光學組件; 用該第二印模使該微光學組件接觸至該微光學組件的與該第一側面相對之一第二側面; 用該第二印模使該微光學組件之該第一側面接觸至該系統基板;及 自該微光學組件及該系統基板移除該第二印模。 A method for manufacturing a micro-optical system, the method comprising: providing a micro-optical component source wafer according to claim 37; providing a first stamp and a second stamp; providing a system substrate; bringing the first stamp into contact with a first side of the micro-optical component; removing the micro-optical component from the micro-optical component source wafer with the first stamp; bringing the micro-optical component into contact with a second side of the micro-optical component opposite to the first side with the second stamp; bringing the first side of the micro-optical component into contact with the system substrate with the second stamp; and removing the second stamp from the micro-optical component and the system substrate. 一種製造一微光學系統之方法,該方法包含: 提供一微光學組件源晶圓,該微光學組件源晶圓包含由一或多個錨定部分隔開之一或多個犧牲部分; 用一液體可固化聚合物塗佈該一或多個犧牲部分之至少一部分; 形成一結構(例如,一微光學組件),其中形成該結構包含使用雙光子聚合以僅使該液體可固化聚合物之一部分固化以形成該結構之至少一部分; 在該結構與該一或多個錨定部分中之一者之間形成一組件繫帶;及 移除該液體可固化聚合物之一未固化部分。 A method of manufacturing a micro-optical system, the method comprising: providing a micro-optical component source wafer, the micro-optical component source wafer comprising one or more sacrificial portions separated by one or more anchor portions; coating at least a portion of the one or more sacrificial portions with a liquid curable polymer; forming a structure (e.g., a micro-optical component), wherein forming the structure comprises using two-photon polymerization to cure only a portion of the liquid curable polymer to form at least a portion of the structure; forming an assembly tie between the structure and one of the one or more anchor portions; and removing an uncured portion of the liquid curable polymer. 一種製造一微光學系統之方法,該方法包含: 提供一微光學組件源晶圓,該微光學組件源晶圓包含鄰近一或多個錨定部分之一空腔; 將一液體可固化聚合物之至少一部分安置於該空腔中; 形成一結構(例如,一微光學組件),其中形成該結構包含使用雙光子聚合以僅使該液體可固化聚合物之一部分固化以形成該結構之至少一部分; 在該結構與該一或多個錨定部分中之一者之間形成一組件繫帶;及 (例如,自該空腔)移除該液體可固化聚合物之一未固化部分。 A method of manufacturing a micro-optical system, the method comprising: providing a micro-optical component source wafer, the micro-optical component source wafer comprising a cavity adjacent to one or more anchor portions; placing at least a portion of a liquid curable polymer in the cavity; forming a structure (e.g., a micro-optical component), wherein forming the structure comprises using two-photon polymerization to cure only a portion of the liquid curable polymer to form at least a portion of the structure; forming an assembly tie between the structure and one of the one or more anchor portions; and removing an uncured portion of the liquid curable polymer (e.g., from the cavity). 一種製造一微光學系統之方法,該方法包含: 提供一微光學組件源晶圓,該微光學組件源晶圓包含由一或多個錨定部分隔開之一或多個犧牲部分; 用一液體可固化聚合物塗佈該一或多個犧牲部分之至少一部分; 形成一結構(例如,一微光學組件),其中形成該結構包含使用壓印微影術形成該結構之至少一部分;及 在該結構與該一或多個錨定部分中之一者之間形成一組件繫帶。 A method of manufacturing a micro-optical system, the method comprising: providing a micro-optical component source wafer, the micro-optical component source wafer comprising one or more sacrificial portions separated by one or more anchoring portions; coating at least a portion of the one or more sacrificial portions with a liquid curable polymer; forming a structure (e.g., a micro-optical component), wherein forming the structure comprises forming at least a portion of the structure using imprint lithography; and forming an assembly tie between the structure and one of the one or more anchoring portions. 一種製造一微光學系統之方法,該方法包含: 提供一微光學組件源晶圓,該微光學組件源晶圓包含由一或多個錨定部分隔開之一或多個犧牲部分; 在該一或多個犧牲部分中之一者中形成一模; 用一液體可固化聚合物塗佈包括該模的該等犧牲部分之至少一部分; 形成一結構(例如,一微光學組件),其中形成該結構包含使該液體可固化聚合物固化;及 在該結構與該一或多個錨定部分中之一者之間形成一組件繫帶。 A method of manufacturing a micro-optical system, the method comprising: providing a micro-optical component source wafer, the micro-optical component source wafer comprising one or more sacrificial portions separated by one or more anchoring portions; forming a mold in one of the one or more sacrificial portions; coating at least a portion of the sacrificial portions including the mold with a liquid curable polymer; forming a structure (e.g., a micro-optical component), wherein forming the structure comprises curing the liquid curable polymer; and forming an assembly tie between the structure and one of the one or more anchoring portions. 一種製造一微光學系統之方法,該方法包含: 提供一微光學組件源晶圓,該微光學組件源晶圓包含鄰近一錨定部分之一空腔; 使用壓印微影術在該空腔中形成一模,其中使用壓印微影術包含用一液體可固化聚合物塗佈該空腔且使該液體可固化聚合物固化; 形成一結構,其中形成該結構包含將一材料安置於該模中,該材料可與該模有差別地蝕刻; 在該微光學組件與該等錨定部分中之一者之間形成一組件繫帶;及 蝕刻該已固化聚合物以釋離該可轉印結構。 A method of manufacturing a micro-optical system, the method comprising: Providing a micro-optical component source wafer, the micro-optical component source wafer comprising a cavity adjacent to an anchor portion; Using imprint lithography to form a mold in the cavity, wherein using imprint lithography comprises coating the cavity with a liquid curable polymer and curing the liquid curable polymer; Forming a structure, wherein forming the structure comprises placing a material in the mold that can be etched differentially from the mold; Forming an assembly tie between the micro-optical component and one of the anchor portions; and Etching the cured polymer to release the transferable structure. 一種微光學組件,該微光學組件包含: 一微基板,該微基板具有一微基板區;及 一微光學元件,該微光學元件安置於該微基板上, 其中該微光學元件具有在該微基板上方之一微光學元件區,且該微基板區大於該微光學元件區。 A micro-optical component, the micro-optical component comprising: a micro-substrate, the micro-substrate having a micro-substrate area; and a micro-optical element, the micro-optical element being disposed on the micro-substrate, wherein the micro-optical element has a micro-optical element area above the micro-substrate, and the micro-substrate area is larger than the micro-optical element area.
TW112138442A 2022-10-07 2023-10-06 Transfer-printed micro-optical components TW202422125A (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US202263414423P 2022-10-07 2022-10-07
US63/414,423 2022-10-07
US18/062,844 2022-12-07
US18/062,844 US20240118489A1 (en) 2022-10-07 2022-12-07 Transfer-printed micro-optical components

Publications (1)

Publication Number Publication Date
TW202422125A true TW202422125A (en) 2024-06-01

Family

ID=88598923

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112138442A TW202422125A (en) 2022-10-07 2023-10-06 Transfer-printed micro-optical components

Country Status (2)

Country Link
TW (1) TW202422125A (en)
WO (1) WO2024074715A1 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7972875B2 (en) 2007-01-17 2011-07-05 The Board Of Trustees Of The University Of Illinois Optical systems fabricated by printing-based assembly
US9362113B2 (en) 2013-03-15 2016-06-07 Semprius, Inc. Engineered substrates for semiconductor epitaxy and methods of fabricating the same
US11472171B2 (en) 2014-07-20 2022-10-18 X Display Company Technology Limited Apparatus and methods for micro-transfer-printing
US11061276B2 (en) * 2015-06-18 2021-07-13 X Display Company Technology Limited Laser array display
US9704821B2 (en) 2015-08-11 2017-07-11 X-Celeprint Limited Stamp with structured posts
US10832935B2 (en) * 2017-08-14 2020-11-10 X Display Company Technology Limited Multi-level micro-device tethers
US11528808B2 (en) * 2018-12-03 2022-12-13 X Display Company Technology Limited Printing components to substrate posts
US11398399B2 (en) * 2019-03-08 2022-07-26 X Display Company Technology Limited Components with backside adhesive layers
US10714374B1 (en) * 2019-05-09 2020-07-14 X Display Company Technology Limited High-precision printed structures
CN114631183A (en) * 2019-08-26 2022-06-14 艾克斯瑟乐普林特有限公司 Variable stiffness module
CN110927873B (en) * 2019-12-25 2020-12-25 青岛五维智造科技有限公司 Method and equipment for batch production of AR diffraction optical waveguides
US12057340B2 (en) * 2020-12-04 2024-08-06 X-Celeprint Limited Hybrid tethers for micro-transfer printing

Also Published As

Publication number Publication date
WO2024074715A1 (en) 2024-04-11

Similar Documents

Publication Publication Date Title
US9804334B2 (en) Fiber to chip optical coupler
KR101698058B1 (en) Method of making wafer level optical elements
TW586033B (en) 3-D optoelectronic micro-system
AU2004283319B2 (en) Planar waveguide with patterned cladding and method for producing same
EP2112537B1 (en) Optical interconnection structure and method for manufacturing the same
JP5089643B2 (en) Optical connection element manufacturing method, optical transmission board, optical connection component, connection method, and optical transmission system
CN103217740A (en) Silicon photonic chip optical coupling structures
US7646948B2 (en) Flexible optical waveguide film, optical transceiver module, multi-channel optical transceiver module, and method of manufacturing flexible optical waveguide film
JP2004029507A (en) Optical element and its manufacturing method
JP2017032798A (en) Substrate with lens, laminated lens structure, camera module, and apparatus and method manufacturing
EP2916151A1 (en) Method of forming a fiber coupling device and fiber coupling device
US20130308906A1 (en) System and method for dense coupling between optical devices and an optical fiber array
US20240231017A1 (en) Three-dimensional micro-optical systems
CN105706316A (en) High contrast grating optoelectronics
US20180031791A1 (en) Electro-optical interconnect platform
JP6619174B2 (en) Manufacturing apparatus and method
JP2014521992A (en) Method for manufacturing passive optical component and device comprising passive optical component
KR102135492B1 (en) Fabrication of optical elements and modules incorporating the same
US20230228910A1 (en) Optical devices including metastructures and methods for fabricating the optical devices
JP6237494B2 (en) Optical device, optical module, and optical device manufacturing method
US20230194757A1 (en) Optical devices including metastructures and methods for fabricating the optical devices
US20230393357A1 (en) Integrated Freeform Optical Couplers And Fabrication Methods Thereof
TW202422125A (en) Transfer-printed micro-optical components
US20240118489A1 (en) Transfer-printed micro-optical components
US20240085589A1 (en) Optical elements including a metastructure having cone-shaped or truncated cone-shaped meta-atoms and its manufacturing method