SI9400085A - Vaccine compositions comprising antigenic polypeptide and 3d-mpl, useful in preventing infection with influenza - Google Patents
Vaccine compositions comprising antigenic polypeptide and 3d-mpl, useful in preventing infection with influenza Download PDFInfo
- Publication number
- SI9400085A SI9400085A SI9400085A SI9400085A SI9400085A SI 9400085 A SI9400085 A SI 9400085A SI 9400085 A SI9400085 A SI 9400085A SI 9400085 A SI9400085 A SI 9400085A SI 9400085 A SI9400085 A SI 9400085A
- Authority
- SI
- Slovenia
- Prior art keywords
- mpl
- vaccine composition
- protein
- vaccine
- composition according
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/39—Medicinal preparations containing antigens or antibodies characterised by the immunostimulating additives, e.g. chemical adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/145—Orthomyxoviridae, e.g. influenza virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/10—Dispersions; Emulsions
- A61K9/127—Liposomes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/51—Medicinal preparations containing antigens or antibodies comprising whole cells, viruses or DNA/RNA
- A61K2039/525—Virus
- A61K2039/5252—Virus inactivated (killed)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55505—Inorganic adjuvants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55555—Liposomes; Vesicles, e.g. nanoparticles; Spheres, e.g. nanospheres; Polymers
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/555—Medicinal preparations containing antigens or antibodies characterised by a specific combination antigen/adjuvant
- A61K2039/55511—Organic adjuvants
- A61K2039/55572—Lipopolysaccharides; Lipid A; Monophosphoryl lipid A
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/58—Medicinal preparations containing antigens or antibodies raising an immune response against a target which is not the antigen used for immunisation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/70—Multivalent vaccine
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16111—Influenzavirus A, i.e. influenza A virus
- C12N2760/16134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2760/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses negative-sense
- C12N2760/00011—Details
- C12N2760/16011—Orthomyxoviridae
- C12N2760/16211—Influenzavirus B, i.e. influenza B virus
- C12N2760/16234—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Virology (AREA)
- Immunology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Pulmonology (AREA)
- Dispersion Chemistry (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
Description
(57) Predloženi izum zagotavlja vakcinske sestavke, ki so sposobni povečanja protektivnega odziva na izbran influenčni antigen, pri čemer sestavek vsebuje vsaj antigenski polipeptid in 3D-MPL, in postopke za povečevanje imunskega odziva na influenco z uporabo teh sestavkov.(57) The present invention provides vaccine compositions capable of enhancing a protective response to a selected influenza antigen, the composition comprising at least an antigenic polypeptide and 3D-MPL, and methods for enhancing the immune response to influenza using these compositions.
1. SmithKline Beecham Corporation1. SmithKline Beecham Corporation
2. SmithKline Beecham Biologicals (s.a.)2. SmithKline Beecham Biologicals (s.a.)
Vakcinski sestavki, ki vsebujejo antigenski polipeptid in 3D-MPL, uporabni pri preprečevanju infekcije z influencoVaccine compositions containing antigenic polypeptide and 3D-MPL useful in preventing influenza infection
To je delna nadaljevalna prijava US patentne prijave, serijska številka 021,535, vložene 19. februarja 1993, ki je istočasno v postopku.This is a partial continuation of U.S. Patent Application Serial Number 021,535, filed Feb. 19, 1993, which is pending at the same time.
Ta izum se nanaša na vakcine, uporabne pri preprečevanju infekcije z influenco pri ljudeh.The present invention relates to vaccines useful in preventing influenza infection in humans.
Infekcija z virusom influence povzroči akutne respiratorne bolezni pri ljudeh, konjih in perutnini, ki so včasih pandemičnih razsežnosti. Virusi influence spadajo v ortomiksovirusno družino RNA virusov in imajo ovite virione s premerom 80 do 120 nanometrov z dvema zunanjima glikoproteinskima konicama, hemaglutininom (HA) in nevraminidazo (NA) in pet notranjih proteinov, nukleoprotein, matrični protein in tri polimeraze. Influenčna virusna RNA kodira tudi za dva nestrukturna proteina (NS1 in NS2), ki se producirata v inficiranih celicah, vendar nista vgrajena v infektivne virione.Infection with influenza virus causes acute respiratory diseases in humans, horses and poultry, which are sometimes of a pandemic dimension. Influenza viruses belong to the orthomyxovirus family of RNA viruses and have wrapped virions of 80 to 120 nanometers in diameter with two external glycoprotein tips, hemagglutinin (HA) and neuraminidase (NA) and five internal proteins, a nucleoprotein, a matrix protein and three polymerases. Influenza viral RNA also encodes for two non-structural proteins (NS1 and NS2) that are produced in infected cells but are not incorporated into infectious virions.
Trije tipi influenčnih virusov, tip A, tip B in tip C inficirajo ljudi. Virusi tipa A so odgovorni za večino humanih epidemij v sodobnem času, čeprav obstajajo tudi sporadični izbruhi infekcij tipa B. Znani prašičji, konjski in perutninski virusi so večinoma tipa A, čeprav so viruse tipa C izolirali tudi iz prašičev.Three types of influenza viruses, type A, type B and type C, infect humans. Type A viruses are responsible for most human epidemics in modern times, although there are also sporadic outbreaks of type B infections. Known swine, equine and poultry viruses are mostly type A, although type C viruses have also been isolated from pigs.
V virusu ima genetična variacija v površinskih proteinih HA in NA za posledico tri pomembne podtipe, označene s H1N1, H2N2 in H3N2. Pri tipu A, so podtipi HI (prašičja influenca), H2 (azijska influenca) in H3 (hongkonška influenca) prevladujoči v humanih infekcijah.In the virus, genetic variation in the HA and NA surface proteins results in three important subtypes designated H1N1, H2N2 and H3N2. In type A, subtypes HI (swine influenza), H2 (Asian influenza) and H3 (Hong Kong influenza) are dominant in human infections.
površinskih glikoproteinov, ki povzročajo antigensko variacijo. Taje najbolj izražena v virusu tipa A, kjer so glavne genetične spremembe v HA ali NA proteinih že potekle(antigenski premiki). Nastanek teh novih virusnih podtipov povzroči infekcijo pandemične razsežnosti, kar ima za posledico precejšnjo smrtnost in bolehnost. Npr. H1N1 viruse, prevladujoče pred 1957, nadomestili virusi podtipa H2N2, ki so prevladovali do 1968, nakar jih je nadomestil podtip H3N2. Splošno H3N2 sevi še vedno krožijo, vendar so se od 1977 ponovno pojavili H1N1 virusi. HA-ji v danem podtipu so tudi izpostavljeni manjšim genetičnim spremembam (točkovne mutacije), vsako leto ali dve (antigenski naplav). Predvsem so omejeni na antigenske determinante, zbrane okoli vezavnih mest sialinske kisline v HA1 in rezultirajo v nastanku novih virusnih sevov. Čeprav ta antigenski naplav ne povzroči resne smrtnosti in bolehnosti takega obsega kot antigenski premik, pa je odgovoren za letne epidemije influence.of surface glycoproteins causing antigenic variation. It is most pronounced in type A virus, where the major genetic changes in HA or NA proteins have already expired (antigenic shifts). The emergence of these new viral subtypes results in infection of a pandemic dimension, resulting in considerable mortality and morbidity. E.g. H1N1 viruses, pre-1957 dominant, were replaced by H2N2 subtype viruses, which prevailed until 1968, and were then replaced by H3N2 subtype. In general, H3N2 strains are still circulating, but H1N1 viruses have re-emerged since 1977. HAs in a given subtype are also exposed to minor genetic changes (point mutations), every year or two (antigen flooding). Notably, they are limited to the antigenic determinants collected around sialic acid binding sites in HA1 and result in the formation of new viral strains. Although this antigen flooding does not cause serious mortality and morbidity of such magnitude as antigenic drift, it is responsible for annual influenza outbreaks.
Influenčne vakcine so klasificirane v tri tipe, popolen virion, razcep in podenoto. Vakcine popolni virioni, bazirajo na intaktnih virusnih delcih in čeprav so na splošno bolj imunogenske, težijo k večji reaktogenosti in so zaradi tega nadomeščene z vakcinami, ki so razcepljene ali podenote, pripravljene iz očiščenih virusnih komponent, dobljenih po razbitju virusa z obdelavo z raznimi kemijskimi sredstvi. Razlika med vakcinami, ki so razcepljene in tistimi, ki so podenote, je v tem, da vakcina podenota vsebuje skoraj izključno hemaglutinin in nevraminidazo, povrhnje antigene virusa, medtem ko razcepljene vakcine dodatno vsebujejo spremenljive količine internih komponent virusa, kot npr. ribonukleoprotein in matrični protein.Influenza vaccines are classified into three types, complete virion, cleft, and subunit. Vaccines are complete virions, based on intact viral particles, and although generally more immunogenic, tend to be more reactogenic and are therefore replaced by cleaved vaccines or subunits prepared from purified viral components obtained after the destruction of the virus by treatment with various chemical means. The difference between vaccines that are split and those that are subunits is that the vaccine subunit contains almost exclusively hemagglutinin and neuraminidase, the surface antigens of the virus, while the split vaccines additionally contain variable amounts of internal components of the virus, such as. ribonucleoprotein and matrix protein.
Splošno dosegljive tržne influenčne vakcine temeljijo na načelu, da protitelo za HA ali NA daje zaščito. Sestojijo iz neadjuvantiranih, inaktiviranih, popolnih ali razcepljenih virusnih produktov, ki izkoriščajo virus, zrasel v oplojenih kurjih jajcih. Vse influenčne vakcine na splošno vsebujejo pripravke iz H1N1, H3N2, in tipa B virusnih sevov . Zaradi vsakoletne antigenske variacije so specifični virusni sevi usklajeni na letni osnovi po WHO priporočilih, ki temelje na epidemiološkem nadzoru prevladujočih krožečih virusnih sevov.The generally available marketable influenza vaccines are based on the principle that the antibody for HA or NA provides protection. They consist of non-adjuvanted, inactivated, complete or split virus products that harness the virus grown in fertilized chicken eggs. All influenza vaccines generally contain preparations of H1N1, H3N2, and type B viral strains. Due to the annual antigenic variation, specific viral strains are harmonized on an annual basis according to WHO recommendations based on epidemiological surveillance of dominant circulating viral strains.
Ne obstoja nobena univerzalna vakcina za virus influence, t.j. vakcina, specifična za ne-sev. Pred kratkim so poskušali pripraviti takšne univerzalne ali poluniverzalne vakcine iz reasortantnih virusov, pripravljenih s križanjem različnih sevov. Še bolj pred kratkim so takšni poskusi vključevali tehnike rekombinatne DNA, osredotočene primarno na HA protein.There is no universal vaccine for influenza virus, i.e. non-strain specific vaccine. Recently, attempts have been made to prepare such universal or semi-universal vaccines from reassortable viruses prepared by crossing different strains. More recently, such experiments have included recombinant DNA techniques focused primarily on the HA protein.
Influenčne vakcine manj uporabljajo zaradi razlogov, ki vključujejo dvome o učinkovitosti, strah pred stranskimi učinki, potrebo po vsakoletni revakcinaciji in pomanjkanje zanimanja med pripravljalci. Za obstoječe vakcine je dokazano, da imajo približno 60-80% učinkovitost proti infekciji z virusi influence, ki so antigensko zelo sorodni virusnim sevom, uporabljenim v vakcini. Ta stopnja protektivne učinkovitosti ima tendenco padanja, kadar HA antigen epidemičnega seva HA odplava iz vakcinskega seva in bi padla na nič, če ne bi prišlo do premika v podtipu. Poleg tega se zaščita zmanjša v nekaterih imunsko ogroženih skupinah, kot so npr. starejši, ki žive v sanatorijih.Influenza vaccines are less commonly used for reasons including doubts about efficacy, fear of side effects, the need for annual revaccination, and lack of interest among preparers. Existing vaccines have been shown to have about 60-80% efficacy against infection with influenza viruses, which are highly antigenically related to the viral strains used in the vaccine. This level of protective efficacy tends to decline when the HA antigen of an epidemic strain HA drifts out of the vaccine strain and would fall to zero if there were no shift in the subtype. In addition, protection is reduced in some immunocompromised groups, such as the elderly living in sanatoriums.
Torej glavne pomanjkljivosti splošno dosegljivih vakcin izhajajo iz dejstva, da je zaradi pogostega antigenskega naplava komponento virusnih sevov potrebno menjati letno in je posameznike potrebno revakcinirati.Therefore, the major disadvantages of widely available vaccines stem from the fact that, due to frequent antigen flooding, the component of viral strains needs to be changed annually and individuals need to be re-vaccinated.
Torej obstaja v tehniki potreba po vakcinskih formulacijah in sestavkih, zmožnih induciranja protektivnih odzivov pri bitjih za širok izbor patogenov.Therefore, there is a need in the art for vaccine formulations and compositions capable of inducing protective responses in creatures for a wide variety of pathogens.
Iz enega vidika predloženi izum zagotavlja vakcinski sestavek, ki je zmožen stimuliranja povečanega imunskega in protektivnega odziva v vakcioniranem bitju proti influenci, pri čemer sestavek obsega izbran influenčni antigen ali antigenski polipeptid in učinkovito količino 3-o-deaciliranega monofosforilnega lipida A (3DMPL).In one aspect, the present invention provides a vaccine composition capable of stimulating an increased immune and protective response in a vaccinated battle against influenza, the composition comprising a selected influenza antigen or antigenic polypeptide and an effective amount of 3-o-deacylated monophosphoryl lipid A (3DMPL).
Z drugega vidika predloženi izum zagotavlja vakcinski sestavek, ki obsega izbran influenčni antigen ali antigenski polipeptid, učinkovito količino 3D-MPL in liposomski pripravek. Liposomski pripravek je definiran tukaj tako, da poleg tega, da deluje kot nosilec deluje tudi kot adjuvant in nudi precejšnje prednosti izdelovanja in formuliranja.In another aspect, the present invention provides a vaccine composition comprising a selected influenza antigen or antigenic polypeptide, an effective amount of 3D-MPL, and a liposomal preparation. The liposomal formulation is defined herein that, in addition to acting as a carrier, also acts as an adjuvant and offers considerable advantages in the manufacture and formulation.
V nadaljnjem vidiku predloženi izum zagotavlja postopek za povečevanje vakcinskega imunskega odziva za izbran influenčni antigen. Ta postopek vključuje dajanje sesalcu, prednostno človeku, vakcinski sestavek, opisan zgoraj.In a further aspect, the present invention provides a method for enhancing a vaccine immune response for a selected influenza antigen. This process involves administering to the mammal, preferably a human, the vaccine composition described above.
Drugi vidiki in prednosti predloženega izuma so nadalje opisani v naslednjem podrobnem opisu njegovih prednostnih izvedb.Other aspects and advantages of the present invention are further described in the following detailed description of its preferred embodiments.
Slika 1 je stolpčen diagram, ki prikazuje navzkrižno zaščito za H1N1 in H2N2 podtip virusov influence v miših, imuniziranih s Flu D proteinom (SK&F 106160) v aluminiju in 3D-MPL, kot je prikazano v primeru 18.Figure 1 is a bar diagram showing the cross-protection for H1N1 and H2N2 subtype of influenza viruses in mice immunized with Flu D protein (SK&F 106160) in aluminum and 3D-MPL, as shown in Example 18.
Slika 2 je stolpčen diagram, ki prikazuje vranične proliferativne odzive pred izzivom v miših, vakciniranih s Flu D formulacijami in kontrolami. Glej primer 20.Figure 2 is a bar diagram showing the splenic proliferative responses before challenge in mice vaccinated with Flu D formulations and controls. See example 20.
Slika 2B je stolpčen diagram, ki prikazuje vranične proliferativne odzive po izzivu v miših, vakciniranih s Flu D formulacijami in kontrolami. Glej primer 20.Figure 2B is a bar diagram showing the splenic proliferative responses after challenge in mice vaccinated with Flu D formulations and controls. See example 20.
Slika 3A je stolpčen diagram, ki prikazuje proliferativne odzive bezgavk, ki jih dobimo na dan 4 v miših, vakciniranih z 20 /zg flu D v aluminiju (prazni stolpci) ali aluminiju in 3D-MPL (šrafirani stolpci). Glej primer 21.Figure 3A is a bar diagram showing the proliferative responses of lymph nodes obtained on day 4 in mice vaccinated with 20 µg flu D in aluminum (blank columns) or aluminum and 3D-MPL (screwed columns). See example 21.
Slika 3B je stolpčen diagram, ki prikazuje proliferativne odzive bezgavk, ki jih dobimo na dan 4 v miših, vakciniranih s 5 /zg Flu D v aluminiju (prazni stolpci) ali aluminiju in 3D-MPL (šrafirani stolpci). Glej primer 21.Figure 3B is a bar chart showing the proliferative responses of lymph nodes obtained on day 4 in mice vaccinated with 5 / w Flu D in aluminum (blank columns) or aluminum and 3D-MPL (screwed columns). See example 21.
Slika 3C je stolpčen diagram, ki prikazuje proliferativne odzive bezgavk, ki jih dobimo na dan 4 v miših, vakciniranih z 1 /zg Flu D v aluminiju (prazni stolpci) ali aluminiju in 3D-MPL (šrafirani stolpci). Glej primer 21.Figure 3C is a bar diagram showing the proliferative responses of lymph nodes obtained on day 4 in mice vaccinated with 1 / w Flu D in aluminum (blank columns) or aluminum and 3D-MPL (screwed columns). See example 21.
Slika 4A je stolpčen diagram, ki prikazuje proliferacijo, na dan 2, bezgavk, v miših, imuniziranih z 1 /zg vakcinske formulacije proteina D. Glej primer 21.Figure 4A is a bar graph showing the proliferation, on day 2, of lymph nodes, in mice immunized with 1 / wt of vaccine formulation of protein D. See example 21.
Slika 4B je stolpčen diagram, ki prikazuje proliferacijo, na dan 3, bezgavk, v miših, imuniziranih z 1 /zg vakcinske formulacije proteina D. Glej primer 21.Figure 4B is a bar graph showing the proliferation of day 3 lymph nodes in mice immunized with 1 / wt of vaccine formulation of protein D. See example 21.
Slika 4C je stolpčen diagram, ki prikazuje proliferacijo, na dan 4, bezgavk, v miših, imuniziranih z 1 /zg vakcinske formulacije proteina D. Glej primer 21.Figure 4C is a bar graph showing the proliferation of day 4 lymph nodes in mice immunized with 1 / wt of vaccine formulation of protein D. See example 21.
Slika 4D je stolpčen diagram, ki prikazuje IL-2 produkcijo, na dan 2, bezgavk, v miših, imuniziranih z 1 /zg vakcinske formulacije proteina D. Glej primer 21.Figure 4D is a bar diagram showing IL-2 production, on day 2, of lymph nodes, in mice immunized with 1 / wt of vaccine formulation of protein D. See example 21.
Slika 4E je stolpčen diagram, ki prikazuje IL-2 produkcijo, na dan 3, bezgavk, v miših, imuniziranih z 1 /zg vakcinske formulacije proteina D. Glej primer 21.Figure 4E is a bar chart showing IL-2 production, on day 3, of lymph nodes, in mice immunized with 1 / wt of vaccine formulation of protein D. See example 21.
Slika 4F je stolpčen diagram, ki prikazuje IL-2 produkcijo, na dan 4, bezgavk, v miših, imuniziranih z 1 μ-g vakcinske formulacije proteina D. Glej primer 21.Figure 4F is a bar diagram showing IL-2 production, on day 4, of lymph nodes, in mice immunized with 1 μ-g of vaccine formulation of protein D. See example 21.
Slika 5A je diagram, ki prikazuje nivoje interferona v kulturah, stimuliranih z antigenom, pri miših, imuniziranih kot je opisano pri primeru 24 spodaj.Figure 5A is a diagram showing interferon levels in antigen-stimulated cultures in mice immunized as described in Example 24 below.
Slika 5B je diagram, ki prikazuje IL-2 nivoje v kulturah, stimuliranih z antigenom, dobljenih iz miši, imuniziranih, kot je opisano pri primeru 24 spodaj.Figure 5B is a diagram showing IL-2 levels in antigen-stimulated cultures obtained from mice immunized as described in Example 24 below.
Slika 6A je diagram, ki prikazuje virusne titre, določene v nosu z MDCK mikrotestom na dan 1, 3, 5, 7 in 9 po izzivu (5 miši na skupino) za kontrolo, ki vsebuje aluminij in 3D-MPL (--kvadrat-), influenčno monovalentno razcepljeno vakcino, ki vsebuje A/PR/8 sev brez adjuvanta (-trikotnik-), in sev A/PR/8 adjuvantiran s 3D-MPL (nepretrgana črta in krog). Glej primer 28.Figure 6A is a diagram showing viral titers determined in the nose by MDCK microtest on days 1, 3, 5, 7 and 9 after challenge (5 mice per group) for control containing aluminum and 3D-MPL (- squared- ), an influenza monovalent split vaccine containing A / PR / 8 strain without adjuvant (-triangle-), and strain A / PR / 8 adjuvanted with 3D-MPL (continuous line and circle). See example 28.
Slika 6B je diagram, ki prikazuje virusne titre, določene v nosu z MDCK mikrotestom na dan 1, 3, 5, 7 in 9 po izzivu (5 miši na skupino) za kontrolo, ki vsebuje aluminij in 3D-MPL (-kvadrat-), influenčno monovalentno razcepljeno vakcino, ki vsebuje Singapurni sev brez adjuvanta (-trikotnik-), in singapurni sev, adjuvantiran s 3DMPL (nepretrgana črta in krog). Glej primer 28.Figure 6B is a diagram showing viral titers determined in the nose by MDCK microtest on days 1, 3, 5, 7 and 9 after challenge (5 mice per group) for control containing aluminum and 3D-MPL (-square-) , an influenza monovalent split vaccine containing a Singaporean strain without adjuvant (-triangle-), and a Singaporean strain adjuvanted with 3DMPL (continuous line and circle). See example 28.
Slika 6C je diagram, ki prikazuje virusne titre, določene v traheji z MDCK mikrotestom na dan 1, 3,5, 7 in 9 po izzivu (5 miši na skupino) za enake tri vakcinske formulacije kot na sliki 6A.Figure 6C is a diagram showing viral titers determined in the trachea by MDCK microtest on days 1, 3.5, 7, and 9 after challenge (5 mice per group) for the same three vaccine formulations as in Figure 6A.
Slika 6D je diagram, ki prikazuje virusne titre, določene v traheji z MDCK mikrotestom na dan 1,3, 5, 7 in 9 po izzivu (5 miši na skupino) za enake tri vakcinske formulacije kot na sliki 6B.Figure 6D is a diagram showing the viral titers determined in the trachea by MDCK microtest on day 1,3, 5, 7 and 9 after challenge (5 mice per group) for the same three vaccine formulations as in Figure 6B.
Slika 6E je diagram, ki prikazuje virusne titre, določene v pljučih z MDCK mikrotestom na dan 1, 3, 5, 7 in 9 po izzivu (5 miši na skupino) za enake tri vakcinske formulacije kot na sliki 6A.Figure 6E is a diagram showing viral titers determined in lungs with MDCK microtest on days 1, 3, 5, 7 and 9 after challenge (5 mice per group) for the same three vaccine formulations as in Figure 6A.
Slika 6F je diagram, ki prikazuje virusne titre, določene v pljučih z MDCK mikrotestom na dan 1, 3, 5, 7 in 9 po izzivu (5 miši na skupino) za enake tri vakcinske formulacije kot na sliki 6B.Figure 6F is a diagram showing viral titers determined in lungs with MDCK microtest on days 1, 3, 5, 7 and 9 after challenge (5 mice per group) for the same three vaccine formulations as in Figure 6B.
Predloženi izum zagotalja vakcinske sestavke, ki so zmožni izzvanja povečanega imunskega odziva v vakciniranih gostiteljih, vključno ljudeh, kot tudi postopke za pripravo in uporabo takih vakcinskih sestavkov. Vakcinski sestavek v smislu izuma je označen s tem, da vsebuje učinkovito količino izbranega influenčnega antigena ali antigenskega polipeptida in 3-o-deaciliranega monofosforilnega lipida A (3D-MPL). V danem primeru je liposomski pripravek tudi lahko komponenta vakcinskih sestavkov v smislu izuma.The present invention provides vaccine compositions capable of eliciting an increased immune response in vaccinated hosts, including humans, as well as processes for the preparation and use of such vaccine compositions. The vaccine composition of the invention comprises an effective amount of the selected influenza antigen or antigenic polypeptide and 3-o-deacylated monophosphoryl lipid A (3D-MPL). In the present case, the liposome preparation may also be a component of the vaccine compositions of the invention.
Izumitelji smo ugotovili, da so kombinacije 3D-MPL in določenih influenčnih antigenov učinkovite pri doseganju protektivnih odzivov proti influenci, katere ne dosežemo s samim influenčnim antigenom. Npr. z antigenskim polipeptidom, znanim kot Flu D, opisanim spodaj, je ta odziv takšen, da je potrebna nižja količina antigena, da dobimo enake rezultate, kot z očiščenim Flu D in popolnim Freundovim adjuvantom (CFA), znanim močnim adjuvantom, kije toksičen za živali.The inventors have found that combinations of 3D-MPL and certain influenza antigens are effective in achieving protective influenza responses that are not achieved by the influenza antigen itself. E.g. with the antigenic polypeptide known as Flu D described below, this response is such that a lower amount of antigen is required to obtain the same results as with purified Flu D and complete Freund's adjuvant (CFA), a known potent animal adjuvant .
Nadalje, kadar sta izbrani influenčni antigen in 3D-MPL vključena v liposom, kot je opisano tukaj, dobimo protektivni odziv, ki presega tistega, dobljenega z antigenom in katerokoli drugo kombinacijo adjuvanta.Furthermore, when the selected influenza antigen and 3D-MPL are incorporated into the liposome as described herein, a protective response is obtained that exceeds that obtained with the antigen and any other combination of adjuvant.
Z izrazom povečan imunski odziv, kot ga uporabljamo tukaj, je mišljeno, da vakciniran gostitelj proizvede močnejši celični imunski odziv (produkcija protektivnih limfocitov T) za vakcinski sestavek v smislu izuma, kot je ali bi ga proizvedel gostitelj v odzivu na izbran antigen, ki ni adjuvantiran ali je adjuvantiran z drugimi običajnimi adjuvanti, prikladnimi za interno dajanje. Povečan protitelesni (celica B) odziv tudi pričakujemo s tem povečanim odzivom.By the term enhanced immune response as used herein, it is meant that the vaccinated host produces a stronger cellular immune response (production of T protective lymphocytes) for the vaccine composition of the invention, such as or would be produced by the host in response to a selected antigen other than adjuvanted or adjuvanted with other conventional adjuvants suitable for internal administration. An increased antibody (cell B) response is also expected with this increased response.
Z izrazom imunološko učinkovita količina ali učinkovita količina, kot ga uporabljamo tukaj, je mišljena tista količina antigena, ki inducira protektivni imunski odziv.By the term immunologically effective amount or effective amount as used herein is meant that amount of antigen that induces a protective immune response.
Z izrazi izbran antigen, antigenski polipeptid ali protein ali imunogen, kot jih uporabljamo tukaj, je mišljen popoln ali inaktiviran patogen, imunogenski protein, peptid ali fragment iz patogena, ki je v danem primeru spojen z drugim peptidom ali proteinom, ki je homolognega ali heterolognega izvora. Ti izrazi tudi vključujejo razcepljen virus, opisan spodaj. Ti izrazi lahko vključujejo tudi neproteinske biološke snovi iz patogena. Patogeni so prednostno organizmi, ki povzročajo bolezni, ki inficirajo ljudi, čeprav lahko uporabimo tudi živalske patogene v teh vakcinah, kjer je želeno za veterinarske namene. Ti izrazi se nanašajo na zmožnost popolnega patogena, razcepljenega virusa, peptidnega ali fuzijskega proteina, da izzove protektivni imunski odziv v vakciniranem gostitelju.The term antigen, antigenic polypeptide or protein or immunogen as used herein is intended to mean a complete or inactivated pathogen, immunogenic protein, peptide or fragment from a pathogen, optionally fused to another peptide or protein that is homologous or heterologous sources. These terms also include the split virus described below. These terms may also include non-protein pathogens. Pathogens are preferably organisms that cause diseases that infect humans, although animal pathogens can also be used in these vaccines where desired for veterinary purposes. These terms refer to the ability of a complete pathogen, a cleaved virus, a peptide or fusion protein to elicit a protective immune response in a vaccinated host.
Z izrazom monovalentna vakcina je mišljena vakcina, ki vsebuje antigene iz enojnega tipa ali podtipa influenčnega virusa, npr. H1N1, H2N2, H3N2 tipa A, tipa B in tipa C.By the term monovalent vaccine is meant a vaccine containing antigens of a single type or subtype of influenza virus, e.g. H1N1, H2N2, H3N2 type A, type B and type C.
Z izrazom multivalentna vakcina je mišljena vakcina, ki vsebuje antigene iz več kot enojnega tipa ali podtipa influenčnega virusa, t.j. trivalentna vakcina lahko vsebuje antigene iz katerihkoli treh influenčnih tipov ali podtipov, npr. H1N1, H2N2, H3N2 tipa A, tipa B in tipa C.By the term multivalent vaccine is meant a vaccine containing antigens of more than one type or subtype of influenza virus, i.e. a trivalent vaccine may contain antigens from any of the three influenza types or subtypes, e.g. H1N1, H2N2, H3N2 type A, type B and type C.
Z izrazom razcepljen virus je mišljena suspenzija virusa influence, ki jo dobimo iz oplojenih kurjih jajc, inokuliranih z zasevnim materialom, ki je delno očiščen in koncentriran. Koncentrirano virusno suspenzijo obdelamo z detergentom, kot npr. natrijevim dezoksiholatom, da razbijemo virusne delce. Odstranitev virusnih fosfolipidov med tem razcepitvenim postopkom proizvede inaktiviran influenčni antigen, za katerega je potencial reaktogenosti močno znižan. Suspenzijo razcepljenega virusa popolnoma inaktiviramo s kombiniranim učinkom detergenta in formaldehida.The term split virus is intended to mean an influenza virus suspension obtained from fertilized chicken eggs inoculated with seed material that is partially purified and concentrated. The concentrated viral suspension is treated with a detergent such as e.g. sodium deoxycholate to break down the viral particles. Removal of viral phospholipids during this cleavage process produces an inactivated influenza antigen for which the reactogenicity potential is greatly reduced. The split virus suspension is completely inactivated by the combined effect of detergent and formaldehyde.
Naslednji opis sestavkov in postopkov v smislu izuma podrobno opisuje vakcinske sestavke za profilaktično uporabo proti virusu influence.The following description of the compositions and methods of the invention describes in detail vaccine compositions for prophylactic use against influenza virus.
V eni prednostni izvedbi v smislu izuma, vakcinski sestavek, sposoben izvajanja povečanega imunskega odziva, protektivnega, proti infekciji z influenčnim virusom, vsebuje vsaj izbran influenčni antigenski polipeptid, kot npr. NS11^1HA265 222 (na katerega se tukaj sklicujemo kot na Flu D, D protein ali Flu D protein), adjuvantiran s 3D-MPL.In one preferred embodiment of the invention, a vaccine composition capable of producing an enhanced immune response, protective against influenza virus infection, contains at least a selected influenza antigen polypeptide, such as e.g. NS1 1 ^ 1 HA2 65 222 (referred to herein as Flu D, D protein, or Flu D protein) adjuvanted with 3D-MPL.
Na splošno je flu D protein prednosten influenčni antigenski polipeptid za uporabo v vakcinskih sestavkih v smislu izuma, ker ga najlažje očistimo influenčnih fuzijskih proteinov, ki vsebujejo celotno karboksi-terminalo poročje HA2 dela hemaglutininskega področja. D protein vsebuje prvih 81 amino kislin NS1, spojenih na amino kislino 65 skrajšane HA2 podenote (amino kisline 65-222). V danem primeru, kar zadeva druge NS1-HA2 fuzijske proteine, prikazane tukaj, linkersko sekvenco lahko vključimo med dve spojeni sekvenci.Generally, flu D protein is a preferred influenza antigen polypeptide for use in the vaccine compositions of the invention because it is most readily purified by influenza fusion proteins containing the entire carboxy terminal of the HA2 portion of the hemagglutinin region. The D protein contains the first 81 amino acids of NS1 fused to the amino acid of 65 truncated HA2 subunits (amino acids 65-222). In the present case, as regards the other NS1-HA2 fusion proteins shown herein, the linker sequence can be included between two fused sequences.
V sedanji prednostni izvedbi, DNA kodirno sekvenco za flu D protein pripravimo kot je opisano v EP 0366238 z restringiranjem HA2 kodirne sekvence s PvuII in ligiranjem C-terminalne regije Ncol mesta med amino kislinama 81 in 82 v NS1 kodirni sekvenci s sintetičnim oligonukleotidnim linkerjem. Ta linkerska selvenca kodira za glutamin-izolevcin-prolin. D protein, za katerega smo dobili 90-95%-no čistoto, zahteva uporabo čistilnih postopkov, opisanih tukaj, da v bistvu odstranimo proteine gostiteljske celice (E. coli) in druge kontaminante.In the present preferred embodiment, the DNA coding sequence for the flu D protein is prepared as described in EP 0366238 by restriction of the HA2 coding sequence with PvuII and ligation of the C-terminal region of the Ncol site between amino acids 81 and 82 in the NS1 coding sequence by a synthetic oligonucleotide linker. This linker selection codes for glutamine-isoleucine-proline. The D protein, for which a 90-95% purity was obtained, requires the use of the purification procedures described herein to essentially remove host cell proteins (E. coli) and other contaminants.
Flu D protein in rekombinantna ekspresija in čiščenje le-tega so podrobno prikazani v US patentni prijavi ser.št. 07/751,899, ki je istočasno v postopku in njeni ustrezni evropski patentni prijavi št. 366,238, objavljeni 2. maja 1990 in US patentni prijavi ser. št. 07/387,558 in evropski patentni prijavi št. 366,239, objavljeni 2. maja 1990. Te prijave so vključene z referenco za namene opisovanja tega proteina, njegove ekspresije in čiščenja.Flu D protein and recombinant expression and purification thereof are detailed in U.S. Pat. 07 / 751,899, which is pending at the same time as its corresponding European patent application no. No. 366,238, published May 2, 1990, and U.S. Pat. no. No. 07 / 387,558 and European Patent Application no. No. 366,239, published May 2, 1990. These applications are incorporated by reference for the purpose of describing, expressing and purifying this protein.
Poleg Flu D lahko v vakcinskih sestavkih v smislu izuma uporabimo tudi druge prikladne influenčne antigenske polipeptide, vključno tiste, opisane v evropski patentnih prijavah št. 366,238 in EP 366,239, obe objavljeni 2. maja 1990 in US patentnih prijavah ser.št. 07/751,898 07/751,896 in 07/837,773, ki so istočasno v postopku. Taki proteini vključujejo Δ M, Δ M+, A, C, C13,03 kratek in Δ D. Drugi, ki so primerni, vključujejo konstrukte D brez Cys, HAZ^ 222, in NS1H3HA2, kot npr. tiste, opisane v US patentnih prijavah ser. št. 07/751,898, 07/751,896, 07/751,896 in 07/837,773 in WO 93/15763, ki so istočasno v postopku in so vključene tukaj z referenco. Posebno zaželeni so H3HA2 konstrukti, navedeni zgoraj. Iz novejših študij izumiteljev je razvidno, da so miši, imunizirane s koktajlom, ki vsebuje tako NS1-H1HA2, kot tudi NS1-H3HA2 fuzijske proteine, zaščitene pred letalnim izzivom tako s HI kot tudi s H3 virusnimi podtipi.In addition to Flu D, other suitable influenza antigen polypeptides can be used in the vaccine compositions of the invention, including those described in European patent application no. No. 366,238 and EP 366,239, both published May 2, 1990, and U.S. Pat. 07 / 751,898 07 / 751,896 and 07 / 837,773, which are simultaneously pending. Such proteins include Δ M, Δ M +, A, C, C13.03 short and Δ D. Others that are suitable include constructs D without Cys, HAZ ^ 222 , and NS1H3HA2, such as e.g. those described in U.S. Patent Ser. no. 07 / 751,898, 07 / 751,896, 07 / 751,896 and 07 / 837,773 and WO 93/15763, which are contemplated simultaneously and are incorporated herein by reference. The H3HA2 constructs mentioned above are particularly desirable. Recent inventor studies show that mice immunized with a cocktail containing both NS1-H1HA2 and NS1-H3HA2 fusion proteins are protected against aviation challenge by both HI and H3 viral subtypes.
Kodirne sekvence za HA2, NS1 in druge virusne proteine influenčnega virusa lahko pripravimo sintetično ali jih lahko izpeljemo iz virusne RNA z znanimi tehnikami, ali iz dosegljivih plazmidov, ki vsebujejo cDNA, kot je opisano v objavljenih evropskih prijavah, ki so navedene zgoraj. Npr. dodatno k zgoraj navedenim referencam, DNA kodirno sekvenco za HA iz A/Japonska/305/57 seva kloniramo in sekvenciramo kot navajajo Gething et al, Nature, 287:301-306 (1980); HA kodirno sekvenco za sev A/NT/60/68 kloniramo kot navajajo Sleigh et al, in Both et al, oboje v Developments in Celi Biology, Elsevier Science Publishing Co., str. 69-79 in 81-89, (1980); HA kodirno sekvenco za sev A/WSN/33 kloniramo, kot navajajo Davis et al, Gene, 10:205-218 (1980); in Hiti et al, Virology, 111:113-124 (1981). HA kodirno sekvenco za perutninski plakni virus kloniramo kot navajajo Porter et al in Emtage et al, oboje v Developments in Celi Biology, (citirano zgoraj), str. 39-49 in 157-168.The coding sequences for HA2, NS1 and other influenza virus viral proteins can be prepared synthetically or can be derived from viral RNA using known techniques, or from accessible cDNA-containing plasmids, as described in published European applications cited above. E.g. in addition to the above references, the DNA coding sequence for HA from A / Japan / 305/57 strain is cloned and sequenced as cited by Gething et al, Nature, 287: 301-306 (1980); The HA coding sequence for strain A / NT / 60/68 is cloned as cited by Sleigh et al, and Both et al, both in Developments and Celi Biology, Elsevier Science Publishing Co., p. 69-79 and 81-89, (1980); The HA coding sequence for strain A / WSN / 33 is cloned as reported by Davis et al, Gene, 10: 205-218 (1980); and Hiti et al, Virology, 111: 113-124 (1981). The HA coding sequence for the poultry plaque virus is cloned as cited by Porter et al and Emtage et al, both in Developments and Celi Biology, (cited above), p. 39-49 and 157-168.
Sistemi za kloniranje in ekspresijo vakcinskih polipeptidov v raznih mikroorganizmih in celicah, ki vključujejo npr. E. coli, Bacillus, Streptomyces, Saccharomyces, celice sesalcev in insektov, so znani in dosegljivi iz privatnih in javnih laboratorijev in skladišč in od komercialnih prodajalcev.Systems for cloning and expression of vaccine polypeptides in a variety of microorganisms and cells, including e.g. E. coli, Bacillus, Streptomyces, Saccharomyces, mammalian and insect cells are known and available from private and public laboratories and warehouses and from commercial vendors.
D protein lahko očistimo s postopkom, opisanim v primeru 13. Razne običajne postopke lahko uporabimo pri čiščenju proteinov sestavkov v smislu izuma, čeprav ti postopki niso nujni, da dobimo visoko očiščen produkt farmacevtske kvalitete. Take postopke lahko uporabimo med, pred ali po zgoraj opisanih stopnjah postopka. Ena taka opcijska stopnja je diafiltracija, oblika kontinuirne dialize, ki je ekstremno učinkovita pri doseganju mnogih pufrnih sprememb. Diafiltracijo prednostno izvedemo mimo celulozne membrane ali ultrafiltra. Prikladne membrane/filtri so tisti z molekulsko maso približno 1000, odrezano za tiste z velikostjo por premera do 2,4 jim. Številni različni sistemi, prilagodljivi za diafiltracijo so tržno dosegljivi, kot npr. 10 K Amicon dualni spiralni patronski sistem. V postopku v smislu izuma lahko diafiltracijo z uporabo 20 mM tris pufra pri približno pH 8 učinkovito uporabimo pri čiščenju in kasnejšem koncentriranju polipeptida, ki ga uporabimo v vakcinskem sestavku v smislu izuma. V drugi prednostni izvedbi je antigen, uporabljen v vakcinskem sestavku v smislu izuma popolnoma inaktiviran patogen, kot npr. razcepljen virus, podrobno opisan v primeru 25. Monovalentna razcepljena influenčna vakcinja, ki vsebuje razcepljen virus ali multivalentna (npr. trivalentna) razcepljena influenčna vakcina, ki vsebuje več kot en razcepljen virus, je lahko adjuvantirana s 3D-MPL. V eni formulaciji vakcina vsebuje razcepljen virus, ki je pripravljen iz H1N1 seva, kot npr. Singapur/6/86 [Sachsisches Serumwerkl GmbH (SSW), Dresden, Nemčija in National Institute for Biological Standards and Control (NIBSC, London, Anglija)], ki se navadno uporablja v običajnih influenčnih vakcinah. Alternativno lahko druge H1N1 razcepljene viruse pripravimo iz A/PR/8/34 (imenovano tudi A/PR/8), opisano v T. Francis, Proč. soc. Exp. Biol. Med., 32:1172 (1935) in dosegljivo od American Type Culture Collection, Rockville, Maryland, ZDA pod ATCC št. VR-95. Monovalentna vakcina vsebuje antigene iz enega seva virusa influenčnega tipa. Alternativno je vakcina lahko multivalentna, pri čemer vsebuje več kot en influenčni antigen, npr. dva ali tri razcepljenene viruse, da se ji poveča reaktivnost proti več kot enemu virusu influenčnega tipa. Primer trivalentne vakcine vključuje npr. H1N1 Singapur/6/86 sev, s H3N2 sevom Beijing/32/92 (SSW), Dresden, Nemčija] in sev tipa B, Panama/45/90 [SSW, Dresden, Nemčija].The D protein can be purified by the method described in Example 13. Various conventional methods can be used to purify the protein of the compositions of the invention, although these processes are not necessary to obtain a highly purified pharmaceutical grade product. Such procedures may be used during, before or after the steps described above. One such optional step is diafiltration, a form of continuous dialysis that is extremely effective in achieving many buffer changes. Diafiltration is preferably carried out past the cellulose membrane or ultrafilter. Suitable membranes / filters are those with a molecular weight of about 1000, cut off for those with pore sizes up to 2.4 µm in diameter. Many different systems, adaptable to diafiltration, are commercially available, such as for example. 10 K Amicon Dual Spiral Cartridge. In the process of the invention, diafiltration using 20 mM tris buffer at about pH 8 can be effectively used to purify and subsequently concentrate the polypeptide used in the vaccine composition of the invention. In another preferred embodiment, the antigen used in the vaccine composition of the invention is a fully inactivated pathogen, such as e.g. the split virus detailed in Example 25. A monovalent split influenza vaccine containing a split virus or a multivalent (e.g. trivalent) split influenza vaccine containing more than one split virus can be adjuvanted with 3D-MPL. In one formulation, the vaccine contains a split virus prepared from an H1N1 strain, such as e.g. Singapore / 6/86 [Sachsisches Serumwerkl GmbH (SSW), Dresden, Germany and National Institute for Biological Standards and Control (NIBSC, London, England)], commonly used in conventional influenza vaccines. Alternatively, other H1N1 cleaved viruses can be prepared from A / PR / 8/34 (also referred to as A / PR / 8) described in T. Francis, Proc. soc. Exp. Biol. Med., 32: 1172 (1935) and available from American Type Culture Collection, Rockville, Maryland, USA under ATCC no. VR-95. The monovalent vaccine contains antigens from one strain of influenza virus. Alternatively, the vaccine may be multivalent, containing more than one influenza antigen, e.g. two or three split viruses to increase reactivity against more than one influenza virus. An example of a trivalent vaccine includes e.g. H1N1 Singapore / 6/86 strain, with H3N2 strain Beijing / 32/92 (SSW), Dresden, Germany] and type B strain, Panama / 45/90 [SSW, Dresden, Germany].
Viruse influence, ki jih lahko pripravimo kot razcepljene viruse na znan način, kot je opisan v primeru 25, vključujejo katerekoli seve, podtipe in tipe, zlasti tiste, ki jih priporoča WH0, pri čemer so mnogi dosegljivi iz kliničnih primerkov in iz javnih shramb, kot npr. American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland, 20852, ZDA (ATCC) in NIBSC. Npr. drugi prikladni H3N2 virusni sevi vključujejo, brez omejitev, A/Victoria/H3/75, opisano v Fiers et al, Celi, 19: 683696 (1980); A/Udorn, opisano v C. J. Lai et al, Proč. Natl. Acad. Sci., ZDA, 77:210214 (1980); Palese and Schulman, virol., 57:227-237 (1974); in A/HK/8/68, opisano v WHO Weekly Epid. Record, Vol, 43:401 (1968) in dosegljivo iz ATCC kot št. VR544 kot tudi Beijing/32/92. Drugi prikladni sevi tipa B vključujejo, brez omejitve, tiste, znane kot B/Lee/40, ki jih opisujejo Krystal et al, Proč. Natl. Acad. Sci., ZDA 79:4804-4900 (1982) in B/Taiwan, dosegljive iz ATCC kot št. VR-295, Panama/45/90 in B/Yamaghta sevi. H2N2 viruse tudi lahko uporabimo v teh vakcinah.Influenza viruses that can be prepared as split viruses in a known manner as described in Example 25 include any strains, subtypes and types, especially those recommended by WH0, many of which are available from clinical specimens and from public storage, such as American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland, 20852, USA (ATCC) and NIBSC. E.g. other suitable H3N2 viral strains include, without limitation, A / Victoria / H3 / 75, described in Fiers et al, Celi, 19: 683696 (1980); A / Udorn described in C. J. Lai et al, Proc. Natl. Acad. Sci., USA, 77: 210214 (1980); Palese and Schulman, virol., 57: 227-237 (1974); and A / HK / 8/68 described in WHO Weekly Epid. Record, Vol, 43: 401 (1968) and available from ATCC as no. VR544 as well as Beijing / 32/92. Other suitable Type B strains include, without limitation, those known as B / Lee / 40, described by Krystal et al, Away. Natl. Acad. Sci., USA 79: 4804-4900 (1982) and B / Taiwan, available from ATCC as no. VR-295, Panama / 45/90 and B / Yamaghta strains. H2N2 viruses can also be used in these vaccines.
Razumljivo je, da so poleg drugih influenčnih virusov ali inaktiviranih virusnih pripravkov, predvideni tudi drugi antigenski materiali iz drugih patogenov za uporabo poleg ponazorjenih antigenov, po napotkih, navedenih tukaj.It is understood that, in addition to other influenza viruses or inactivated viral preparations, other antigenic materials from other pathogens are provided for use in addition to the antigens illustrated, following the instructions given herein.
Druga komponenta vakcinskega sestavka v smislu izuma je adjuvant 3D-MPL. 3DMPL je podrobno opisan v US patentu št. 4,912,094, ki je vključen tukaj z referenco in je tržno dosegljiv od RIBI Immunochem Research Inc., Hamilton, Montana. Na kratko, 3D-MPL je derivat endotoksina, monofosforilni lipid A (MPL), lipidni A analog, izoliran iz brezheptozne RE mutante gramnegativne bakterije, kot je npr. Salmonella minnesota. MPL nima fosfatne skupine v C-l legi glukozamina. Z obdelavo MPL molekule, da odstranimo acilno verigo v legi 3 glukozamina, dobimo 3D-MPL. 3D-MPL je netoksičen v nasprotju z drugimi enterobakterijskimi lipopolisaharidi, vendar ohrani antigensko aktivnost izvirnega endotoksina. Ta molekula je uporabna pri preprečevanju gramnegativne sepse in endotoksemije.Another component of the vaccine composition of the invention is the 3D-MPL adjuvant. 3DMPL is described in detail in U.S. Pat. No. 4,912,094, which is incorporated herein by reference and is commercially available from RIBI Immunochem Research Inc., Hamilton, Montana. Briefly, 3D-MPL is an endotoxin derivative, monophosphoryl lipid A (MPL), a lipid A analog isolated from a non-heptose RE mutant of a gram-negative bacterium, such as e.g. Salmonella minnesota. MPL does not have a phosphate group in the C-1 position of glucosamine. Treatment of the MPL molecule to remove the acyl chain in position 3 of glucosamine yields 3D-MPL. 3D-MPL is non-toxic in contrast to other enterobacterial lipopolysaccharides but retains the antigenic activity of the original endotoxin. This molecule is useful in preventing gram-negative sepsis and endotoxemia.
3D-MPL lahko raztopimo v vodi, da dobimo raztopine vezikularnih agregatov, ki so verjetno sestavljeni iz lipidnih dvoplastnih membran. Torej ni mogoče, da bi 3D-MPL zaznali kot individualno molekulo pri imunskem sistemu, ker raje pride do vzajemnega delovanja pri kontaktih membrana-membrana, ki vključuje celične površine in površine veziklov.3D-MPL can be dissolved in water to obtain solutions of vesicular aggregates likely composed of lipid bilayer membranes. Therefore, it is not possible to detect 3D-MPL as an individual molecule in the immune system because it prefers to interact with membrane-to-membrane contacts involving cell surfaces and vesicle surfaces.
V prednostni izvedbi so delci MPL majhni in na splošno ne presegajo 120 nm.In a preferred embodiment, the MPL particles are small and generally do not exceed 120 nm.
deaciliran monofosforilni lipid A z majhnimi delci, ki na splošno ne presegajo 120 nm lahko naredimo po postopku, opisanem v GB 2 220 211 (ali pa lahko tržen MPL z večjimi delci nabavimo od Ribi Immunochem.) in produkt lahko nato sonificiramo, dokler ni suspenzija bistra. Velikost delcev lahko določimo z uporabo dinamičnega svetlobnega sipanja, kotje opisano za tem.deacylated monophosphoryl lipid A with small particles generally not exceeding 120 nm can be made by the procedure described in GB 2 220 211 (or commercially available larger particulate MPL can be obtained from Ribi Immunochem.) and the product can then be sonicated until suspension is obtained. clear. The particle size can be determined using dynamic light scattering as described after.
Prednostno je velikost delcev v območju 60-120 nm.Preferably, the particle size is in the range 60-120 nm.
Najbolj prednostno je velikost delcev pod 100 nm.Most preferably, the particle size is below 100 nm.
V skladu s predloženim izumom, smo izumitelji določili, da influenčni antigenski polipeptid, npr. flu D protein, Če je visoko očiščen, ni niti imunogenski niti protektiven v odsotnosti adjuvanta. Vendar, če je adjuvantiran s 3D-MPL, kot je opisano tukaj in prikazano v primerih 14-24 spodaj, je protein sposoben induciranja zaščite proti influenčni infekciji. Če je izbran antigen razcepljen virus v monvalentnem ali trivalentnem sestavku, ima sestavek v smislu izuma povečano imunogenost in navzkrižno reaktivnost.In accordance with the present invention, the inventors have determined that an influenza antigen polypeptide, e.g. flu D protein, When highly purified, it is neither immunogenic nor protective in the absence of an adjuvant. However, when adjuvanted with 3D-MPL as described herein and shown in Examples 14-24 below, the protein is capable of inducing protection against influenza infection. If the antigen cleaved virus is selected in a monovalent or trivalent composition, the composition of the invention has increased immunogenicity and cross-reactivity.
Nadalje smo izumitelji ugotovili, da če influenčni antigenski polipeptid, npr. flu D protein, adjuvantiramo s 3D-MPL, potem je potrebna nižja doza flu D proteina, da dosežemo enak nivo imunskega odziva, kot ga dobimo, če protein adjuvantiramo samo z aluminijevim adjuvantom. Če je izbran antigen razcepljen influenčni virus v monovalentnem ali trivalentnem sestavku, predvidevamo, da bo reaktogenost sestavka manjša, če uporabimo manj antigena v tej izvedbi v smislu izuma.Furthermore, the inventors have found that if an influenza antigen polypeptide, e.g. flu D protein is adjuvanted with 3D-MPL, then a lower dose of flu D protein is required to achieve the same level of immune response as is obtained if the protein is adjuvanted with aluminum adjuvant only. If the selected antigen is a split influenza virus in a monovalent or trivalent composition, it is contemplated that the reactogenicity of the composition will be less if less antigen is used in the embodiment of the invention.
Dodatni adjuvanti so tudi lahko vključeni v vakcinske sestavke v smislu izuma. Eden od ustreznih dodatnih adjuvantov je aluminij ali aluminijev hidroksid ali aluminijev fosfat. Če flu D protein adjuvantiramo s kombinacijo aluminija in 3D-MPL, dosežemo stopnjo učinkovitosti ekvivalentno tisti, ki jo zaznamo s popolnim Freundovim adjuvantom (CFA), klasičnim adjuvantom za vzpodbujanje odzivov celic T, ki pa ni primeren za interno dajanje pri ljudeh.Additional adjuvants may also be included in the vaccine compositions of the invention. One suitable additional adjuvant is aluminum or aluminum hydroxide or aluminum phosphate. When adjuvanted with D aluminum and 3D-MPL, the flu D protein is equivalent to that detected with complete Freund's adjuvant (CFA), a classic T cell adjuvant that is not suitable for human administration.
Za pripravo prednostnega vakcinskega sestavka v smislu izuma, ki vsebuje antigenski polipeptid, npr. flu D protein in 3D-MPL, potrebno količino flu D proteina pomešamo s primerno količino 3D-MPL, kot je bolj podrobno opisano spodaj. V danem primeru liofiliziran lipid A pomešamo s predliposomskim gelom, podrobno opisanim spodaj pred antigenom. Najbolj prednostno molsko razmerje fosfatidov proti lipidu A je 66:1. Vendar gostoto sredstva lahko spreminjamo do želenega nivoja.For the preparation of a preferred vaccine composition of the invention containing an antigenic polypeptide, e.g. flu D protein and 3D-MPL, the required amount of flu D protein is mixed with an appropriate amount of 3D-MPL, as described in more detail below. In the present case, the lyophilized lipid A is mixed with a pre-liposomal gel detailed below before the antigen. The most preferred molar ratio of phosphatides to lipid A is 66: 1. However, the density of the asset can be varied to the desired level.
Druga primerna sredstva za dodajanje k vakcinskemu sestavku vključujejo, npr. IL-2, QS21 [C. R. Kensil et al, J. Immunol., 146(2):431-437 (1991)] in muramil dipeptide (MDP). Poleg tega lahko vključimo v vakcinske sestavke v smislu izuma tudi druge v vodi topne ali netopne kemikalije ali zdravila in/ali adjuvante, opisane zgoraj. Npr., muramil dipeptide lahko tudi uporabimo v podobnih razmerjih, kot je opisano zgoraj oz. potrebno. Druga zdravila, ki so lahko del take vakcine, lahko vključujejo katerokoli substanco, ki kadar je v vakcini, modificira eno ali več njenih funkcij, npr. kot je navedeno v uradni farmakopeji ali substanco, uporabljeno pri zdravljenju ali preprečevanju infekcij.Other suitable agents for addition to the vaccine composition include, e.g. IL-2, QS21 [C. R. Kensil et al., J. Immunol., 146 (2): 431-437 (1991)] and muramyl dipeptides (MDP). In addition, other water-soluble or insoluble chemicals or drugs and / or adjuvants described above may be included in the vaccine compositions of the invention. For example, muramyl dipeptides can also be used in similar proportions as described above or as described above. necessary. Other drugs that may be part of such a vaccine may include any substance that, when contained in a vaccine, modifies one or more of its functions, e.g. as indicated in the official pharmacopoeia or substance used in the treatment or prevention of infections.
Vakcinski sestavki v smislu izuma lahko nadalje vsebujejo primerne nosilce, ki so dobro znani strokovnjakom na področju vakcin in jih z lahkoto izberejo. Primeri za nosilce vključujejo sterilno fiziološko raztopino, laktozo, saharozo, kalcijev fosfat, želatino, dekstrin, agar, pektin, arašidno olje, olivno olje, sezamovo olje, skvalen in vodo. V danem primeru nosilec ali razredčilo lahko vključuje snovi za časovno zadrževanje, kot npr. gliceril monostearat ali gliceril distearat sam ali z voskom. V danem primeru lahko uporabimo primerne kemijske stabilizatorje,da izboljšamo stabilnost farmacevtskega pripravka. Primerni kemijski stabilizatorji so dobro znani strokovnjakom in vključujejo npr. citronsko kislino in druga sredstva za naravnanje pH, kelirna ali sekvestirna sredstva in antioksidante. Alternativno, če je liposomski sistem dajanja del vakcinskega sestavka, potem niso potrebni nobeni nosilci.The vaccine compositions of the invention may further comprise suitable carriers well known to those skilled in the art of vaccines and easily selected. Examples of carriers include sterile saline, lactose, sucrose, calcium phosphate, gelatin, dextrin, agar, pectin, peanut oil, olive oil, sesame oil, squalene and water. In a given case, the carrier or diluent may include temporal retention agents such as e.g. glyceryl monostearate or glyceryl distearate alone or with wax. Suitable chemical stabilizers may be used to improve the stability of the pharmaceutical composition. Suitable chemical stabilizers are well known in the art and include e.g. citric acid and other pH adjusters, chelating or sequestering agents and antioxidants. Alternatively, if the liposomal delivery system is part of the vaccine composition, then no carriers are required.
Drug prednosten vakcinski sestavek v smislu izuma obsega izbran antigen, npr. flu D protein, kot je opisan zgoraj in 3D-MPL, pri čemer so komponente ujete ali vrinjene v liposomski pripravek. V danem primeru, liposom, flu D protein in 3D-MPL, vsebujoč vakcinski sestavek, lahko vsebuje tudi enega ali več dodatnih influenčnih antigenov ali drugih antigenov ali ustreznih adjuvantov in sredstev, kot je opisano zgoraj. V prednostni formulaciji, vakcina vsebuje antigenski polipeptidni flu D protein in 3D-MPL, nameščen v nosilni liposom. V drugi formulaciji vakcina vsebuje mono- ali multivalenten influenčni antigen, ki je podobno vsebovan v nosilnem liposomu.Another preferred vaccine composition of the invention comprises a selected antigen, e.g. flu D protein as described above and 3D-MPL, wherein the components are trapped or embedded in a liposomal preparation. Where appropriate, the liposome, flu D protein, and 3D-MPL containing the vaccine composition may also contain one or more additional influenza antigens or other antigens or suitable adjuvants and agents as described above. In a preferred formulation, the vaccine comprises an antigenic polypeptide flu D protein and 3D-MPL placed in a carrier liposome. In another formulation, the vaccine contains a mono- or multivalent influenza antigen, which is similarly contained in a carrier liposome.
Izumitelji smo ugotovili, da so liposomski pripravki, opisani tukaj, sposobni delovanja ne samo kot nosilci, ampak tudi kot adjuvanti in so posebno prednostni, ker za njihovo izdelavo ne potrebujemo organskih topil ali področij z visokim strigom, kar je precejšnja prednost proteinskega zdravila in za vse sestavine za liposome smatramo, da so varne za interno dajanje. Zaradi enostavnosti in fleksibilnosti preparativnega postopka, so ti liposomski pripravki primerni za izdelovanje v velikem obsegu.The inventors have found that the liposomal preparations described herein are capable of acting not only as carriers but also as adjuvants and are particularly preferred because they do not require organic solvents or high shear areas, which is a significant advantage of the protein drug and All liposome ingredients are considered safe for internal administration. Due to the simplicity and flexibility of the preparative process, these liposome preparations are suitable for large-scale production.
Izumitelji smo tudi ugotovili, da 3D-MPL lahko enostavno vgradimo v liposomske strukture, opisane tukaj, v kombinaciji z influenčnimi antigeni, da dobimo rezultate, superiorne glede na tiste, ki smo jih ugotovili, če influenčne antigene kombiniramo z znanimi običajnimi adjuvanti. Značilno ima vakcinski sestavek, ki vsebuje D protein v 3D-MPL in liposomski formulaciji, celo večjo učinkovitost kot D protein v CFA. Glej npr. primer 20 in 22 spodaj.The inventors have also found that 3D-MPL can be easily incorporated into the liposomal structures described herein in combination with influenza antigens to obtain results superior to those found when influenza antigens are combined with known conventional adjuvants. Typically, a vaccine composition containing D protein in 3D-MPL and a liposomal formulation has even greater efficacy than D protein in CFA. See, e.g. example 20 and 22 below.
Liposomski pripravki, uporabni v vakcinskih sestavkih in postopki v smislu izuma so opisani v US patentni prijavi ser. št. 07/714,984 (US 5230899), ki je istočasno v postopku in je vključena tukaj z referenco. Na splošno je beseda liposom predlagana in sprejeta kot izraz za uporabo v znanstveni literaturi, ki opisuje sintetične, oligolamelne lipidne vezikle. Taki vezikli so običajno sestavljeni iz ene ali več koncentričnih naravnih ali sintetičnih lipidnih dvoplasti, ki obdajajo notranjo vodno fazo.Liposomal preparations useful in the vaccine compositions and methods of the invention are described in U.S. Pat. no. No. 07 / 714,984 (U.S. Pat. No. 5,230,899), which is contemplated by reference herein. In general, the word liposome has been proposed and accepted as a term for use in the scientific literature describing synthetic, oligolamel lipid vesicles. Such vesicles typically consist of one or more concentric natural or synthetic lipid bilayers surrounding the internal aqueous phase.
Specifično, kot je definirano tukaj in v skladu z vključeno referenco, liposomske pripravke, uporabne v vakcinskem sestavku v smislu izuma, pripravimo z dispergiranjem v vodnem mediju na način, ki ustreza tvorbi liposomov, pri čemer sestavek vsebuje snov za tvorbo liposoma, ki vsebuje dolgoverižno alifatsko ali aromatsko kislino ali amin; hidratacijsko sredstvo, ki ima naboj nasproten tistemu od kisline ali amina, ki je prisotno v molskem razmerju med 1:20 in 1:0,05 glede na kislino ali amin; in vodo v količini do 300 mol glede na trdne snovi.Specifically as defined herein and in accordance with the included reference, liposome preparations useful in the vaccine composition of the invention are prepared by dispersing in aqueous medium in a manner appropriate to liposome formation, the composition comprising a long-chain liposome-forming substance aliphatic or aromatic acid or amine; a hydrating agent having a charge opposite to that of the acid or amine present in a molar ratio between 1:20 and 1: 0.05 relative to the acid or amine; and water in an amount up to 300 mol relative to solids.
Priprava liposomskih adjuvantnih nosilcev, uporabnih v smislu izuma, sledi. Primeri snovi, ki tvorijo liposome, vključujejo lipide, ki se dajo in takšne, ki se ne dajo umiliti, npr. acilne glicerole, fosfogliceride, sfingolipide, glikolipide, itd. Maščobne kisline vključujejo nasičene ali nenasičene alkil (Cg-C^) karboksilne kisline, monoalkil (CgC27) estre (C4-C10) dikarboksilnih kislin, (npr. holesterol hemijantarno kislino in maščobno kislinske derivate amino kislin v katerih so vključene tudi katerekoli N-acil karboksilne kisline (npr. N-oleoil treonin, Ndinoleoil serin, itd). Mono- ali dialkil (Cg-C^) sulfonatni estre in mono- ali dialkil (Cg-C^) sulfonatne estre in mono- ali dialkil (Cg-C^) fosfatne estre lahko substituiramo za maščobne kisline. Nadalje lahko uporabimo mono- ali diacil (Cg-C^) glicerolne derivate fosforjevih kislin in mono- ali diacil (Cg-C^) glicerolne derivate žveplovih kislin namesto maščobnih kislin.The preparation of liposomal adjuvant carriers useful according to the invention follows. Examples of liposome-forming substances include lipids that are administered and those that cannot be saponified, e.g. acyl glycerols, phosphoglycerides, sphingolipids, glycolipids, etc. Fatty acids include saturated or unsaturated alkyl (Cg-C ^) carboxylic acids, monoalkyl (C g C 27 ) esters of (C 4 -C 10 ) dicarboxylic acids, (e.g. cholesterol hemiatic acid and fatty acid derivatives of amino acids in which they are included also any N-acyl carboxylic acid (e.g. N-oleoyl threonine, Ndinoleoyl serine, etc.) Mono- or dialkyl (Cg-C ^) sulfonate esters and mono- or dialkyl (Cg-C ^) sulfonate esters and mono- or the dialkyl (Cg-C ^) phosphate esters may be substituted for fatty acids, and mono- or diacyl (Cg-C ^) glycerol derivatives of phosphoric acids and mono- or diacyl (Cg-C ^) glycerol derivatives of sulfuric acids may be used instead of fatty acids. .
Poleg tega maščobne kisline lahko nadomestimo tudi z amini (npr. Cg-C^ NHJ, Cg-C^ maščobnimi kislinskimi derivati aminov (npr. Cg-C^ CONH-NH2), Cg-C24 maščobnimi alkoholnimi derivati amino kislin (npr. Cg-C^ OOC-NH2), in Cg-C^ maščobnimi kislinskimi estri aminov (npr. Cg-C^ COO-NH2).In addition, fatty acids can also be replaced by amines (e.g., Cg-C ^ NHJ, Cg-C ^ fatty acid derivatives of amines (e.g., Cg-C ^ CONH-NH 2 ), C g -C 24 fatty alcohol derivatives of amino acids ( e.g., Cg-C ^ OOC-NH 2 ), and Cg-C ^ fatty acid esters of amines (e.g., Cg-C ^ COO-NH 2 ).
Fotopolimerizibilni lipidi in/ali maščobne kisline (ali amini) (npr. diacetilenske maščobne kisline) so tudi lahko vključeni, ki lahko zagotovijo zaprt liposom s premreženimi membranskimi dvoplastmi po fotoiniciaciji polimerizacije.Photopolymerizable lipids and / or fatty acids (or amines) (eg diacetylene fatty acids) may also be included that can provide closed liposomes with cross-linked membrane bilayers after photoinitiation of the polymerization.
Dolgoverižne alifatske in/ali aromatske kisline ali amini vključujejo kislino ali amin, ki ima strukturo z odprto verigo in sestoji iz parafina, olefina in acetilenskih ogljikovodikov in njihovih derivatov, npr. nasičenih in nenasičenih ogljikovodikov ali ogrodje take verige vsebuje aromatski substituent. Take kisline in amini imajo lahko več kot eno takšno funkcijo. Izraz dolga veriga pomeni, da ogrodje alifatske verige kisline ali amina vsebuje 10 ali več atomov ogljika. Če veriga vsebuje aromatsko skupino, kot npr. fenil, veriga obsega ogrodje iz vsaj petih atomov ogljika, spojeno z aromatsko skupino. Veriga atomov ogljika v ogrodju je lahko različno substituirana z nasičenimi ali nenasičenimi alifatskimi ali aromatskimi funkcijami.Long-chain aliphatic and / or aromatic acids or amines include an acid or amine which has an open chain structure and consists of paraffin, olefin and acetylene hydrocarbons and their derivatives, e.g. saturated and unsaturated hydrocarbons or the backbone of such a chain contains an aromatic substituent. Such acids and amines may have more than one such function. The term long chain means that the framework of an aliphatic acid or amine chain contains 10 or more carbon atoms. If the chain contains an aromatic group, such as e.g. phenyl, the chain comprises a framework of at least five carbon atoms fused to an aromatic group. The chain of carbon atoms in the framework may be variously substituted by saturated or unsaturated aliphatic or aromatic functions.
Izraza kislina ali amin pomenita običajno definirane kemijske funkcionalosti. Npr. kislinska funkcija je lahko karboksilatna ali izpeljana iz fosforja ali žvepla, kot npr. fosfat, fosfit ali pirofosfat ali sulfat, sulfit, tiosulfat ali podobno sestavljena kislina na osnovi fosforja ali žvepla. Amini morajo biti dovolj bazični, tako da imajo vodik, ki se da ionizirati oz. sposobni tvorbe kvaternih soli, ki imajo takšno ionizacijsko konstanto, da lahko tvorijo potrebni hidratni kompleks.The terms acid or amine mean commonly defined chemical functionalities. E.g. the acid function may be carboxylate or derived from phosphorus or sulfur, such as e.g. phosphate, phosphite or pyrophosphate or sulfate, sulfite, thiosulphate or similarly composed phosphorus or sulfur based acid. The amines must be sufficiently basic to have ionizable and / or hydrogen. capable of forming quaternary salts having such an ionization constant that they can form the necessary hydrate complex.
Kot uporabljamo v vakcinskem sestavku in glede na uporabljeno količino vode v liposomskem sestavku, se izraz trdne snovi nanaša na snovi, ki tvorijo liposom in kislinsko ali aminsko komponento, hidratacijska sredstva, 3D-MPL, aluminij in izbrano antigensko snov, ki jo je treba zakapsulirati.As used in the vaccine composition and depending on the amount of water used in the liposomal composition, the term solid refers to liposome forming agents and an acid or amine component, hydrating agents, 3D-MPL, aluminum and the selected antigenic substance to be encapsulated .
Za namene v smislu izuma hidratacijsko sredstvo pomeni spojino z vsaj dvema skupinama, ki se dasta ionizirati, prednostno nasprotnega naboja, pri čemer je ena zmožna tvorbe ionske soli, ki lahko disociira, pri čemer sol lahko tvori kompleks z ionsko funkcionalnostjo kisline ali amina v snovi, ki tvori liposom. Hidratacijsko sredstvo samo po sebi ne tvori liposomov. Tako sredstvo je tudi fiziološko sprejemljivo, t.j. nima nobenih neugodnih ali škodljivih fizioloških učinkov na gostitelja, kateremu ga damo v zvezi z njegovo uporabo v smislu izuma.For the purposes of the invention, a hydrating agent means a compound with at least two ionizable groups, preferably of opposite charge, one being capable of dissociating an ionic salt, the salt being able to form a complex with the ionic functionality of an acid or amine in a substance which forms the liposome. The hydrating agent does not by itself form liposomes. Such an agent is also physiologically acceptable, i.e. does not have any adverse or adverse physiological effects on the host to which it is administered in connection with its use according to the invention.
Prednostna hidratacijska sredstva so alfa amino kisline z omega substitucijo, ki se da ionizirati, kot so npr. karboksilatna, amino in gvanidino funkcija in spojine predstavljene s formulo:Preferred hydrating agents are alpha amino acids with ionizable omega substitutions, such as e.g. carboxylate, amino and guanidine function and compounds represented by the formula:
x-(CH2)„-Y i kjer jex- (CH 2 ) „- Y i where
X H2N-C(NH)-NH-, H2N-, ZO3S-, Z2O3P-, ali ZO2Ckjer je Z H ali anorganski ali organski kation;XH 2 NC (NH) -NH-, H 2 N-, ZO 3 S-, Z 2 O 3 P-, or ZO 2 Where ZH is an inorganic or organic cation;
Y je -CHCNH^-CC^H, -NH2-NH-C(NH)-NH2-COOH, CH(NH2)SO3Z ali ZH(NH2)PO3Z2, kjer je Z definiran zgoraj; in je n celo število 1-10; ali njihove farmacevtsko sprejemljive soli.Y is -CHCNH ^ -CC ^ H, -NH 2 -NH-C (NH) -NH 2 -COOH, CH (NH 2 ) SO 3 Z or ZH (NH 2 ) PO 3 Z 2 , where Z is defined above ; and n is an integer 1-10; or a pharmaceutically acceptable salt thereof.
Na seznamu prednostnih spojin so tudi Ν,Ν’-dialkil substituirane argininske spojine in podobne spojine, kjer dolžina alkilne verige variira. Bolj prednostna hidratacijska sredstva so omega substituirane alfa amino kisline, kot npr. arginin, njegovi N-acilni derivati, homoarginin, gama-aminomaslena kislina, asparagin, lizin, ornitin, glutaminska kislina, asparaginska kislina ali spojine, predstavljene z naslednjimi formulami:Also included in the list of preferred compounds are Ν, Ν′-dialkyl substituted arginine compounds and similar compounds where the alkyl chain length varies. More preferred hydrating agents are omega substituted alpha amino acids, such as e.g. arginine, its N-acyl derivatives, homoarginine, gamma-aminobutyric acid, asparagine, lysine, ornithine, glutamic acid, aspartic acid or compounds represented by the following formulas:
H2NC(NH)-NH-(CH2)n-CH-(NH2)COOH IIH 2 NC (NH) -NH- (CH 2 ) n -CH- (NH 2 ) COOH II
H2N-(CH2)n-CH(NH2)COOH IIIH 2 N- (CH 2 ) n -CH (NH 2 ) COOH III
HzN-tCH^-CNHz) IVHzN-tCH ^ -CNHz) IV
H2NC(NH)-NH-(CH2)n-NH-CH(NH)-(NH2) VH 2 NC (NH) -NH- (CH 2 ) n -NH-CH (NH) - (NH 2 ) V
HOOC-(CH2)n-CH(NH2)COOH VIHOOC- (CH 2 ) n -CH (NH 2 ) COOH VI
HOOC-(CH2)n-COOH VIIHOOC- (CH 2 ) n -COOH VII
HO3SC-(CH2)n-CH(NH2)COOH VIIIHO 3 SC- (CH 2 ) n -CH (NH 2 ) COOH VIII
H2o3s-(CH2)n-CH(NH2)cooH IXH 2 o 3 s- (CH 2 ) n -CH (NH 2 ) cooH IX
HO3S-(CH2)n-CH(NH2)SO3H XHO 3 S- (CH 2 ) n -CH (NH 2 ) SO 3 HX
H2O3S-(CH2)n-CH(NH2)PO3H2 XI kjer je n 2-4.H 2 O 3 S- (CH 2 ) n -CH (NH 2 ) PO 3 H 2 XI where n is 2-4.
Najbolj prednostne spojine so arginin, homoarginin, gamaaminomaslena kislina, lizin, ornitin, glutaminska kislina ali asparginska kislina. Hidratacijska sredstva v smislu izuma lahko uporabimo sama ali kot zmes. Pri uporabi zmesi teh hidratacijskih snovi niso vključene ali mišljene nobene omejitve.The most preferred compounds are arginine, homoarginine, gamma-butyric acid, lysine, ornithine, glutamic acid or aspartic acid. The hydrating agents of the invention can be used alone or as a mixture. No restrictions are included or implied when using mixtures of these hydrating substances.
Hidratacijska sredstva v smislu izuma so navedena v katalogu mnogih kemijskih proizvajalcev, ki jih tudi običajno izdelujejo ali jih lahko naredimo po postopkih, znanih v tehniki. Arginin, homoarginin, lizin, glutaminsko kislino, asparaginsko kislino in druge naravne amino kisline lahko dobimo s hidrolizo proteina in ločenjem individualnih amino kislin, ali iz bakterijskih virov.The hydrating agents of the invention are listed in the catalog of many chemical manufacturers, which are also commonly manufactured or can be made by methods known in the art. Arginine, homoarginine, lysine, glutamic acid, aspartic acid and other natural amino acids can be obtained by hydrolysis of the protein and separation of individual amino acids, or from bacterial sources.
Spojine s formulo II lahko naredimo po postopku Eisele, K. et al, Justusliebigs, Ann. Chem., str. 2033 (1975). Nadaljnje informacije raznih reprezentativnih primerov teh spojin so na voljo v Chemical Abstracts Service pod štev. kot sledi: nonarginin, CAS #14191-90-3; arginin, CAS #74-79-3; in homoarginin CAS #151-86-5. Za reprezentativne primere s formulo III glej za 2,4-diaminobutanojsko kislino CAS #305-62-4 in za lizin CAS #56-87-1. Postopki za izdelavo reprezentativnih spojin s formulo IV so na voljo iz Chemical Abstracts, kot sledi.: etandiamin, CAS #305-62-4; propan diamin-54618-94-9; in 1,4-diaminobutan, CAS #52165-57-8. Glej posebno Johnson, T.B., J. am. Chem. Soc., 38:1854 (1916).The compounds of formula II can be made by the procedure of Eisele, K. et al, Justusliebigs, Ann. Chem., P. 2033 (1975). Further information on various representative examples of these compounds can be found in Chemical Abstracts Service, no. as follows: nonarginine, CAS # 14191-90-3; arginine, CAS # 74-79-3; and homoarginine CAS # 151-86-5. For representative examples of Formula III, see for 2,4-diaminobutanoic acid CAS # 305-62-4 and for lysine CAS # 56-87-1. Methods for making representative compounds of formula IV are available from Chemical Abstracts as follows: ethanediamine, CAS # 305-62-4; propane diamine-54618-94-9; and 1,4-diaminobutane, CAS # 52165-57-8. See specifically Johnson, T.B., J. am. Chem. Soc., 38: 1854 (1916).
Od spojin s formulo VI je glutaminska kislina dobro znana v tehniki in je na voljo iz mnogih komercialnih virov. Opisi za izdelavo drugih reprezentativnih spojin so vsebovani v literaturi, npr.: 2-aminoheksanojska kislina - CAS #62787-49-9 inOf the compounds of formula VI, glutamic acid is well known in the art and is available from many commercial sources. Descriptions for the manufacture of other representative compounds are contained in the literature, for example: 2-aminohexanoic acid - CAS # 62787-49-9 and
2- aminoheptandiojska kislina - CAS #32224-51-0. Glutaminska kislina, spojina s formulo VII, kjer je n 2, je dobro znana v tehniki in jo lahko naredimo po postopku Maryel and Tuley, Org. Syn., 5:69 (1925). Druge reprezentativne spojine v tej skupini lahko naredimo po postopkih, na katere se sklicujemo z naslednjimi CAS številkami: heksadiojska kislina, CAS #123-04-9 in heptadiojska kislina, CAS #111-16-0. Homocisteinska kislina je znana v tehniki z referenco CAS #56892-03-6. Spojina2- Aminoheptanedioic acid - CAS # 32224-51-0. Glutamic acid, a compound of formula VII wherein n is 2, is well known in the art and can be made by the process of Maryel and Tuley, Org. Syn., 5:69 (1925). Other representative compounds in this group may be made by the procedures referenced by the following CAS numbers: hexadioic acid, CAS # 123-04-9 and heptadioic acid, CAS # 111-16-0. Homocysteic acid is known in the art with reference CAS # 56892-03-6. Compound
3- sulfovalin je opisana v literaturi z referenco CAS #23405-34-2.3- Sulfovalin has been described in the literature with reference CAS # 23405-34-2.
Zmesi hidratacijskega sredstva, snovi, ki tvori liposom in diskretnih količin vode tvorijo maso, podobno gelu. Kadar so v tej obliki gela, se hidratacijsko sredstvo in kis17 lina ali amin skupaj s snovmi, ki tvorijo liposom, razporedijo v hidratni kompleks, ki je visoko urejen tekoči kristal. Hidratni kompeks pomeni kompleks, ki nastane med hidratacijskim sredstvom, kislino ali aminom, v snovi, ki tvori liposom. Kompleksiranje v tej zvezi pomeni tvorbo disociativnih ionskih soli, kjer ena funkcionalnost asociira z ionsko fukcionalnostjo snovi ki tvori liposom in ima druga funkcionalnost hidrofilne lastnosti, ki dajo vodotopnost nastalemu kompleksu. Medtem ko struktura tekočega kristala hidratnega kompleksa vaiira s pH in količino hidratacijskega sredstva, se struktura tekočega kristala ohrani. NMR spektroskopija potrjuje, da ta kristalna struktura sestoji iz več lamelnih lipidnih dvoplasti in hidrofilnih plasti, ki so izmenično zložene skupaj. Iz 31P-NMR spektra je razviden anizotropičen vrh, ki potrjuje eksistenco večlamelnih dvoplasti.Mixtures of hydrating agent, liposome-forming substance and discrete amounts of water form a gel-like mass. When in this form of gel, the hydrating agent and the acids or amines or amines, together with the liposome forming substances, are arranged in a hydrate complex, which is a highly ordered liquid crystal. Hydrate complex means a complex formed between a hydrating agent, an acid or an amine, in a liposome forming substance. Complexing in this connection means the formation of dissociative ion salts, where one functionality associates with the ionic functionality of the liposome-forming substance and the other functionality has hydrophilic properties that give the water solubility of the resulting complex. While the structure of the liquid crystal of the hydrate complex varies with the pH and amount of the hydrating agent, the structure of the liquid crystal is maintained. NMR spectroscopy confirms that this crystal structure consists of several lamellar lipid bilayers and hydrophilic layers that are alternately stacked together. The 31 P-NMR spectrum shows an anisotropic peak, confirming the existence of multilamellar bilayers.
Čeprav so primarne komponente teh liposomov lipidi, fosfolipidi in druge maščobne kisline, pa lahko dodamo tudi razne drugi komponente, da modificiramo liposomsko permeabilnost. Dodamo lahko npr. neionske lipidne komponente, kot npr. polioksi alkoholne spojine, poligiceridne spojine ali estre poliolov, polioksialkolinolirane alkohole; estre poliolov in sintetične lipolipide, kot so cerebrozidi. Druge snovi, kot npr. dolgoverižne alkohole in diole, dolgoverižne amine in njihove kvaterne amonijeve derivate; polioksietilenirane maščobne amine, estre dolgoverižnih amino alkoholov in njihove soli in kvaterne amonijeve derivate; fosforjeve estre maščobnih alkoholov, polipeptide in proteine.Although the primary components of these liposomes are lipids, phospholipids and other fatty acids, various other components can also be added to modify liposomal permeability. We can add e.g. non-ionic lipid components, such as e.g. polyoxy alcoholic compounds, polyglyceride compounds or polyol esters, polyoxycholinolated alcohols; polyol esters and synthetic lipolipids such as cerebrosides. Other substances, such as long chain alcohols and diols, long chain amines and their quaternary ammonium derivatives; polyoxyethylene fatty amines, esters of long chain amino alcohols and their salts and quaternary ammonium derivatives; phosphorus esters of fatty alcohols, polypeptides and proteins.
Sestavek liposoma lahko naredimo iz več kot ene komponente raznih vrst lipidov, maščobnih kislin, alkil aminov ipd., in hidratacijskih sredstev.The composition of a liposome can be made from more than one component of various types of lipids, fatty acids, alkyl amines, etc., and hydrating agents.
Če ima lipidna komponenta sama ali antigenski material ali katerikoli drugi material, ki ga je treba dodati vakcinskemu sestavku za zakapsuliranje, pred tem omenjene lastnosti, potem v lipidni sestavek ni potrebno vključiti maščobnih kislin (ali aminov) ali hidratacijskih sredstev, da nastane predliposomski gel ali liposomi. Npr. zmes dipalmitoilfosfatidilholina (DPPC) in disteroil fosfatidiletanolamina tvori predliposomski gel oz. liposome z vodno raztopino lutaminske kisline, zmes DPPC ter oljne kisline, pa tvori predliposomski gel in liposome z vodno raztopino epinefrina.If the lipid component itself or the antigenic material or any other material to be added to the vaccine composition for encapsulation has the previously mentioned properties, then it is not necessary to include fatty acids (or amines) or hydrating agents in the lipid composition to form a pre-liposomal gel or liposomes. E.g. a mixture of dipalmitoylphosphatidylcholine (DPPC) and disteroyl phosphatidylethanolamine forms a pre-liposomal gel, respectively. liposomes with an aqueous solution of lutamic acid, a mixture of DPPC and oleic acid, form a pre-liposomal gel and liposomes with an aqueous epinephrine solution.
Kot adjuvantimo snov za uporabo v vakcinskem sestavku, liposomski pripravek prednostno vključuje fosfolipide, oljno kislino (ali fosfatidil-etanolamin) in arginin ali lizin (ali glutaminsko kislino in/ali asparaginsko kislino).As an adjuvant substance for use in the vaccine composition, the liposome preparation preferably includes phospholipids, butyric acid (or phosphatidyl-ethanolamine) and arginine or lysine (or glutamic acid and / or aspartic acid).
Približno 1:20 molsko razmerje hidratacijskega sredstva glede na snov, ki tvori liposom, zagotovi ugodne učinke v smislu izuma, z omejitvijo navzgor približno 1:0,05. Prednostno koncentracijsko območje za hidratacijsko sredstvo je molsko razmerje hidratacijskega sredstva glede na snov, ki tvori liposom med 1:2 do 1:0,5.About 1:20 the molar ratio of the hydrating agent to the liposome-forming substance provides beneficial effects of the invention, with an upward limitation of about 1: 0.05. The preferred concentration range for the hydrating agent is the molar ratio of the hydrating agent relative to the liposome forming substance between 1: 2 and 1: 0.5.
Smotrno, torej preferenčno, če liposome pripravimo z dolgoverižno alifatsko ali aromatsko kislino, prednostno uporabimo hidratacijska sredstva, ki vsebujejo vsaj en dušik, ki se da ionizirati, kot npr. arginin, homoarginin, lizin, ornitin ipd. Obratno, če uporabimo amfifatične snovi za tvorbo liposomov, ki vsebujejo dolgo verižne alifatske ali aromatske amine, je prednostno,da uporabimo dikislino, kot npr. glutaminsko kislino, asparaginsko kislino; katerokoli od alkilnih dikislin, kot npr. enostavne dikisline, kot npr. valeriansko kislino, kaprilno, kapronsko, kaprinsko ipd.; ali tiste dikisline, ki imajo dve fosfatni ali sulfatni funkcionalnosti; ali tiste dikisline z mešanimi -COOH/-SO3H ali -COOH/-PO3H2 funkcijami.Preferably, therefore, if liposomes are prepared with a long-chain aliphatic or aromatic acid, hydration agents containing at least one ionizable nitrogen, such as e.g. arginine, homoarginine, lysine, ornithine and the like. Conversely, if amphiphatic substances are used to form liposomes containing long-chain aliphatic or aromatic amines, it is preferable to use a diacid such as e.g. glutamic acid, aspartic acid; any of the alkyl diacids, such as e.g. simple diacids such as e.g. valeric acid, caprylic, capric, caprine, etc .; or those diacids having two phosphate or sulfate functionalities; or those diacids having mixed -COOH / -SO 3 H or -COOH / -PO 3 H 2 functions.
Določene alifatske in aromatske kisline in amini so prednostni pri uporabi v smislu izuma. Take spojine imajo lahko mnogoterne funkcije, pri čemer imajo dve ali več kislinski ali aminski skupini ali njihove kombinacije. Npr. uporabimo lahko dikislino, diamin ali spojino s kislinsko in aminsko funkcijo. Prednostne spojine so tiste z eno ali dvema kislinskima ali aminskima funkcijama. Bolj prednostne so maščobne mono kisline z 10 do 20 ogljiki, nasičene in nenasičene. Najbolj prednostne so alkilne in alkenilne kisline z 10 do 20 atomi ogljika, posebno oljna kislina.Certain aliphatic and aromatic acids and amines are preferred for use according to the invention. Such compounds may have multiple functions, with two or more acid or amine groups or combinations thereof. E.g. diacid, diamine or an acid and amine compound may be used. Preferred compounds are those having one or two acid or amine functions. More preferred are fat mono acids with 10 to 20 carbons, saturated and unsaturated. Most preferred are alkyl and alkenyl acids with 10 to 20 carbon atoms, especially oleic acid.
Zmesi snovi, ki tvorijo liposom, dolgoverižna alifatska ali aromatska kislina ali amin, eden ali več hidratacijskih sredstev z do 300 mol vode glede na celotno količino trdne snovi, z izbrano količino antigenske snovi ali brez, proizvedejo gel iz katerega nastanejo liposomi direktno po dodatku vodne raztopine. Ta gel lahko označimo kot predliposomski gel, ker so njegove strukturne lastnosti v bistvu takšne, kot jih imajo liposomi in je sposoben, da ga pretvorimo v liposome po razredčitvi z vodno raztopino. Vodna raztopina v prebitku približno 300 mol ekvivalentov povzroči začetek tvorbe liposoma.Mixtures of liposome-forming substances, long-chain aliphatic or aromatic acid or amine, one or more hydrating agents with up to 300 moles of water relative to the total amount of solid, with or without the selected amount of antigen, produce a gel from which liposomes are formed directly after the addition of aqueous solutions. This gel can be termed a pre-liposomal gel because its structural properties are essentially the same as those of the liposomes and it is capable of being converted to liposomes after dilution with aqueous solution. An aqueous solution in excess of about 300 mol equivalents causes the formation of liposomes to begin.
Struktura tega gela je visoko urejen tekoči kristal, ki tvori optično bistro raztopino. X,The structure of this gel is a highly ordered liquid crystal that forms an optically clear solution. X,
Y in Z dimenzije tekočega kristala variirajo s koncentracijami hidratacijskega sredstva pri konstantni pH kot tudi s pH raztopine. Z variiranjem koncentracije hidratacijskega sredstva pri konstantnem pH ali spreminjanjem pH, medtem ko vzdržujemo konstanten odstotek hidratacijskega sredstva, lahko kontroliramo velikost in število lamelnih struktur lipidne dvoplasti kasnejših liposomskih veziklov.The Y and Z dimensions of the liquid crystal vary with the concentrations of the hydrating agent at constant pH as well as with the pH of the solution. By varying the concentration of the hydrating agent at constant pH or changing the pH while maintaining a constant percentage of hydrating agent, the size and number of lamellar structures of the lipid bilayer of later liposomal vesicles can be controlled.
Sama gelna struktura je prilagojena za približno 300 mol vode na mol trdne snovi, ne da bi to motilo njeno stabilnost. Struktura gela, kot jo določimo s protonsko jedrsko magnetno resonančno spektroskopijo (NMR), obsega večlamelne lipidne dvoplasti in hidrofilne plasti, izmenično zložene skupaj. Iz 31P-NMR spektra tega gela je razviden anizotropičen vrh, kar nadalje potrjuje, da gel sestoji iz več lamelnih dvoplasti. Ta gel lahko avtoklaviramo, kar je prikladen način sterilizacije. Poleg tega pri gelu ne opazimo nobene spremembe barve in ostane bister pri sobni temperaturi vsaj eno leto po avtoklaviranju. Če je želeno in izvedljivo, gel lahko v danem primeru nadalje steriliziramo s filtracijo skozi ustrezne sterilizacijske filtre. Po dispergiranju gela v vodni raztopini so liposomi učinkoviti in spontano proizvedeni.The gel structure itself is adjusted to about 300 moles of water per mole of solids without disturbing its stability. The gel structure, as determined by proton nuclear magnetic resonance spectroscopy (NMR), comprises multilamellar lipid bilayers and hydrophilic layers alternately stacked together. The 31 P-NMR spectrum of this gel shows an anisotropic peak, which further confirms that the gel consists of several lamellar bilayers. This gel can be autoclaved, which is a convenient method of sterilization. In addition, no change in color is observed with the gel and remains clear at room temperature for at least one year after autoclaving. If desired and feasible, the gel may optionally be further sterilized by filtration through appropriate sterilization filters. After dispersing the gel in aqueous solution, liposomes are effective and spontaneously produced.
Predliposomski gel s 3D-MPL ali brez in antigensko snov za zakapsuliranje lahko tudi dehidratiziramo (npr. liofiliziramo) in prašek ponovno hidratiziramo, da nastanejo liposomi, spontano, celo po daljši periodi shranjevanja. Ta sposobnost zagotavlja vakcinske sestavke posebno uporabne za dajanje vodno občutljivih antigenskih snovi, kjer je potrebno dolgotrajno predhodno shranjevanje.Pre-liposomal gel with or without 3D-MPL and the antigenic substance for encapsulation can also be dehydrated (eg, lyophilized) and the powder re-hydrated to form liposomes, spontaneously, even after a longer storage period. This ability provides vaccine compositions particularly useful for the administration of water-sensitive antigenic substances, where long-term pre-storage is required.
Predliposomski gel pripravimo kot sledi. Poltrden tekoč kristalni gel, na katerega se sklicujemo tukaj kot na predlipsomski gel, pripravimo s kombiniranjem treh osnovnih sestavin: fosfolipida, maščobne kisline in hidratacijskega sredstva v vodi. Odvisno od potrebne lipidne sestave lahko uporabimo fosfolipide ali njihove zmesi, ki spadajo v isto vrsto glede temperature prehoda (Tm) gel-tekočina. Maščobno kislino lahko izberemo glede na stopnjo nasičenja ali dolžino verige in jo navadno zmešamo s fosfolipidom v gosto pasto. Holesterol lahko dodamo k lipidni zmesi za kontrolo dvoplastnega značaja. (Holesterol v nekaterih primerih povečuje Tm membrane in s tem vpliva na njeno permeabilnost za vključena sredstva).The pre-liposomal gel was prepared as follows. The semi-solid liquid crystalline gel referred to herein as the pre-liposomal gel is prepared by combining three basic ingredients: phospholipid, fatty acid and a hydrating agent in water. Depending on the lipid composition required, phospholipids or mixtures thereof belonging to the same species with respect to the transition temperature (Tm) of the gel-liquid can be used. The fatty acid can be selected according to the degree of saturation or chain length and is usually mixed with phospholipid in a thick paste. Cholesterol can be added to the lipid mixture to control the bilayer character. (In some cases, cholesterol increases the Tm of the membrane and thus affects its permeability for the agents involved).
Hidratacijsko sredstvo, prednostno alfa amino kislina, kot npr. arginin, dodamo lipidni zmesi kot raztopino v vodi, počasi, da dobimo homogeno pasto. Za eno od želenih formulacij uporabimo jajčni fosfatidilni holimoljno kislino v molskem razmerju 1:1,2. Arginin dodamo v vodi pri približno 1:1,2 molskem razmerju fosfolipida proti argininu.Hydrating agent, preferably alpha amino acids, such as e.g. arginine, add the lipid mixture as a solution in water, slowly to obtain a homogeneous paste. For one of the desired formulations, egg phosphatidyl holimolic acid is used in a molar ratio of 1: 1.2. Arginine is added in water at about 1: 1.2 molar ratio of phospholipid to arginine.
Koncentracija L-arginina v komponenti vodne faze gela vpliva na premer stabilnih liposomskih delcev, ki eventualno nastanejo. Velikost delcev je odvisna od načina dajanja in od tega, če je željeno ciljanje makrofagnih celic. Npr. za oralno dajanje je želena velikost liposomskih delcev med približno 1 in približno 5 μτη. Za ciljanje limfocitov je prednostna velikost delcev med približno 200 do 500 nm. Za depojski učinek je želena velikost liposomskih delcev med približno 5 do približno 10 μτη. Razne velikosti delcev strokovnjak z lahkoto testira in izbere.The concentration of L-arginine in the component of the aqueous phase of the gel affects the diameter of the stable liposomal particles that eventually arise. The particle size depends on the route of administration and on the targeting of macrophage cells. E.g. for oral administration, the desired liposomal particle size is between about 1 and about 5 μτη. Particle size between about 200 and 500 nm is preferred for targeting lymphocytes. For the depot effect, the desired liposomal particle size is between about 5 and about 10 μτη. Different particle sizes are easily tested and selected by an expert.
Končni predliposomski gel lahko vsebuje od približno 65 do približno 70 mas.% vode, ima gostoto mazila in izgleda kot značilen tekoči kristal, če ga opazujemo pod polarizirajočim svetlobnim mikroskopom. Predliposomski gel lahko shranimo ob inertni atmosferi ali ga liofiliziramo do suhega praška za shranjevanje daljše časovno obdobje.The final pre-liposomal gel may contain from about 65 to about 70% by weight of water, has an ointment density and looks like a characteristic liquid crystal when viewed under a polarizing light microscope. The pre-liposomal gel can be stored under an inert atmosphere or lyophilized to a dry storage powder for an extended period of time.
Pri tvorbi vakcinskih sestavkov v smislu izuma sledimo enakim stopnjam liposomske priprave z dodatkom imunološko učinkovite količine izbranega antigena, npr. antigenskega polipeptida, zlasti flu D proteina in 3D-MPL in v danem primeru enega ali več dodatnih imunogenskih proteinov, peptidov ali fragmentov iz izbranega patogena zmešanih z liposomskim pripravkom.In the formation of the vaccine compositions of the invention, the same stages of liposomal preparation are followed by the addition of an immunologically effective amount of the selected antigen, e.g. an antigenic polypeptide, in particular flu D protein and 3D-MPL, and optionally one or more additional immunogenic proteins, peptides or fragments from a selected pathogen mixed with the liposome preparation.
Da pripravimo take vakcinske sestavke izbrani antigen zakapsuliramo ali interkaliramo v liposomski pripravek tako da ga z njim zmešamo.To prepare such vaccine compositions, the selected antigen is encapsulated or intercalated into a liposomal preparation by mixing it.
Obstajata dva postopka, s katerim lahko 3D-MPL in izbrani antigen vgradimo v liposomski sestavek, da pripravimo vakcinski sestavek v skladu s predloženim izumom. En postopek vključuje vgradnjo antigena v liposome s hidratacijo predliposomskega gela ali hidratacijo liofiliziranega praška z raztopino antigena v ustreznem pufru. Drug postopek vključuje fizično zmešanje predliposomskega gela z liofiliziranim pripravkom antigena. To zmes nato hidratiziramo, kar povzroči spontano tvorbo liposomov.There are two methods by which 3D-MPL and the selected antigen can be incorporated into a liposomal composition to prepare a vaccine composition according to the present invention. One method involves the incorporation of the antigen into liposomes by hydration of the pre-liposome gel or the hydration of a lyophilized powder with an antigen solution in appropriate buffer. Another process involves physically mixing the pre-liposomal gel with a lyophilized antigen preparation. This mixture is then hydrated, resulting in the spontaneous formation of liposomes.
Izbran postopek je tisti, ki ima za posledico največjo stopnjo asociacije antigenliposom z najmanjšo izgubo antigena kot neasociirane frakcije in je odvisen od fizikalno kemijskih lastnosti antigena v prisotnosti lipida. Na splošno je razmerje komponent v taki vakcinski zmesi 20 mg antigenskega proteina: 2 mg 3D-MPL: 300 mg liposomskega gela. Npr. če je antigen flu D, potem uporabimo drugi postopek, ker ima antigen precej hidroben značaj in nizko topnost v vodi in kot je opisano spodaj, da tvorimo flu D sestavek v smislu izuma 300 mg predliposomskega gela zmešamo z 20 do 30 mg flu D proteina in 0,5 do 2 mg 3D-MPL.The method chosen is the one that results in the highest degree of association with the antigenliposome with the least loss of antigen as an unassociated fraction and depends on the physicochemical properties of the antigen in the presence of a lipid. In general, the ratio of components in such vaccine mixture is 20 mg of antigen protein: 2 mg of 3D-MPL: 300 mg of liposome gel. E.g. if the antigen is flu D, then the second method is used because the antigen has a rather hydrobial character and low water solubility and, as described below, to form a flu D composition of the invention 300 mg of pre-liposomal gel is mixed with 20 to 30 mg of flu D protein and 0.5 to 2 mg 3D-MPL.
Smatramo, da strokovnjak glede na tukajšnje napotke z lahkoto določi izbrano količino antigenske snovi za uporabo v tega izuma v praksi.It will be appreciated that one of skill in the art will readily determine the amount of antigenic substance to be used in the present invention in practice.
V danem primeru lahko dodamo druga sredstva sovključena v izbran antigen, npr. flu D protein in 3D-MPL v liposomskem sestavku. Prikladna druga sredstva so opisana zgoraj.In this case, other agents coupled to the selected antigen may be added, e.g. flu D protein and 3D-MPL in liposomal composition. Suitable other means are described above.
Potem, ko se tvorijo liposomi v prisotnosti 3D-MPL, izbranega antigena in katerekoli v danem primeru, dodatne komponente, katerikoli neasociiran antigen lahko odstranimo na razne načine. Značilno liposome centrifugiramo serijsko pri približno 100 000 g in supernatante zavržemo. Končni liposomski pelet rekonstituiramo v sprejemljivi tekočini, 5% dekstrozi, normalni fiziološki raztopini ali pufmi raztopini, za injekcijo pri želeni koncentraciji lipida ali antigena. Za odstranitev neasociiranega antigena lahko uporabimo tudi druge postopke, znane strokovnjakom, kot npr. gelno filtracijo ali dializo.After liposomes are formed in the presence of 3D-MPL, the selected antigen and any given case, additional components of any unassociated antigen can be removed in various ways. Typically, liposomes are centrifuged serially at about 100,000 g and the supernatants discarded. The final liposome pellet is reconstituted in acceptable liquid, 5% dextrose, normal saline or buffer solution for injection at the desired lipid or antigen concentration. Other methods known to those skilled in the art may be used to remove unassociated antigen. gel filtration or dialysis.
Opis izbranega antigena, 3D-MPL in liposomske formulacije obsega tudi uporabo razcepljenih virusov opisanih tukaj namesto ali poleg flu D.The description of the selected antigen, 3D-MPL, and liposomal formulation also includes the use of the split viruses described herein instead of or in addition to flu D.
Predloženi izum zagotavlja tudi postopek za povečevanje imunskega odziva, posebno odziva, posredovanega s celicami T pri ljudeh ali drugih sesalcih, za izbrani antigen v vakcinskem sestavku. Ta postopek vključuje dajanje človeku ali drugemu sesalcu vakcinski sestavek v smislu izuma, ki vsebuje 3D-MPL in izbran antigen. V danem primeru je liposomski pripravek lahko del sestavka, kot je opisano zgoraj. Ta postopek ni omejen na noben poseben antigen ponazorjen tukaj. V prednostni izvedbi je postopek uporaben za izzvanje povečane zaščite učinkovite proti influenčni infekciji. V tej izvedbi vakcinski sestavek obsega učinkovito količino flu D in 3DMPL, kot je opisano zgoraj. V drugi izvedbi vakcinski sestavek obsega učinkovito količino enega ali več razcepljenih virusov influence in 3D-MPL, kot je opisano zgoraj. Druge vakcine lahko pripravimo in damo v učinkovitih količinah na podoben način.The present invention also provides a method for enhancing an immune response, especially a T cell-mediated response in humans or other mammals, for the selected antigen in the vaccine composition. This process involves administering to a human or other mammal a vaccine composition of the invention comprising 3D-MPL and a selected antigen. In the present case, the liposome preparation may be part of the composition as described above. This procedure is not limited to any of the specific antigens illustrated herein. In a preferred embodiment, the method is useful for eliciting increased protection effective against influenza infection. In this embodiment, the vaccine composition comprises an effective amount of flu D and 3DMPL as described above. In another embodiment, the vaccine composition comprises an effective amount of one or more split influenza viruses and 3D-MPL as described above. Other vaccines can be prepared and administered in effective amounts in a similar manner.
Kot je prikazano s primeri, posebno primeri 25-30 ima vakcinski sestavek, v katerem so uporabljeni razcepljeni virusi, adjuvantirani s 3D-MPL za posledico superiorno virusno čiščenje posebno v pljučih, stimulacijo višjih nevtralizirajočih protitelesnih titrov; pojav heterosubtipične (HjN2) navzkržne reaktivnosti v odsotnosti nevtralizajoče aktivnosti; in spremenjeno progresijo bolezni od zgodnjega do spodnjega respiratornega traka (čez trahejo).As exemplified, in particular Examples 25-30, a vaccine composition that utilizes split viruses adjuvanted with 3D-MPL to result in superior viral clearance especially in the lung, stimulates higher neutralizing antibody titers; the occurrence of heterosubtypic (HjN 2 ) cross-reactivity in the absence of neutralizing activity; and altered disease progression from early to lower respiratory tract (across the trachea).
Predpisi za doziranje in dajanje so lahko optimizirani v skladu s standardno prakso vakciniranja za te vakcinske sestavke. Značilno vakcine dajemo intramuskularno, čeprav so drugi načini dajanja tudi uporabni kot npr. subkutano, v črevo, oralno, pulmunalno, intradermalno, intraperitonealno ali intravenozno. Način, ki ga izberemo, je lahko določen s tipom želenega imunskega odziva. Npr. subkutani način lahko zagotovi klasičen depojski učinek ali bolj podaljšano stimulacijo kot drugi. Možno je tudi, da izbran način dajanja lahko generira močnejše protitelesne odzive kot celične odzive ali obratno. Npr. oralen način dajanja lahko dopušča generiranje povečanega IgA odziva, kije koristen za lokalno imunost.The dosage and administration regulations can be optimized according to standard vaccination practice for these vaccine compositions. Typically, vaccines are administered intramuscularly, although other routes of administration are also useful such as e.g. subcutaneously, into the intestine, oral, pulmonary, intradermal, intraperitoneal or intravenous. The mode we choose may be determined by the type of immune response desired. E.g. subcutaneous mode may provide a classic depot effect or more prolonged stimulation than others. It is also possible that the chosen route of administration may generate stronger antibody responses than cellular responses or vice versa. E.g. the oral route of administration may allow the generation of an increased IgA response, which is useful for local immunity.
Glede na to, kar je znano o drugih polipeptidnih vakcinah, pričakujemo koristno posamezno doziranje za ljudi povprečne starosti influenčne antigenske polipeptidne vakcine, kot npr. vakcine v smislu izuma, ki vsebuje flu D protein, v območju med približno 1 do približno 1000 gg D proteina, prednostno približno 50 do približno 500 gg in najbolj prednostno približno 100 gg, pomešano s prikladnimi količinami 3DMPL adjuvanta. Če uporabimo te doze flu D proteina so količine 3D-MPL v vakcinskem sestavku med približno 1 do približno 500 gg 3D-MPL/gg virusnega proteina, bolj prednostno približno 10 do približno 50 gg 3D-MPL/gg virusnega proteina in najbolj prednostno približno 50 gg 3D-MPL.Based on what is known about other polypeptide vaccines, we expect a useful individual dosage for people of average age of the influenza antigen polypeptide vaccine, such as e.g. the vaccine of the invention containing the flu D protein in the range of from about 1 to about 1000 gg of D protein, preferably about 50 to about 500 gg and most preferably about 100 gg mixed with suitable amounts of 3DMPL adjuvant. When these doses of flu D protein are used, the amounts of 3D-MPL in the vaccine composition are between about 1 to about 500 gg of 3D-MPL / gg viral protein, more preferably about 10 to about 50 gg of 3D-MPL / gg of viral protein, and most preferably about 50 gg 3D-MPL.
Če flu D in 3D-MPL damo z liposomskih nosilcem, kot je opisano tukaj, je prednostna količina D proteina v vakcinskem sestavku med približno 50 do približno 500 gg in količina 3D-MPL med približno 10 in približno 50 gg. Tak 3D-MPL adjuvantiran flu D vakcinski sestavek vsebuje približno 1 do približno 10 mg in prednostno približno 3 mg liposomske snovi na približno 0,2 mg antigenskega proteina.When flu D and 3D-MPL are administered with a liposomal carrier as described herein, the preferred amount of D protein in the vaccine composition is between about 50 to about 500 gg and the amount of 3D-MPL is between about 10 and about 50 gg. Such 3D-MPL adjuvanted flu D vaccine composition contains from about 1 to about 10 mg and preferably about 3 mg of liposomal substance to about 0.2 mg of antigen protein.
Če flu D in 3D-MPL vakcinska formulacija v danem primeru vsebuje drug adjuvant, kot npr. aluminij ali aluminijev hidroksid, je prednostno doziranje D proteina med približno 10 do približno 500 gg proteina; prednostna količina aluminija ali aluminijevega hidroksida je med približno 10 do približno 500 gg.If the flu D and 3D-MPL vaccine formulation optionally contains another adjuvant, such as e.g. aluminum or aluminum hydroxide, preferably a dosage of D protein is between about 10 to about 500 gg of protein; the preferred amount of aluminum or aluminum hydroxide is between about 10 to about 500 gg.
Podobno glede na to, kar je znano o drugih vakcinah razcepljenega virusa, pričakujemo, da je koristno posamezno doziranje, za ljudi povprečne starosti, influenčnih monovalentnih ali multivalentnih vakcin razcepljenega virusa, kot npr. tistih, opisanih tukaj, približno 15 μ% hemaglutinina (HA) na sev, s celotnim proteinom, ki je v območju od približno 80-300 μ-g/ml, v zmesi s prikladnimi količinami 3D-MPL adjuvanta. Če uporabimo te doze razcepljenega virusa je količina 3D-MPL v vakcinskem sestavku prednostno 50 μ§ 3D-MPL na dozo. Seveda lahko strokovnjaki te količine virusnega proteina in 3D-MPL spreminjajo.Similarly, given what is known about other split vaccines, it is expected that single dosing for middle-aged, influenza monovalent or multivalent split vaccines, such as e.g. those described herein, about 15 μ% hemagglutinin (HA) per strain, with the total protein in the range of about 80-300 μg / ml, in admixture with suitable amounts of 3D-MPL adjuvant. When these doses of the split virus are used, the amount of 3D-MPL in the vaccine composition is preferably 50 μ§ 3D-MPL per dose. Of course, experts can vary this amount of viral protein and 3D-MPL.
Če enega ali več razcepljenih virusov in 3D-MPL damo z liposomskim nosilcem kot je opisano tukaj, je prednostna količina vsakega razcepljenega virusa v vakcinskem sestavku možno manjša kot približno 15 /xg Ha/sev in količina 3D-MPL je med približno 10 in približno 50 μ%. Tak vakcinski sestavek influenČnega razcepljenega virusa adjuvantiranega s 3D-MPL vsebuje približno 1 do približno 10 mg in prednostno približno 3 mg liposomske snovi na približno 0,2 mg virusnega proteina.When administered with one or more split viruses and 3D-MPL with a liposomal carrier as described herein, the preferred amount of each split virus in the vaccine composition may be less than about 15 / xg Ha / strain and the amount of 3D-MPL is between about 10 and about 50 μ%. Such a vaccine composition of the influenza cleavage virus adjuvanted with 3D-MPL contains about 1 to about 10 mg and preferably about 3 mg of liposomal substance to about 0.2 mg of viral protein.
Kadar vakcinska formulacija razcepljenega virusa in 3D-MPL v danem primeru vsebuje drug adjuvant, kot npr. aluminij ali aluminijev hidroksid, je prednostno doziranje vsakega razcepljenega virusa v vakcinskem sestavku naravnano navzdol. Prednostna količina aluminija ali aluminijevega hidroksida je podobna tisti, opisani zgoraj za antigenski polipeptid.When the vaccine formulation of the split virus and 3D-MPL optionally contains another adjuvant, such as e.g. aluminum or aluminum hydroxide, preferably the downstream dosage of each split virus in the vaccine composition. The preferred amount of aluminum or aluminum hydroxide is similar to that described above for the antigenic polypeptide.
Katerokoli vakcino, opisano s tem izumom, lahko damo (prednostno v 0,5 ml dozirnih enotah) na začetku poznega poletja ali zgodnje jeseni in jo lahko ponovno damo 2 do 6 tednov kasneje, če je potrebno, ali periodično, ko imunost upade, npr. vsaki dve do pet let.Any vaccine described by the present invention can be administered (preferably in 0.5 ml dosage units) at the beginning of late summer or early fall and may be re-administered 2 to 6 weeks later if necessary or periodically when immunity declines, e.g. . every two to five years.
Naslednji primeri ponazorjujejo prednostne postopke za pripravo vakcinskih sestavkov v smislu izuma. Ti primeri so samo za ponazoritev in ne omejujejo obsega izuma.The following examples illustrate preferred methods for preparing the vaccine compositions of the invention. These examples are for illustrative purposes only and do not limit the scope of the invention.
Primer ί - priprava gelaExample ί - gel preparation
3,0 g dipalmitoilfosfatidilholina zatehtamo v 50 ml čašo. Dodamo 1,2 g oljne kisline in mešamo skupaj, da nastane enakomerna pasta.Weigh 3.0 g of dipalmitoylphosphatidylcholine into a 50 ml beaker. Add 1.2 g of butyric acid and mix together to form a uniform paste.
K pasti dipalmitoilfosfatidil-holinoljne kisline dodamo 0,72 g arginina v 30 ml destilirane deionizirane vode in segrejemo na 45°C. Z ročnim mešanjem zmes tvori bister stabilen gel. Gel shranimo in kasneje tvorimo liposome z razredčenjem gela s fosfatno puferno fiziološko raztopino.0.72 g of arginine in 30 ml of distilled deionized water was added to the dipalmitoylphosphatidylcholinic acid trap and heated to 45 ° C. By mixing manually, the mixture forms a clear stable gel. The gel is stored and subsequently formed liposomes by diluting the gel with phosphate buffered saline.
Primer 2 - priprava liposomovExample 2 - Preparation of liposomes
120 mg dipalmitoilfosfatidilholina in 24 mg oljne kisline damo skupaj in temeljito mešamo, da nastane bela homogena pasta.120 mg of dipalmitoylphosphatidylcholine and 24 mg of butyric acid are combined and mixed thoroughly to form a white homogeneous paste.
Nato 20 mg arginina raztopimo v 60 ml fosfatne pufme fiziološke raztopine (ionska jakost = 0,15, pH = 7,4). Raztopino arginina - fiziološke raztopine dodamo k pasti in segrevamo pri 40°C pol ure ali dokler ne opazimo rahlo motne raztopine.Then 20 mg of arginine was dissolved in 60 ml of phosphate buffered saline (ionic strength = 0.15, pH = 7.4). Arginine - saline solution is added to the paste and heated at 40 ° C for half an hour or until a slightly cloudy solution is observed.
Primer 3 - priprava gela in liposoma v velikem obseguExample 3 - Large-scale gel and liposome preparation
i) Izdelava gela: k 50 g jajčnega fosfatidnega praška tipa 20 (Asahi Chemicals) dodamo 20 g oljne kisline N.F. Z mešanjem dobimo belo pasto, ki jo ohladimo na 4°C in zmeljemo v fin prašek. Ta prašek dodamo k vodni raztopini, ki vsebuje 20 g arginina in 500 g destilirane deionizirane vode. Zmes mešamo z lopatico da se raztopina segreje na približno 35°C, da pripomoremo hidrataciji fosfolipidov. Nastane homogen, rahlo rumen gel. Ta gel nato avtoklaviramo in shranimo pri 4°C ali pa ga lahko zamrznemo in kasneje rekonstituiramo.i) Gel production: 20 g of N.F. oleic acid are added to 50 g of type 20 egg phosphatide powder (Asahi Chemicals). Stirring gives a white paste which is cooled to 4 ° C and ground into a fine powder. This powder was added to an aqueous solution containing 20 g of arginine and 500 g of distilled deionized water. The mixture was stirred with a spatula to warm the solution to about 35 ° C to aid in the hydration of the phospholipids. A homogeneous, slightly yellow gel is formed. This gel is then autoclaved and stored at 4 ° C, or it can be frozen and subsequently reconstituted.
ii) Izdelava liposomov: gel pripravljen po postopku, opisanem v prejšnjem odstavku, v hladnem odvzamemo in segrejemo na sobno temperaturo. Le-to nato zmešamo z 2 1 fosfatne pufrne fiziološke raztopine, pH 7,4. Nastane bela motna liposomska raztopina.ii) Production of liposomes: the gel prepared according to the procedure described in the previous paragraph is cold removed and warmed to room temperature. This was then mixed with 2 L of phosphate buffered saline, pH 7.4. A white cloudy liposomal solution is formed.
Primer 4 - tvorba liposoma iz gelaExample 4 - Gel Liposome Formation
Tvorimo homogeno pasto iz 1,0 g dipalmitoilfosfatidilholina (DPPC) in 400 mg oljne kisline. Nato 300 mg arginna zmešamo v 10 ml fosfatne pufrne fiziološke raztopine, segrejemo na 45°C in dodamo k pasti DPPC/oljne kisline, da nastanejo liposomi.A homogeneous paste is formed from 1.0 g of dipalmitoylphosphatidylcholine (DPPC) and 400 mg of butyric acid. Then, 300 mg of arginine is mixed in 10 ml of phosphate buffered saline, warmed to 45 ° C and added to DPPC / oleic acid traps to form liposomes.
Primer 5 - predliposomski gel g dipalmitoilfosfatidilholina (DPPL) zmešamo s 400 mg oljne kisline, da nastane homogena pasta. 300 mg arginina zmešamo z 2 ml vode pri 45°C, dokler se ne raztopi. Argininsko raztopino zmešamo s pasto DPPC/oljne kisline pri približno 45°C, da dobimo gosti gel. Liposomi nastanejo, ko ta gel razredčimo s fosfatno pufrno fiziološko raztopino.Example 5 - Pre-liposomal gel g of dipalmitoylphosphatidylcholine (DPPL) was mixed with 400 mg of butyric acid to form a homogeneous paste. Mix 300 mg of arginine with 2 ml of water at 45 ° C until dissolved. The arginine solution was mixed with DPPC / oleic acid paste at about 45 ° C to give a thick gel. Liposomes are formed when this gel is diluted with phosphate buffered saline.
Primer 6 - različne liposomske formulacijeExample 6 - Different Liposomal Formulations
A. Liposomi, ki vsebujejo holesterol mg holesterola zmešamo s 100 mg dipalmitoilfosfatidilholina (DPPC), da nastane homogen prašek. Nato k prašku dodamo 23 mg oljne kisline in temeljito mešamo, da nastane homogena pasta. Da naredimo liposome, dodamo 30 mg arginina k 10 ml fosfatne pufrne fiziološke raztopine, segrejemo na 40°C in dodamo k pasti DPPC/holesterola/oljne kisline. Kombinacijo mešamo pri 40°C, da dobimo liposome.A. Liposomes containing cholesterol mg cholesterol are mixed with 100 mg dipalmitoylphosphatidylcholine (DPPC) to form a homogeneous powder. Then, 23 mg of butyric acid was added to the powder and stirred thoroughly to form a homogeneous paste. To make liposomes, 30 mg of arginine is added to 10 ml of phosphate buffered saline, warmed to 40 ° C and added to DPPC / cholesterol / oleic acid paste. The combination was stirred at 40 ° C to obtain liposomes.
B. Liposomi, ki vsebujejo palmitinsko kislinoB. Liposomes containing palmitic acid
250 mg dipalmitoilfosfatidilholina (DPPC) zmešamo s 25 mg palmi tinske kisline, da nastane enakomeren prašek. Nato 80 mg oljne kisline zmešamo s tem praškom in segrevamo pri 45°C med konstantnim mešanjem, dokler ne nastane enakomerna pasta. 100 mg arginina raztopimo v 25 ml destilirane deionizirane vode in segrejemo na 45°C. Raztopino arginina dodamo k pasti pri 45°C in mešamo dokler ne nastane enakomeren homogen gel. Gel razredčimo z 10-kratno količino fosfatne pufrne fiziološke raztopine, da nastanejo liposomi.250 mg of dipalmitoylphosphatidylcholine (DPPC) is mixed with 25 mg of palm tartaric acid to form a uniform powder. Then 80 mg of oleic acid is mixed with this powder and heated at 45 ° C with constant stirring until a uniform paste is formed. Dissolve 100 mg of arginine in 25 ml of distilled deionized water and warm to 45 ° C. The arginine solution was added to the paste at 45 ° C and stirred until a uniform homogeneous gel was formed. The gel is diluted with 10 times the amount of phosphate buffered saline to form liposomes.
C. Liposomi, ki vsebujejo izostearinsko kislinoC. Liposomes containing isostearic acid
100 mg dipalmitoilfosfatidilholina zmešamo s 50 mg izostearinske kisline, da nastane enakomerno homogena pasta. Naredimo argininsko raztopino 50 mg arginina v 2,0 mg destilirane deionizirane vode in dodamo k pasti izostearinske kisline in segrevamo pri 45°C. To zmes mešamo dokler ne nastane bister gel. Liposomi nas26 tanejo po razredčitvi s fosfatno pufrno fiziološko raztopino.Mix 100 mg dipalmitoylphosphatidylcholine with 50 mg isostearic acid to form a uniformly homogeneous paste. Make an arginine solution of 50 mg arginine in 2.0 mg distilled deionized water and add to the isostearic acid trap and heat at 45 ° C. The mixture was stirred until a clear gel was formed. The liposomes of us26 are thawed after dilution with phosphate buffered saline.
D. Liposomi, ki vsebujejo oleoil treoninD. Liposomes containing oleoyl threonine
125 mg dipalmitoilfosfatidilholina in 75 mg oleoil treonina damo skupaj in segrevamo pri 40°C, da nastane pasta. Nato dodamo med konstantnim mešanjem pri 40°C 2 ml destilirane deionizirane vode. Nastane bister gel, ki ga lahko razredčimo s fosfatno pufrno fiziološko raztopino pri pH 5, da nastanejo liposomi.125 mg of dipalmitoylphosphatidylcholine and 75 mg of oleoyl threonine are put together and heated at 40 ° C to form a paste. Then, while stirring constantly at 40 ° C, 2 ml of distilled deionized water. A clear gel is formed which can be diluted with phosphate buffered saline at pH 5 to form liposomes.
E. Liposomi, ki vsebujejo miristil aminE. Liposomes containing myristyl amine
192 mg dipalmitoilfosfatidilholina dodamo k 72 mg miristil amina in segrevamo med konstantnim mešanjem, da nastane enakomerna pasta. Pasti dodamo 65 mg glutaminske kisline v 5 ml destilirane deionizirane vode in segrevamo, dokler ne nastane gel. K gelu dodamo fosfatno pufrno fiziološko raztopino, da nastanejo liposomi.192 mg of dipalmitoylphosphatidylcholine is added to 72 mg of myristyl amine and heated under constant stirring to form a uniform paste. 65 mg of glutamic acid are added to the paste in 5 ml of distilled deionized water and heated until a gel is formed. Phosphate buffered saline was added to the gel to form liposomes.
F. Liposomi, ki vsebujejo DLPC mg dilavrilfosfatidilholina (DLPC) zmešamo z 20 mg oljne kisline, da nastane homogena pasta. 20 mg arginina dodamo k 10 ml fosfatne pufme fiziološke raztopine, dodamo k pasti in ročno mešamo dokler ne nastane motna liposomska raztopina.F. Liposomes containing DLPC mg dilavrylphosphatidylcholine (DLPC) are mixed with 20 mg oily acid to form a homogeneous paste. 20 mg of arginine was added to 10 ml of phosphate buffered saline, added to the paste and manually stirred until a cloudy liposomal solution was formed.
G. Liposomi fosfatidiletanolamin-glutaminske kisline mg L-glutaminske kisline raztopimo v 2,0 ml destilirane deionizirane vode in pH naravnamo na 5,2 z 1,0 N natrijevim hidroksidom. To raztopino segrejemo na 60°C in dodamo 100 mg fosfatidiletanolamina. Raztopino vzdržujemo pri 60°C med konstantnim mešanjem, dokler ne opazimo enakomerno viskoznega gela.G. Phosphatidylethanolamine-glutamic acid liposomes mg dissolve L-glutamic acid in 2.0 ml of distilled deionized water and adjust the pH to 5.2 with 1.0 N sodium hydroxide. This solution was heated to 60 ° C and 100 mg of phosphatidylethanolamine was added. The solution was maintained at 60 ° C with constant stirring until a uniformly viscous gel was observed.
Gel fosfatidiletanolamin-glutaminske kisline razredčimo z 1/10 fosfatne pufme fiziološke raztopine. Strukture, podobne veziklom opazimo pod fazno kontrastnim svetlobnim mikroskopom.The phosphatidylethanolamine-glutamic acid gel is diluted with 1/10 phosphate buffered saline. Vesicle-like structures are observed under a phase contrast light microscope.
Primer 7 - Učinek koncentracije arginina na velikost liposomaExample 7 - Effect of arginine concentration on liposome size
K 502 mg dipalmitoilfosfatidilholina (DPPC) dodamo 10 μ.1 (2-palmitoil-l-C14) (0,1 mCi/ml) dipalmitoilfosfatidilholina. Dodamo kloroform, da povzročimo popolno mešanje radioaktivnosti in nato uparimo. 195 mg oljne kisline (OA) nato zmešamo v lipid, da nastane pasta. Dodamo 5 ml destilirane vode, ki vsebuje 119 mg arginina in mešamo pri 45°C, da nastane bister gel.To 502 mg dipalmitoylphosphatidylcholine (DPPC) was added 10 μl (2-palmitoyl-1C 14 ) (0.1 mCi / ml) dipalmitoylphosphatidylcholine. Chloroform is added to cause complete mixing of the radioactivity and then evaporated. 195 mg of oleic acid (OA) is then mixed into the lipid to form a paste. Add 5 ml of distilled water containing 119 mg arginine and stir at 45 ° C to form a clear gel.
g gela zatehtamo v štiri različne fiole in dodamo arginin, kot je prikazano v naslednji tabeli 1.weigh the gel into four different vials and add arginine as shown in the following Table 1.
Tabela 1Table 1
Sestava vzorcaComposition of the sample
Vzorec ID DPPC:OA:Arg fiola 1 + 1 ml vode (1;1:1) fiola 2 + 1 ml mg/ml Arg v H2O (1:1:3) fiola 3 + 1 ml mg/ml Arg v H2O (1:1:5) fiola 4 + 1 mlSample ID DPPC: OA: Arg vial 1 + 1 ml water (1 ; 1: 1) vial 2 + 1 ml mg / ml Arg in H 2 O (1: 1: 3) vial 3 + 1 ml mg / ml Arg v H 2 O (1: 1: 5) 4 + 1 ml vial
192 mg/ml Arg v H2O (1:1:10)192 mg / ml Arg in H 2 O (1: 1: 10)
Pol grama vsake raztopine razredčimo v 50 ml fosfatne pufme fiziološke raztopine s pH 7,8.Dilute half a gram of each solution to 50 ml of phosphate buffered saline at pH 7.8.
Ocenjene povprečne premere dobimo s kromatografsko analizo na Sephracyl S-1000 koloni, pri čemer uporabimo DPPC zaznamovan s 14C-izotopom (t.j. premere določimo na osnovi intenzitete sipanja z uporabo fotonske korelacijske spektroskopije (PCS)). Učinki so navedeni v nasledji tabeli 2.Estimated average diameters are obtained by chromatographic analysis on a Sephracyl S-1000 column using a 14 C-isotope-labeled DPPC (ie diameters are determined based on scattering intensity using photon correlation spectroscopy (PCS)). The effects are listed in the following Table 2.
Tabela 2Table 2
Učinki koncentracije arginina na velikost veziklaEffects of arginine concentration on vesicle size
Primer 8 - učinek pH na velikost veziklaExample 8 - effect of pH on vesicle size
Dodatno tega lahko velikost vezikla variiramo s spreminjamem pH vodne pufrne raztopine.In addition, the size of the vesicle can be varied by varying the pH of the aqueous buffer solution.
K 100 mg dipalmitoilfosfatidilholina (DPPC) dodamo 25 μΐ (2-palmitoil-l-C14) (0,1 mCi/ml) dipalmitoilfosfatidilholina. Dodamo kloroform, da povzročimo popolno mešanje radioaktivnosti in nato uparimo. 40,1 mg oljne kisline (OA) nato zmešamo v lipid, da nastane pasta. 1 ml raztopine, ki vsebuje 24 mg/ml arginina v vodi, dodamo k lipidni zmesi in mešamo pri 45°C, da nastane bister gel.To the 100 mg dipalmitoylphosphatidylcholine (DPPC) was added 25 μΐ (2-palmitoyl-1C 14 ) (0.1 mCi / ml) dipalmitoylphosphatidylcholine. Chloroform is added to cause complete mixing of the radioactivity and then evaporated. 40.1 mg of oleic acid (OA) is then mixed into the lipid to form a paste. 1 ml of a solution containing 24 mg / ml arginine in water was added to the lipid mixture and stirred at 45 ° C to form a clear gel.
Dva 100 mg alikvota tega gela razredčimo v 10 ml fosfatnega pufra pri pH 9,0 oz. 7,4.Dilute two 100 mg aliquots of this gel in 10 ml of phosphate buffer at pH 9.0 and. 7.4.
Ocenjene povprečne premere dobimo s kromatografsko analizo na Sephracyl S-1000 koloni, pri čemer uporabimo dipalmitoilfosfatidilholin, zanamovan s 14C-izotopom. Rezultati so navedeni v nasledji tabeli 3.Estimated average diameters were obtained by chromatographic analysis on a Sephracyl S-1000 column using dipalmitoylphosphatidylcholine, neglected with the 14 C-isotope. The results are listed in the following Table 3.
Tabela 3Table 3
Učinki pH na velikost veziklaEffects of pH on vesicle size
Torej želene velikosti liposomskih veziklov lahko pripravimo z variiranjem argininske koncentracije ali pH vodne pufrne raztopine.Therefore, the desired sizes of liposomal vesicles can be prepared by varying the arginine concentration or pH of the aqueous buffer solution.
Primer 9 - liposomska stabilnostExample 9 - Liposomal Stability
Sterilne liposome lahko pripravimo iz toplotno steriliziranih predliposomskih gelov. Alternativno liposomski gel ali liposome lahko sterilno filtriramo skozi ustrezen sterilizacijski filter.Sterile liposomes can be prepared from thermally sterilized pre-liposomal gels. Alternatively, the liposome gel or liposomes can be sterile filtered through a suitable sterilization filter.
Liposome, pripravljene iz DPPC:OA:Arg (1:1:2) pri pH 8,0 toplotno steriliziramo in shranimo pri sobni temperaturi približno 1 leto brez dodatka antimikrobnih sredstev in antioksidantov. Ne opazimo nobene bakterijske rasti, spremembe barve in obar29 janja. Negativna barvna elektronska mikroskopska raziskava eno leto starih liposomov razkriva, da so liposomski vezikli stabilni.Liposomes prepared from DPPC: OA: Arg (1: 1: 2) at pH 8.0 are thermally sterilized and stored at room temperature for about 1 year without the addition of antimicrobials and antioxidants. No bacterial growth, discoloration or discoloration were observed. A negative color electron microscopic examination of one-year-old liposomes reveals that liposomal vesicles are stable.
Primer 10 - saharozna latencaExample 10 - sucrose latency
Latenco zakapsulirane saharoze izmerimo z uporabo C14-saharoze, zakapsulirane z DPPC:OA:Arg (1:1:1) liposomskim sistemom v vodni fosfatni pufrni raztopini pri pH 7,8. Rezultati so predstavljeni v naslednji tabeli 4.Encapsulated sucrose latency was measured using C14 -saharoze encapsulated with the DPPC: OA: Arg (1: 1: 1) liposome system in aqueous phosphate buffer solution at pH 7.8. The results are presented in the following Table 4.
Tabela 4Table 4
Dnevi % saharozne latence 100Days% sucrose latency 100
97.497.4
93.493.4
91.491.4
Predloženi liposomski sistem ima odlično latenco za dajanje zdravila.The proposed liposomal system has excellent latency for drug administration.
Primer 11 - liofilizirani liposomiExample 11 - Lyophilized Liposomes
30,0 g oljne kisline in 7,5 g holesterola U.S.P. zmešamo. Nato 75,0 g fosfatidnega praška tipa 20 (Asahi Chemical Co.) mešamo z zmesjo oljne kisline/holesterola, dokler ne dobimo homogene paste.30.0 g of butyric acid and 7.5 g of U.S.P cholesterol. we mix. Then 75.0 g of the type 20 phosphatide powder (Asahi Chemical Co.) was mixed with the oil / cholesterol mixture until a homogeneous paste was obtained.
Nato 15,0 arginina (prosta baza) raztopimo v 183 g destilirane, deionizirane vode. To raztopino arginina počasi mešamo z lipidno pasto, da dobimo homogeni gel. Gelu naravnamo pH na 7,4 z uporabo 5,0 N HCl.Then 15.0 arginine (free base) was dissolved in 183 g of distilled, deionized water. This arginine solution was slowly mixed with the lipid paste to give a homogeneous gel. The gel was adjusted to pH 7.4 using 5.0 N HCl.
10,0 g alikvot tega predliposomskega gela prenesemo v 10 ml fiolo in jo liofiliziramo. Nastali prašek tvori liposome, če ga razredčimo s 5 ml fosfatne pufrne fiziološke raztopine.Transfer 10.0 g aliquots of this pre-liposomal gel into a 10 ml vial and lyophilize it. The resulting powder forms liposomes when diluted with 5 ml of phosphate buffered saline.
Primer 12 - konstrukcija flu D ekspresijskih plazmidovExample 12 - Construction of Flu D Expression Plasmids
Plazmid PaPR701 je iz pBR322-izpeljan klonirni vektor, ki nosi kodirna področja zaPlasmid PaPR701 is a pBR322 derived cloning vector carrying coding regions for
Ml in M2 virusne proteine influence (A/PR/8/34). To opisujejo Young et al, v TheMl and M2 influenza viral proteins (A / PR / 8/34). This is described by Young et al, in The
Origin of Pandemic Influenza Viruses, 1983, izdaj. W. G. Laver, Elsevier Science Publishing Co.Origin of Pandemic Influenza Viruses, 1983, ed. W. G. Laver, Elsevier Science Publishing Co.
Plazmid pAPR801 je iz pBR322 izpeljan klonimi vektor, ki nosi NS1 kodirno področje (A/PR/8/34). To opisujejo Young et al, citirano zgoraj.Plasmid pAPR801 is derived from pBR322 from a clone vector carrying the NS1 coding region (A / PR / 8/34). This is described by Young et al, cited above.
Plazmid pASl je iz pBR322 izpeljan ekspresijski vektor, ki vsebuje PL promotor, N uporabljivo mesto (za sproščanje transkripcijskih polaritetnih učinkov v prisotnosti N proteina) in cll ribosomsko vezavno mesto, vključno cll translacijski iniciacijski kodon, čemur takoj sledi BamHI mesto. To opisujejo Rosenberg et al, Methods Enzymol., 101:123-138(1983).Plasmid pASl is an expression vector derived from pBR322 containing a P L promoter, an N usable site (to release transcriptional polarity effects in the presence of an N protein), and a cll ribosomal binding site, including a cll translation initiation codon, followed immediately by a BamHI site. This is described by Rosenberg et al, Methods Enzymol., 101: 123-138 (1983).
Plazmid pASldeltaEH pripravimo z delecijo nebistvenega EcoRI-Hindlll področja pBR322 začetka iz pASl. 1236 bazni par BamHI fragmenta pAPR801, ki vsebuje NS1 kodirno področje v 861 baznih parih virusnega začetka in 375 baznih parih pBR322 začetka vključimo v BamHI mesto pASldeltaEH. Nastali plazmid pASldeltaEH/801 izraža avtentičen NS1 (230 amino kislin). Ta plazmid ima Ncol mesto med kodoni za amino kisline 81 in 82 in Nrul mesto 3’ za NS sekvence. BamHI mesto med amino kislinama 1 in 2 je ohranjeno.The plasmid pASldeltaEH was prepared by deletion of the non-essential EcoRI-HindIII region pBR322 onset from pAS1. A 1236 base pair of the BamHI fragment of pAPR801 containing the NS1 coding region in the 861 base pairs of viral onset and 375 base pairs of pBR322 onset is included in the BamHI site of pASldeltaEH. The resulting plasmid pASldeltaEH / 801 expresses authentic NS1 (230 amino acids). This plasmid has the Ncol site between the codons for amino acids 81 and 82 and the Nrul site 3 'for the NS sequences. The BamHI site between amino acids 1 and 2 is conserved.
Plazmid pASlAEH/801 odrežemo z Bglll, končno dopolnimo z DNA polimerazo I (DNApolI; Klenow) in ligiramo zaprto in s tem eliminiramo Bglll mesto. Nastali plazmid pBgl' razgradimo z Ncol, končno dopolnimo z DNA poli (Klenow) in ligiramo na Bglll linker. Nastali plazmid pB4 vsebuje Bglll mesto v NS1 kodirnem področju. Plazmid pB4 razgradimo z Bglll in ligiramo na sinetični DNA linker kot je opisano v primeru 4 EP 0366238.The plasmid pASlAEH / 801 was cut off with Bglll, finally supplemented with DNA polymerase I (DNApolI; Klenow) and ligated closed to eliminate the Bglll site. The resulting plasmid pBgl 'was digested with Ncol, finally supplemented with DNA poly (Klenow) and ligated to a Bglll linker. The resulting plasmid pB4 contains a Bglll site in the NS1 coding region. Plasmid pB4 was digested with Bglll and ligated to the synthetic DNA linker as described in Example 4 EP 0366238.
Nastali plazmid pB4+ dopušča insercijo DNA fragmentov v linker po kodirnem področju za prvih 81 amino kislin NS1, čemur sledijo terminacijski kodoni v vseh treh bralnih okvirih. Plazmid pB4+ razgradimo z Xmal (odrezano v linkerju), končno dopolnimo (Klenow) in ligiramo na 520 bazni par PvuII/Hindlll, končno dopolnjen fragment izpeljan iz HA2 kodirnega področja. Nastali plazmid pD kodira za protein, ki obsega prvih 81 amino kislin NS1, tri amino kisline, izpeljane iz sintetičnega DNA linkerja (Gln-Ile-Pro), čemur sledijo amino kisline 65-222 HA2, kot je prikazano na sl. 2 objavljene evropske patentne prijave št. 366,238.The resulting plasmid pB4 + allows insertion of DNA fragments into the linker by coding region for the first 81 amino acids of NS1, followed by termination codons in all three reading frames. Plasmid pB4 + is digested with Xmal (cut in linker), finally replenished (Klenow) and ligated to a 520 base PvuII / Hindlll pair, finally replenished from the HA2 coding region. The resulting plasmid pD encodes for a protein comprising the first 81 amino acids of NS1, three amino acids derived from a synthetic DNA linker (Gln-Ile-Pro), followed by amino acids 65-222 HA2, as shown in FIG. 2 of European patent application no. 366,238.
Da olajšamo plazmidno selekcijo v produkciji fermentacij, BamHI fragment, izpeljan iz pD ekspresijskega plazmida, ki kodira rekombinantni flu D protein, ligiramo v BamHI mesto pASl plazmidnega derivata, ki vsebuje kanamicinski rezistenten gen iz Tn903 za selekcijo [Berg et al, Microbiology, izd. D. Schlessinger, str. 13-15, American Society for Microbiology (Washington, DC 1978); Nomura et al, The Single-Stranded DNA Phages, izd. D. Denhardt et al, str. 467-472, Cold Spring Harbor Laboratory (New York 1978); Castellazzi et al, Molecul. Gen. Genet., 117:211218 (1982)]. To rezultira v vektorju pC13(H65_222)Kn.To facilitate plasmid selection in fermentation production, a BamHI fragment derived from a pD expression plasmid encoding a recombinant flu D protein is ligated into the BamHI site of a pAS1 plasmid derivative containing the kanamycin resistant gene from Tn903 for selection [Berg et al, Microbiology, ed. D. Schlessinger, p. 13-15, American Society for Microbiology (Washington, DC 1978); Nomura et al, The Single-Stranded DNA Phages, ed. D. Denhardt et al, p. 467-472, Cold Spring Harbor Laboratory (New York 1978); Castellazzi et al, Molecul. Gen. Genet., 117: 211218 (1982)]. This results in the vector pC 13 (H 65 _ 222 ) Kn.
Kot opisujejo Shatzman and Rosenberg, Meth. Enzymol., 152:661-673 (1987), pOTS207 je iz pAS izpeljan klonimi vektor, ki nosi kanamicinski rezistenten gen iz Tn903 [Berg, citirano zgoraj; Nomura, citirano zgoraj; Castellazzi, citirano zgoraj]. Tega konstruiramo z razgradnjo plazmida pUC8 [Yanisch-Perron et al, Gene, 33:103-119 (1985)], z BamHI in ligiranjem na Bell fragment, ki vsebuje kanamicinski gen iz Tn903. Nastali plazmid pUC8-Kan razgradimo z Ecorl in Pstl in fragment, ki vsebuje kanamicinski gen vključimo med EcoRI in Pstl mesti pOTSV [Shatzman and Rosenberg, citirano zgoraj]. Nastali plazmid je pOTS207.As described by Shatzman and Rosenberg, Meth. Enzymol., 152: 661-673 (1987), pOTS207 is a clone vector derived from pAS carrying a kanamycin resistant gene from Tn903 [Berg, cited above; Nomura, cited above; Castellazzi, cited above]. This was constructed by degradation of the pUC8 plasmid [Yanisch-Perron et al, Gene, 33: 103-119 (1985)], by BamHI, and by ligation to a Bell fragment containing the kanamycin gene from Tn903. The resulting plasmid pUC8-Kan is digested with Ecorl and Pstl, and a fragment containing the kanamycin gene is inserted between the EcoRI and Pstl sites of pOTSV [Shatzman and Rosenberg, cited above]. The resulting plasmid is pOTS207.
520 bp fragment, ki kodira HA2 kodimo-sekvenco izoliramo iz pJZ102 [iz pBR322 izpeljan klonirni vektor, ki nosi kodirno področje za celoten HA protein (A/PR/8/34) (opisujejo Young et al, The Origin of Pandemic Influenza Viruses, izd. W.G. Laver, Elsevier Science Publishing Co. (1983)] in vključimo v pB4+, ki je bil odrezan z Xmal in končno dopolnjen. Nastali plazmid pC13(H65_222)Kn razgradimo z BamHI in fragment, ki kodira flu D protein izoliran iz tega fragmenta nato ligiramo v BamHI mesto pOTS207, da proizvedemo plazmid pC13(H65_222)Kn [SmithKline Beecham].A 520 bp fragment encoding the HA2 coding sequence was isolated from pJZ102 [a cloning vector carrying a coding region carrying the entire HA protein (A / PR / 8/34) derived from pBR322 (described by Young et al, The Origin of Pandemic Influenza Viruses, ed by WG Laver, Elsevier Science Publishing Co. (1983)] and incorporated into pB4 +, which was cut off by Xmal and finally replenished. The resulting plasmid pC 13 (H 65 _ 222 ) Kn is degraded by BamHI and the flu D encoding fragment the protein isolated from this fragment was then ligated into the BamHI site of pOTS207 to produce plasmid pC 13 (H 65 _ 222 ) Kn [SmithKline Beecham].
Sekvenco kanamicinskega rezistentnega C13(H65 222)Knplazmida izpeljemo naslednje: nukleotidne lege 1-31, 3136-3964, 4021-4343, 4533-7166 izpeljemo iz pBR322 [Young et al, citirano zgoraj]; nukleotidne lege 32-1879, 4344-4532 izpeljemo iz λ faga, nukleotidne lege 1880-2122, 2682-3135 izpeljemo iz NS1 gena, nukleotidne lege 2123-2132, 2660-2681 izpeljemo iz sintetičnega linkerja, nukleotidne lege 2133-2659 izpeljemo iz HA2 gena, nukleotidne lege 3965-4020 izpeljemo iz pCV] polilinkerja, in nukleotidne lege 7167-8601 izpeljemo iz pUCKanl2 (Tn903:KNr). DNA sekvenco kodirnega področja za flu D proteinski derivat potrdimo z dideoksi verižnim terminacijskim postopkom sekvenciranja DNA [Sanger et al, Proč. Natl. Acad. Sci. ZDA, 74:5463-5467 (1977)].The sequence of the kanamycin resistant C 13 (H 65 222 ) Knplasmid is derived as follows: nucleotide positions 1-31, 3136-3964, 4021-4343, 4533-7166 are derived from pBR322 [Young et al, cited above]; nucleotide positions 32-1879, 4344-4532 derived from λ phage, nucleotide positions 1880-2122, 2682-3135 derived from NS1 gene, nucleotide positions 2123-2132, 2660-2681 derived from synthetic linker, nucleotide positions 2133-2659 derived from HA2 genes, nucleotide positions 3965-4020 are derived from pCV ] polylinker, and nucleotide positions 7167-8601 are derived from pUCKanl2 (Tn903: KN r ). The DNA sequence of the coding region for the flu D protein derivative is confirmed by a dideoxy chain termination process for DNA sequencing [Sanger et al, Proc. Natl. Acad. Sci. U.S.A. 74: 5463-5467 (1977)].
Ta C13(H65 222)Kn plazmid je v bistvu enak kot plazmidi, ki so opisani v U. S. patentni prijavi ser.št. 07/387,200, ki je istočasno v postopku, njeni ustrezni objavljeni EPA št. 366,238 in U. S. patentni prijavi ser.št. 07/387,558, ki je istočasno v postopku, njeni ustrezni objavljeni EPA št. 366,239 razen da /3-laktamski marker odstranimo in nadomestimo s kanamicinskim markerjem. Zgornje prijave so vključene za referenco za njihov opis drugih ustreznih vektorjev.This C 13 (H 65 222 ) Kn plasmid is essentially the same as the plasmids described in U.S. Pat. 07 / 387,200, which is pending at the same time, its corresponding published EPA no. No. 366,238 and U.S. Pat. No. 07 / 387,558, which is pending at the same time, its corresponding published EPA no. 366,239 except that the / 3-lactam marker is removed and replaced with the kanamycin marker. The above applications are incorporated by reference for their description of other relevant vectors.
pC13(H65 222)Kn plazmid transformiramo v E. coli ekspresijski sev AR58 [SmithKline Beecham]; in produkcijo flu D proteina potrdimo z imunoprepivno analizo [Towbin et al, Proč. Natl. Acad. Sci. ZDA, 76:4350 (1979)], ki razkriva glavne imunoreaktivne vrste z napovedanimi molskimi masami 27,7 kD.pC 13 (H 65 222 ) Kn plasmid transformed into E. coli expression strain AR58 [SmithKline Beecham]; and flu D protein production was confirmed by immunoprecipitation analysis [Towbin et al, Proc. Natl. Acad. Sci. U.S.A. 76: 4350 (1979)], which reveals major immunoreactive species with a predicted molar mass of 27.7 kD.
Primer 13 - čiščenje D proteinaExample 13 - purification of D protein
NSi1^1-HA265 222 ali D protein (m.m. 27,7 kD) očistimo kot je podrobno opisano v objavljeni evropski patentni prijavi št. 366,239, ki ustreza U.S. patentni prijavi ser.št. 07/387,558.NSi 1 ^ 1 -HA2 65 222 or D protein (mm 27.7 kD) is purified as described in detail in published European patent application no. No. 366,239, corresponding to U.S. patent application Ser.No. 07 / 387,558.
Po indukciji sinteze D proteina s katerimkoli E. coli gostiteljskim sevom AR58 [SmithKline Beecham] z uporabo pC13(H65_222)Kn sistema, opisanega v primeru 12, bakterijske celice zberemo s centrifugiranjem in zamrznemo pri -70°C do uporabe. Ta pelet odtajamo in resuspendiramo v 50 mM Trisu, 2 mM EDTA, 0,1 mM ditiotreitola (DTT), 5% glicerolu pri pH 8. Nastalo suspenzijo obdelujemo z lizozimom (končna koncentracija vsaj približno 0,2 mg/ml) približno 1 uro pri sobnih pogojih.After induction of D protein synthesis with any E. coli host strain AR58 [SmithKline Beecham] using the pC 13 (H 65 _ 222 ) Kn system described in Example 12, bacterial cells were harvested by centrifugation and frozen at -70 ° C until use. This pellet is thawed and resuspended in 50 mM Tris, 2 mM EDTA, 0.1 mM dithiothreitol (DTT), 5% glycerol at pH 8. The resulting suspension is treated with lysozyme (final concentration of at least about 0.2 mg / ml) for about 1 hour at room conditions.
Suspenzijo nato liziramo na Manton Gaulinovem homogenizatorju [APV Gaulin, Inc., Everet, Massachusetts pri 5,4xlO10 Pa v dveh prehodih. Nastalo suspenzijo obdelamo s Tritonom Χ-100 (1% končna koncentracija) in deoksiholatom (DOC; 0,1% končna koncentracija). Pelet, ki vsebuje D protein, suspendiramo v 50 mM GlyNaOH pufru, ki vsebuje 2 mM EDTA in 5% glicerol pri pH 10,5 z uporabo Turkovega homogenizatorja. Dobljeno suspenzijo po dodatku Tritona Χ-100 (1% končna koncentracija) mešamo približno 1 uro v hladni sobi pri 4°C in nato centrifugiramo. Pelet, ki vsebuje D protein, raztapljamo v 8 M sečnini, 50 mM Trisu pri pH 8,0 preko noči pri 4°C. Supernatant vsebuje D protein.The suspension was then lysed on a Manton Gaulin homogenizer [APV Gaulin, Inc., Everet, Massachusetts at 5.4x10 10 Pa in two passes. The resulting suspension was treated with Triton Χ-100 (1% final concentration) and deoxycholate (DOC; 0.1% final concentration). The D protein-containing pellet was suspended in 50 mM GlyNaOH buffer containing 2 mM EDTA and 5% glycerol at pH 10.5 using a Turk homogenizer. The resulting suspension, after the addition of Triton Χ-100 (1% final concentration), was stirred for about 1 hour in a cold room at 4 ° C and then centrifuged. The D protein-containing pellet was dissolved in 8 M urea, 50 mM Tris at pH 8.0 overnight at 4 ° C. The supernatant contains D protein.
Ta supernatant po dodatku DTT (do 50 mM končna koncentracija) mešamo pri sobnih pogojih približno 1 uro in nato napolnimo na dolono DEAE hitro pretočnoAfter the addition of DTT (up to 50 mM final concentration), this supernatant was stirred at room temperature for about 1 hour and then charged to the DEAE flask rapidly.
Sepharose [Pharmacia] kolono, uravnoteženo z 8M sečnino in 50 mM Tris pufra pri pH 8. D protein eluiramo z 0 do 0,3 M NaCl gradientom (preko pet kolonskih volumnov ali več) v uravnoteženem pufru.Sepharose [Pharmacia] column equilibrated with 8M urea and 50 mM Tris buffer at pH 8. D protein was eluted with a 0 to 0.3 M NaCl gradient (over five column volumes or more) in balanced buffer.
Frakcije, ki vsebujejo D protein, koncentriramo na Minisette tangencialnem pretočnem aparatu [Pharmacia], obdelamo z 10 mg SDS na mg proteina, DTT [Sigma] (do končne koncentracije 50 mM) in mešamo pri sobni temperaturi približno 1,5 ure.The fractions containing D protein were concentrated on a Minisette Tangential Flow Apparatus [Pharmacia], treated with 10 mg SDS per mg protein, DTT [Sigma] (up to a final concentration of 50 mM) and stirred at room temperature for about 1.5 hours.
Nastalo raztopino napolnimo v kolono Superose-12 [Pharmacia], uravnoteženo s 25 mM Tris-Glycin pufrom pri pH 8,6, ki vsebuje 1% SDS. D protein eluiramo pri njegovi napovedani monomerni molekulski masi v izokratičnem gradientu uravnoteženega pufra. Frakcije, ki vsebujejo D protein ustrezne čistote zberemo, koncentriramo, obdelamo z 10 mg SDS na mg proteina in DTT (do 50 mM končna koncentracija), nato kromatografiramo na koloni Superozni-12 pri enakih pogojih, kot so bili opisani tik pred tem.The resulting solution was filled into a Superose-12 column [Pharmacia] balanced with 25 mM Tris-Glycin buffer at pH 8.6 containing 1% SDS. The D protein is eluted at its predicted monomeric molecular weight in an isocratic gradient of balanced buffer. Fractions containing D protein of appropriate purity were collected, concentrated, treated with 10 mg SDS per mg protein and DTT (up to 50 mM final concentration), then chromatographed on a Superozni-12 column under the same conditions as previously described.
Frakcije, ki vsebujejo D protein najvišje čistote zberemo, koncentriramo in damo v prečiščevalno kolono G25 Sephadex [Pharmacia], uravnoteženo s 50 mM Tris pufrom pri 8,0, ki vsebujejo 8 M sečnino. D protein eluiramo izokratično z uravnoteževalnim pufrom in frakcije, ki vsebujejo D protein brez SDS zberemo in koncentriramo. Ta visoko očiščen vzorec D proteina nato koncentriramo, dializiramo proti 20 mM Tris, 1 mM EDTA, pH 8,0 in sterilno filtriramo.Fractions containing D protein of the highest purity were collected, concentrated and placed in a G25 Sephadex [Pharmacia] purification column balanced with 50 mM Tris buffer at 8.0 containing 8 M urea. D protein is eluted isocratic by equilibration buffer and fractions containing D protein without SDS are collected and concentrated. This highly purified sample of D protein was then concentrated, dialyzed against 20 mM Tris, 1 mM EDTA, pH 8.0, and sterile filtered.
Primer 14 - vrednotenje Flu D vakcinskih sestavkovExample 14 - Evaluation of Flu D Vaccine Compositions
Podrobni opisi D proteina in postopkov, uporabljenih za in vitro poskuse celic T in študiji zaščite, so opisani v S. B. Dillon et al, Vaccine, 10:309 (1992), vključeni tukaj z referenco.Detailed descriptions of D protein and the procedures used for in vitro T cell assays and protection studies are described in S. B. Dillon et al, Vaccine, 10: 309 (1992), incorporated herein by reference.
CTL in proliferacijske teste izvedemo kot je opisano pred tem [S. B. Dillon et al, citirano zgoraj]. IL-2 izmerimo na IL-2 odvisni CTL liniji (CTLL) in IFN-γ izmerimo s komercialnim ELISA kompletom.CTLs and proliferation assays are performed as described previously [S. B. Dillon et al, cited above]. IL-2 was measured on an IL-2 dependent CTL line (CTLL) and IFN-γ was measured with a commercial ELISA kit.
Vakcinske sestavke v smislu izuma, ki vsebujejo s Superoso očiščen D protein (primer 13) v adjuvantu aluminijevem hidroksidu, z ali bez 3D-MPL, pripravimo naslednje: 3D-MPL (RIBI Immunochemical, Hamilton, MT) rekonstituiramo v sterilni vodi za injekcijo na delujočo koncentracijo 1 mg/ml. To izhodno osnovno raztopino sonificiramo 30 minut in kasnejše razredčenine, narejene v 5% dekstrozi, sonificiramo dodatnih 10 minut pred dodatkom zmesi D proteina v aluminijevem hidroksidu, pripravljeni kot je opisano pred tem [Dillon et al, Vaccine, 10(5):309-318 (1992)].The vaccine compositions of the invention containing the Superoso purified D protein (Example 13) in aluminum hydroxide adjuvant, with or without 3D-MPL, are prepared as follows: 3D-MPL (RIBI Immunochemical, Hamilton, MT) is reconstituted in sterile water for injection at working concentration of 1 mg / ml. Sonic stock solution was sonicated for 30 minutes and subsequent dilutions made in 5% dextrose sonicated for an additional 10 minutes before addition of a mixture of D protein in aluminum hydroxide prepared as previously described [Dillon et al, Vaccine, 10 (5): 309- 318 (1992)].
Antigenske doze titriramo iz 0,01, 0,1,1,0,10, 20 in 100 jug doze injekcije; in 3D-MPL doze titriramo iz 0,025, 0,25, 2,5, 25 in 50 /tg doze injekcije. Razmerje 3DMPL:antigenu vzdržujemo pri 2,5:1 (mas/mas) za vse antigenske doze razen za 100 /tg dozo, kot je prikazano v tabeli 5 spodaj. Aluminijevega hidroksida je 100 /tg na dozo v vseh primerih. Kontrolni vakcinski sestavek vsebuje 20 /tg antigena mešanega s CFA, kot je opisnao v Dillon et al, Vaccine, 10(5):309-318 (1992). Končni injekcijski volumni so 0,2 ml na miš.Antigen doses were titrated from 0.01, 0.1,1,0,10, 20 and 100 µg injection; and 3D-MPL doses were titrated from 0.025, 0.25, 2.5, 25 and 50 / tg injection dose. The 3DMPL: antigen ratio was maintained at 2.5: 1 (w / w) for all antigen doses except 100 / tg dose as shown in Table 5 below. Aluminum hydroxide is 100 / tg per dose in all cases. The control vaccine composition contains 20 / tg of antigen mixed with CFA as described in Dillon et al, Vaccine, 10 (5): 309-318 (1992). The final injection volumes are 0.2 ml per mouse.
Za te študije zaščite miši (CB6Fp 11-2^) injiciramo subkutano z izbrano vakcinsko dozo na teden 0 in 3 in izzovemo intranazalno (pod anestezijo z metofanom) na teden 7 z 2 do 5 LDS0 dozama A/Puerto Rico/8/34 [A/PR/8/34 (influenca tipa A, H1N1)] virusa.For these mouse protection studies (CB6Fp 11-2 ^), inject subcutaneously with the selected vaccine dose at weeks 0 and 3 and challenge intranasally (under methophan anesthesia) at week 7 with 2 to 5 LD S0 doses A / Puerto Rico / 8/34 [A / PR / 8/34 (type A influenza, H1N1)] virus.
Podrobni opisi postopkov, uporabljenih za študije zaščite, so opisani v S. Dillon et al, Vaccine, 10(5): 309-318 (1992), ki so vključeni tukaj z referenco. Odstotek preživetja na dan 21 po izzivu primerjamo med skupinami z Fischerjevim ekzaktnim verjetnostnim testom.Detailed descriptions of the procedures used for protection studies are described in S. Dillon et al, Vaccine, 10 (5): 309-318 (1992), which are incorporated herein by reference. Survival percentages at day 21 after challenge were compared between groups with Fischer's exact likelihood test.
Tabela 5Table 5
+ p < 0,003 proti adjuvantni kontroli **p < 0,01 proti adjuvantni kontroli **p < 0,01 proti aluminijevi formulaciji pri enaki antigenski dozi + p <0.003 against adjuvant control ** p <0.01 against adjuvant control ** p <0.01 against aluminum formulation at the same antigenic dose
Iz rezultatov tabele 5 je razvidno, da se minimalna doza flu D antigena potrebna za znatno zaščito pred letalnim izzvom zniža iz 10 jug (samo z aluminijem) na 1 Mg, & je 3D-MPL vključen v vakcinski sestavek. Prav tako odstotek miši, ki preživijo iziv naraste, če 20 Mg (p - 0,01), 10 Mg (p 0,05; NS) in 1 Mg (p - 0,01) antigenske doze damo s 3D-MPL kot tudi aluminij proti aluminiju samem v vakcinskem sestavku. Preživetje v CFA kontrolni skupini pri 20 Mg antigena je 73% v tem poskusu.From the results of Table 5 shows that the minimum dose of flu D antigen required for significant protection against lethal izzvom reduced from 10 South (only aluminum) per 1 Mg & j e 3D-MPL is included in the vaccine composition. Likewise, the percentage of mice surviving the outcome increases when 20 Mg (p - 0.01), 10 Mg (p 0.05; NS) and 1 Mg (p - 0.01) antigen doses are administered with 3D-MPL as well as aluminum against aluminum alone in the vaccine composition. Survival in the CFA control group at 20 Mg antigen was 73% in this experiment.
Primer 15 - vrednotenje flu D vakcinskih sestavkovExample 15 - Evaluation of Flu D Vaccine Compositions
Ta poskus izvedemo v bistvu tako, kot je opisano v primeru 14 zgoraj, razen da doze 3D-MPL titriramo in damo bodisi same z minimalno učinkovito dozo flu D antigena (1 μ%) in aluminijevega adjuvanta (100 μ-g) ali s flu D antigenom (10 μ%) in aluminijevim adjuvantom (100 /xg). Iz rezultatov, navedenih v tabeli 6, je razvidno, da je mininalna učinkovita doza 3D-MPL 2 μ-g.This experiment is carried out essentially as described in Example 14 above, except that the 3D-MPL doses are titrated and administered either alone with the minimally effective dose of flu D antigen (1 μ%) and aluminum adjuvant (100 μ g) or with flu D antigen (10 μ%) and aluminum adjuvant (100 / xg). The results reported in Table 6 show that the minimum effective dose of 3D-MPL is 2 μ-g.
Tabela 6Table 6
Antigenska doza (μ-g) 3D-MPL doza (p,g) % preživetja (dan 21)Antigen dose (μ-g) 3D-MPL dose (p, g)% survival (day 21)
+ p < 0,001 proti adjuvantni kontroli *p < 0,02 proti adjuvantni kontroli ++p < 0,01 proti aluminijevi formulaciji pri enaki antigenski dozi. + p <0.001 against adjuvant control * p <0.02 against adjuvant control ++ p <0.01 against aluminum formulation at the same antigenic dose.
Primer 16 - Vrednotenje flu D vakcinskih sestavkovExample 16 - Evaluation of flu D vaccine compositions
V tem poskusu učinkovitost liposomov in 3D-MPL primerjamo z liposomi (lipo) brezIn this experiment, the performance of liposomes and 3D-MPL is compared to liposomes (lipo) without
3D-MPL (Ribi Immunochem] in z A1(OH)3 ali CFA z določevanjem nivoja zaščite, kije viden po izzivu z 2,10 ali 50 LD50 dozami virusa. Vakcine, ki so uporabljene, so enake kot v tabeli 9 spodaj.3D-MPL (Fish Immunochem] and A1 (OH) 3 or CFA by determining the level of protection seen after challenge with 2,10 or 50 LD 50 virus doses The vaccines used are the same as in Table 9 below.
Miši injiciramo na teden 0 in 3 in izzovemo z A/PR/8/34 na teden 7. Preživetje je prikazano v tabeli 7 spodaj na dan 21.Mice were injected at Week 0 and Week 3 and challenged with A / PR / 8/34 at Week 7. Survival is shown in Table 7 below on Day 21.
Tabela 7 % preživetjaTable 7% survival
a Količina 3D-MPL na liposom ni določena. a The amount of 3D-MPL per liposome has not been determined.
b p < 0,003 proti adjuvantni kontroli c p < 0,003 proti formulaciji aluminijevega hidroksida pri enaki antigenski dozi. b p <0.003 against adjuvant control c p <0.003 against aluminum hydroxide formulation at the same antigenic dose.
Iz rezultatov je razvidno, da znatno zaščito proti 50 LD50 izzivu dosežemo le z liposomsko /3D-MPL formulacijo in z nobeno drugo testirano adjuvantno formulacijo (tabela 7). Znatno zaščito dosežemo proti 2 LD50 izzivu z vsemi formulacijami in vse formulacije razen aluminija so protektivne proti 10 LD50 izzivni dozi. Zato D protein v 3D-MPL/liposomski formulaciji sestavlja vakcino s celo večjo učinkovitostjo kot D protein v CFA, ki je klasičen adjuvant za vzpodbujanje odziva celic T, vendar ni primeren za uporabo pri ljudeh.The results show that significant protection against the 50 LD 50 challenge is achieved only with the liposomal / 3D-MPL formulation and with no other adjuvant formulation tested (Table 7). Considerable protection is achieved against the 2 LD 50 challenge with all formulations and all formulations except aluminum are protective against the 10 LD 50 challenge dose. Therefore, the D protein in the 3D-MPL / liposomal formulation is a vaccine with even greater potency than the D protein in CFA, which is a classic adjuvant for stimulating T cell response but is not suitable for use in humans.
Primer 17 - vrednotenje flu D vakcinskih sestavkovExample 17 - Evaluation of Flu D Vaccine Compositions
V tem poskusu vrednotimo vakcinski sestavek v smislu izuma, ki vsebuje flu D protein, 3D-MPL in liposome v primerjavi z vakcinskim sestavkom, ki vsebuje flu D,In this experiment, the vaccine composition of the invention comprising flu D protein, 3D-MPL and liposomes is evaluated in comparison to a flu D vaccine composition,
3D-MPL in aluminijev adjuvant. Izmerimo dejansko količino 3D-MPL, vgrajenega v liposome.3D-MPL and aluminum adjuvant. We measure the actual amount of 3D-MPL embedded in the liposomes.
Flu D protein (očiščen na koloni s Superoso) v 25 mM Trisu/1 mM EDTA, pH 8, pri celotni proteinski koncentraciji 2,49 mg/ml dializiramo proti 20 mM amonijevemu bikarbonatu s pH 8 in liofiliziramo v prašek v 20 mg alikvotih.Flu D protein (purified on a Superoso column) in 25 mM Tris / 1 mM EDTA, pH 8, was dialyzed against a total protein concentration of 2.49 mg / ml against 20 mM ammonium bicarbonate at pH 8 and lyophilized to powder in 20 mg aliquots.
Jajčne fosfatide (Asahi tip 5) in oljno kislino (Sigma) zmešamo v molskem razmerju približno 1:1,2. L-arginin (prosta baza), 0,38 M v vodi dodamo (1:1) molsko razmerje fosfatid: arginin) k fosfatidni/maščobni kislinski zmesi in mešamo, da nastane gladek in homogen gel. Ta gel je predliposomski gel.Egg phosphatides (Asahi type 5) and oleic acid (Sigma) are mixed at a molar ratio of approximately 1: 1.2. L-arginine (free base), 0.38 M in water was added (1: 1) molar ratio of phosphatide: arginine) to the phosphatide / fatty acid mixture and stirred to form a smooth and homogeneous gel. This gel is a pre-liposomal gel.
Liofiliziran protein združimo s predliposomskim gelom (0,06-0,08 protein/gel (mas/mas) razmerje) in mešamo pri sobni temperaturi, da nastane homogena pasta. Monofosforilni lipid A (Ribi/Immunochem) dodamo pri razmerju 1 μ,πιοί lipida A proti 66 μηιοί fosfatidov. To je transparenten brezbarven sistem, ki je sestavljen iz struktur nanodelcev (po premeru submikroni) agregiranih 3D-MPL monomerov. Nastalo liposomsko suspenzijo nadalje razredčimo s 25 mM Tris/1 mM EDTA, pH 8,0 pufrom in homogeniziramo. Liposomski pripravek nato serijsko centrifugiramo (3x), da odstranimo nevgrajen protein in 3D-MPL. Vsakič pelet resuspendiramo s tris/EDTA pufrom. Končno liposomsko suspenzijo analiziramo in hranimo pod duškom pri 5°C do uporabe.The lyophilized protein was combined with a pre-liposomal gel (0.06-0.08 protein / gel (w / w) ratio) and stirred at room temperature to form a homogeneous paste. Monophosphoryl lipid A (Pisces / Immunochem) was added at a ratio of 1 μ, πιοί lipid A to 66 μηιοί phosphatides. It is a transparent colorless system consisting of nanoparticle structures (submicron diameter) of aggregated 3D-MPL monomers. The resulting liposomal suspension was further diluted with 25 mM Tris / 1 mM EDTA, pH 8.0 buffer and homogenized. The liposome preparation was then serially centrifuged (3x) to remove the non-incorporated protein and 3D-MPL. Each pellet was resuspended with tris / EDTA buffer. The final liposomal suspension was analyzed and stored under nitrogen at 5 ° C until use.
Liposome nato testiramo, da določimo vsebnost proteina z modificiranim Loweryjevim kolorimetričnim testom, fosfolipidno koncentracijo z Bartlettovim testom [Bartlett, G. R., J. Biol.m Chem., 234:466-468 (1959)] in velikost liposoma s fotonsko korelacijsko spektroskopijo [Malvem model 4700]. Vse teste izvedemo s standardnimi tehnikami. Liposomov nismo analizirali za vsebnost lipida A, vendar se zdi, da ves od lipid A ostane v končni liposomski frakciji.Liposomes are then tested to determine protein content by a modified Lowery colorimetric assay, phospholipid concentration by Bartlett assay [Bartlett, GR, J. Biol.m Chem., 234: 466-468 (1959)], and liposome size by photon correlation spectroscopy [Malvem model 4700]. All tests are performed using standard techniques. Liposomes have not been analyzed for lipid A content, but all of lipid A appears to remain in the final liposomal fraction.
V naslednji tabeli 8, D protein LA in kontrolo LA-I pripravimo z vgradnjo trdnega lipida A v lipidno fazo. Kontrolo LA-II pripravimo s hidratacijo z raztopino lipida A za vgradnjo.In the following Table 8, the D protein LA and the LA-I control are prepared by incorporation of solid lipid A into the lipid phase. The LA-II control was prepared by hydration with a lipid A solution for incorporation.
Tabela 8Table 8
Miši imuniziramo subkutano z 0,2 ml formulacije antigena/nosilec/3D-MPL na teden 0 in 3 in izzovemo intranazalno na teden 7 s 5 LD50 A/PR/8/34 virusom. Nosilec je bodisi aluminijev hidroksid (Al) ali liposomi (Upo). Preživetje zasledujemo 21 dni. Ti rezultati so prikazani v tabeli 9 spodaj. Če ni drugače navedeno je vrednost p merilo proti 3D-MPL kontroli.Mice were immunized subcutaneously with 0.2 ml of antigen / vehicle / 3D-MPL formulation at week 0 and 3 and challenged intranasally at week 7 with 5 LD 50 A / PR / 8/34 virus. The carrier is either aluminum hydroxide (Al) or liposomes (Upo). Survival is pursued for 21 days. These results are shown in Table 9 below. Unless otherwise stated, p is a measure against 3D-MPL control.
Tabela 9Table 9
3 p vrednost proti homologni dozi brez 3D-MPL. 3 p value against homologous dose without 3D-MPL.
Iz teh podatkov je razvidno, da z uporabo liposomov kot nosilcev, potrebno dozo 3D-MPL (0,005 - 0,05 gg) lahko dramatično znižamo proti količini, potrebni z aluminijem (približno 2 gg). (Glej tudi tabelo 6 zgoraj).From these data, it can be seen that by using liposomes as carriers, the required dose of 3D-MPL (0.005 - 0.05 gg) can be dramatically reduced compared to the amount required with aluminum (about 2 gg). (See also Table 6 above).
Primer 18 - Vrednotenje vakcinskega sestavkaExample 18 - Evaluation of the vaccine composition
CB6F1 (12 na skupino) injiciramo subkutano na teden 0 in 3 z vakcinskim sestavkom, ki vsebuje 100 gg flu D v aluminiju (100 gg) in 3D-MPL (10 gg). Na teden 7 miši izzovemo s 3-5 LD50 dozami virusov, prikazanih na sl. 1. Preživetje zasledujemo 21 dni po izzivu.CB6F 1 (12 per group) was injected subcutaneously at weeks 0 and 3 with a vaccine composition containing 100 gg of flu D in aluminum (100 gg) and 3D-MPL (10 gg). Week 7 mice were challenged with 3-5 LD 50 doses of the viruses shown in FIG. 1. Survival is pursued 21 days after the challenge.
Iz rezultatov na sl. 1 je razvidno, da je antigenska specifičnost vakcine ekvivalentna tisti, prikazani preje z Al+3 adjuvantom [S. B. Dillon et al, citirano zgoraj] (t.j.From the results in Figs. 1 shows that the antigen specificity of the vaccine is equivalent to that shown in the yarn with Al +3 adjuvant [SB Dillon et al, cited above] (i.e.
navkrižno protektiven tako za HI kot tudi za H2 podtipe, vendar pomanjkanje učinkovitosti za H3 ali tip B). Preživetje je tudi večje v vakcinirani skupini, izzvani s heterolognim H1N1 virusom, A/Tai/86, čeprav rezultati niso signifikantni, p < 0,09. (glej sl. 1).cross-protective for both HI and H2 subtypes, but lack of efficacy for H3 or type B). Survival was also higher in the vaccine group elicited by the heterologous H1N1 virus, A / Tai / 86, although the results were not significant, p <0.09. (see Fig. 1).
Primer 19 - Vrednotenje Flu D vakcinskega sestavkaExample 19 - Evaluation of Flu D Vaccine Composition
CB6FX miši injiciramo subkutano (sc) z vakcinskim sestavkom, ki vsebuje 1 ptg D proteina v aluminiju (100 μ-g) in 3D-MPL (2,5 μ-g) ali samo z aluminijem na teden 0 in 3.18 miši izzovemo na teden 7 s 5 LD50 dozami A/PR/8/34 virusa. 5 miši usmrtimo na dan 7 po izzivu za pljučne titre. (Smrt v kontrolnih skupinah na dan 7 je 60% za A1/3D-MPL in 40% za CFA). Vranice odstranimo dvem mišim v skupini pred izzivom in trem mišim v skupini na dan 6 po izzivu za proliferacijo in citokinske teste (tabela 15 spodaj). Iz tabele 10 je razvidno preživetje (n = 10 /skupino) in čiščenje pljučnega virusa (n=5/skupino) po 5 LD50 izzivu. Pljučni virusni titer, zabeležen na dan 7, je naveden v četrti koloni tabele 10.CB6F X mice were injected subcutaneously (sc) with a vaccine composition containing 1 ptg of D protein in aluminum (100 μ-g) and 3D-MPL (2.5 μ-g) or challenged with aluminum only at week 0 and 3.18 mice challenged week 7 with 5 LD 50 doses of A / PR / 8/34 virus. 5 mice were killed on day 7 following a challenge for pulmonary titers. (Deaths in controls at day 7 were 60% for A1 / 3D-MPL and 40% for CFA). Spleens were removed from two mice in the pre-challenge group and three mice in the group on day 6 after the challenge for proliferation and cytokine assays (Table 15 below). Table 10 shows the survival (n = 10 / group) and purification of the lung virus (n = 5 / group) after the 5 LD 50 challenge. The lung viral titer recorded on day 7 is listed in the fourth column of Table 10.
Iz rezultatov v tabeli 10 je razvidno, da je znižanje pljučnih virusnih titrov v miših zaradi 5 LD50 izziva večjega obsega z 3D-MPL proti CFA (2,4 logw proti 0,9 log10), čeprav je preživetje ekvivalentno v teh skupinah.The results in Table 10 show that the decrease in lung viral titers in mice due to 5 LD 50 is a greater challenge with 3D-MPL versus CFA (2.4 log w vs 0.9 log 10 ), although survival is equivalent in these groups .
Tabela 10Table 10
* p < 0,001 proti adjuvantni kontrolni skupini **p < 0,01 proti adjuvantni kontrolni skupini + p < 0,003 proti adjuvantni kontrolni skupini ++ p < 0,03 proti adjuvantni kontrolni skupini,* p <0.001 against adjuvant control group ** p <0.01 against adjuvant control group + p <0.003 against adjuvant control group ++ p <0.03 against adjuvant control group,
Primer 20 - vrednotenje flu D vakcinskega sestavkaExample 20 - Evaluation of Flu D Vaccine Composition
Da določimo, če je proliferacija vraničnih celic T, yIFN produkcija soodnosna z zaščito, te odzive zasledujemo v vranicah miši, imuniziranih z 1 ju,g D proteina v Al proti A1/3D-MPL (2,5 ng 3D-MPL) adjuvanti (iz študija, prikazanega v tabeli 10) pred in po izzivu. Na teden 7 dve miši usmrtimo 6 dni po virusnem izzivu. Vranico sokultiviramo z D proteinom in pulziramo s 3H-timidinom na dan 3. Kulture supernatantov požanjemo 8 ur kasneje.To determine if spleen cell proliferation is T, yIFN production is correlated with protection, these responses are observed in the spleens of mice immunized with 1 µg g of D protein in Al against A1 / 3D-MPL (2.5 ng 3D-MPL) adjuvants ( from the study shown in Table 10) before and after the challenge. On week 7, two mice are killed 6 days after the viral challenge. The spleen was co-cultured with D protein and pulsed with 3 H-thymidine on day 3. The supernatant cultures were harvested 8 hours later.
Celotni proliferativni vranični odzivi so podobni pred in po izzivu za skupine, vakcinirane bodisi z D proteinom v Al ali A1/3D-MPL formulaciji (maksimalni cpm v nestimuliranih kulturah je 2750 cpm) (sl. 3). Obseg proliferativnih odzivov je tudi podoben tako za adjuvantno skupino z maksimalnim stimulacijskim indeksom, ki je enak 3,0 ali nižjim (sl. 2). Nivoje gama interferona pred izzivom v kulturah supernatantov, stimuliranih z antigenom, so samo skromno (približno 2-krat) povečani in dve adjuvantni skupini sta ekvivalentni, kot je razvidno iz tabele 11.Overall proliferative spleen responses are similar before and after challenge for groups vaccinated with either the D protein in the Al or A1 / 3D-MPL formulation (maximum cpm in unstimulated cultures is 2750 cpm) (Fig. 3). The range of proliferative responses is also similar for the adjuvant group with a maximum stimulation index equal to 3.0 or lower (Fig. 2). Pre-challenge gamma levels of interferon in cultures of antigen-stimulated supernatants are only modestly (approximately 2-fold) increased and the two adjuvant groups are equivalent, as shown in Table 11.
Vendar je nasprotno produkcija gama interferona povečana več kot 7-krat v kulturah, stimuliranih z antigenom pri A1/3D-MPL skupino po izzivu; medtem ko nivoji po izzivu niso narasli v skupini, vakcinirani samo z Al+3 (tabela 11). Iz teh rezultatov je torej evidentno, da je produkcija gama interferona soodnosna z znižanimi pljučnimi titri in preživetjem po izzivu in nadalje je iz teh rezultatov razvidno, da proliferacija celic T sama po sebi ne reflektira razlike med dvema adjuvantnima skupinama.However, the production of interferon gamma is increased more than 7-fold in antigen-stimulated cultures of the A1 / 3D-MPL group after challenge; while levels did not rise after challenge in the Al- 3 vaccinated group alone (Table 11). It is evident from these results that the production of interferon gamma is correlated with reduced pulmonary titers and survival after challenge, and further it is evident from these results that T cell proliferation by itself does not reflect the difference between the two adjuvant groups.
Tabela 11 ng/ml IFN-gamaTable 11 ng / ml IFN-gamma
Primer 21 - vrednotenje flu D vakcinskega sestavkaExample 21 - Evaluation of Flu D Vaccine Composition
Za nadaljnjo raziskavo vloge CD4+ celic primerjamo proliferacijo, specifično za antigen in produkcijo citokina v miših, vakciniranih z vakcinskimi sestavki, ki vsebujejo flu D in aluminijev adjuvant (Al) proti vakcinskim sestavkom, ki vsebujejo flu D in A1/3D-MPL formulacije.To further investigate the role of CD4 + cells, we compare antigen-specific proliferation and cytokine production in mice vaccinated with vaccine compositions containing flu D and an aluminum adjuvant (Al) against vaccine compositions containing flu D and A1 / 3D-MPL formulations.
Bezgavke miši, katerim smo dali enojno injekcijo 1,5 ali 20 /xg D proteina v A1/3DMPL (razmerje 3D-MPL:antigenu je 2,5:1 mas/mas) ali Al+ adjuvantu (100 μ-g) 7 dni preje kultuviramo z 0-30 mg/ml očiščenega D proteina.Lymph nodes of mice given a single injection of 1.5 or 20 / xg D protein in A1 / 3DMPL (3D-MPL: antigen ratio is 2.5: 1 w / w) or Al + adjuvant (100 μ-g) for 7 days the yarn is cultured with 0-30 mg / ml of purified D protein.
Rezultati so prikazani na sl. 3 in 4. Proliferacija je jasno povečana v skupinah, ki so prejele A1/3D-MPL adjuvant in razlika je največja pri najnižji in vivo antigenski dozi (1 μ-g). Na sl. 3 je prikazana maksimalna cpm v nestimuliranih kulturah, ki je enakaThe results are shown in FIG. 3 and 4. Proliferation is clearly increased in the groups receiving A1 / 3D-MPL adjuvant and the difference is greatest at the lowest in vivo antigen dose (1 μ-g). In FIG. 3 shows the maximum cpm in unstimulated cultures, which is the same
1368 cpm. Na sl. 4 je razvidna maksimalna cpm v nestimuliranih kulturah, kije enaka1368 cpm. In FIG. 4 shows the maximum cpm in unstimulated cultures, which is the same
1600 cpm; in maksimalna cpm CTLL (IL-2 odvisna CTL linija) celic, kultiviranih s supernatanti iz nestimuliranih kultur enakih 195 cpm). Vrh (48 ur) IL-2 aktivnosti je večji v skupinah, vakciniranih z A1/3D-MPL formulacijami, čeprav so nivoji na splošno nižji v vseh kulturah (sl. 4).1600 cpm; and maximum cpm CTLL (IL-2 dependent CTL line) of cells cultured with supernatants from unstimulated cultures equal to 195 cpm). The peak (48 h) of IL-2 activity was higher in the groups vaccinated with A1 / 3D-MPL formulations, although the levels were generally lower in all cultures (Fig. 4).
Iz tabele 12 so razvidni rezultati analize interferona gama v supernatantih iz enakih kultur, stimuliranih z antigenom. Nivoji interferona v supernatantih iz adjuvantnih kontrolnih kultur so vsi < 1 ng/ml. Interferon gama izmerimo z Gibco-BRL ELISA kompletom. Ta citokin, kije najvišji na dan 4 kulture, je do 5-krat večji v A1/3D-MPL skupini.Table 12 shows the results of the analysis of interferon gamma in supernatants from identical antigen-stimulated cultures. The levels of interferon in supernatants from adjuvant control cultures are all <1 ng / ml. Interferon gamma was measured with a Gibco-BRL ELISA kit. This cytokine, the highest on day 4 of the culture, is up to 5-fold higher in the A1 / 3D-MPL group.
Tabela 12 μ% antigena antigen IFN-gama (ng/ml)Table 12 μ% antigen IFN-gamma antigen (ng / ml)
Rezultati iz tabel 11 in 12 v celoti podpirajo vlogo interferona gama v mehanizmu delovanja MPL adjuvanta.The results in Tables 11 and 12 fully support the role of interferon gamma in the mechanism of action of MPL adjuvant.
Primer 22 - vrednotenje flu D vakcinskega sestavkaExample 22 - Evaluation of Flu D Vaccine Composition
Ker je iz gornjih primerov razvidno, da 3D-MPL izboljša učinkovitost vakcine, smo naredili študijo, da bi določili, če je vzpodbujevalna (booster) injekcija potrebna za zaščito. Miši vakciniramo s posamezno sc injekcijo 50 μ-g D in izzovemo 7 tednov kasneje z 2 LD50 A/PR/8/34. Alternativno drugi skupini damo booster injekcijo z enako antigensko dozo pri 3 tednih. 3D-MPL doza je 125 μ%. Flu D je adjuvantiran bodisi z aluminijevim hidroksidom, aluminijem in 3D-MPL ali CFA. Izvedemo kontrole za vsak adjuvant.As the examples above show that 3D-MPL improves vaccine efficacy, we have done a study to determine if booster injection is needed for protection. Mice were vaccinated with single sc injection of 50 μ-g D and challenged 7 weeks later with 2 LD 50 A / PR / 8/34. Alternatively, the second group is given a booster injection with the same antigen dose at 3 weeks. The 3D-MPL dose is 125 μ%. Flu D is adjuvanted with either aluminum hydroxide, aluminum and 3D-MPL or CFA. We perform controls for each adjuvant.
Iz rezultatov v tabeli 13 spodaj (prikazano v primeru 23) je razvidno, da vgradnja 3D-MPL (125 Mg) v vakcinsko formulacijo s 50 Mg antigena znatno poveča preživetje v miših, katerim smo dali bodisi eno ali dve injekciji, če primerjamo z enako dozo vakcinskega proteina, adsorbiranega na aluminiju. Ponovno je preživetje v Al/MPL skupini primerljivo s tistim, vidnim v CFA.The results in Table 13 below (shown in Example 23) show that the incorporation of 3D-MPL (125 Mg) into the vaccine formulation with 50 Mg of antigen significantly increased survival in mice given either one or two injections when compared with the same dose of vaccine protein adsorbed on aluminum. Again, survival in the Al / MPL group is comparable to that seen in CFA.
Primer 23 - testi citotoksičnih limfocitov TExample 23 - Cytotoxic T lymphocyte assays
Podrobni opisi postopkov, uporabljenih za in vitro teste celic T so opisani v S. Dillon et al, citirano zgoraj. Testi za detektiranje spominskih celic CTL izvedemo po drugi in vitro stimulaciji z virusom, kot je opisano pred tem [glej F. Ennis et al, Lancet, 11:887-891 (1981); A. Yamada et al, J. Exp. Med., 162:663-674 (1985); in K. Kuwono et al, J. Exp. Med., 169:1361-1371 (1989)]. Na kratko, vranične celice ali celice bezgavk od imunih ali kontrolnih miši kultiviramo v razmerju 6:1 s singenskimi vraničnimi celicami, inficiranimi z virusom influence 5 dni. Medij kulture je RPMI 1640, dopolnjen z 10% fetalnim telečjim serumom [Hyclone Laboratories, Logan, UT], 2 mM glutamin, 5 χ 10'5 M 2-ME, 10 mM HEPES, penicilin in streptomicin.Detailed descriptions of the procedures used for in vitro T cell assays are described in S. Dillon et al, cited above. CTL memory cell detection assays are performed after a second in vitro stimulation with the virus as previously described [see F. Ennis et al, Lancet, 11: 887-891 (1981); A. Yamada et al, J. Exp. Med., 162: 663-674 (1985); and K. Kuwono et al, J. Exp. Med., 169: 1361-1371 (1989)]. Briefly, spleen cells or lymph node cells from immune or control mice were cultured at a ratio of 6: 1 with syngeneic spleen cells infected with influenza virus for 5 days. The culture medium is RPMI 1640 supplemented with 10% fetal calf serum [Hyclone Laboratories, Logan, UT], 2 mM glutamine, 5 χ 10 ′ 5 M 2-ME, 10 mM HEPES, penicillin and streptomycin.
Vranice miši, ki smo jim dali eno ali dve sc injekciji 50 Mg deproteina (teden 0 in 3) odstranimo sedmi teden in restimuliramo in vitro, kot je opisano zgoraj. Ena litična enota (LU35) je definirana kot število efektorskih celic v testu sproščanja kroma, potrebnih za 35% lizo (določeno z regresijsko analizo). V tabeli 13 so navedeni rezultati CTL aktivnosti, specifičnih za H1N1 v teh vranicah miši, imuniziranih s SK&F 106160 (D protein) v aluminijevem hidroksidu in 3D-MPL.The spleens of mice given one or two sc injections of 50 Mg deprotein (weeks 0 and 3) were removed for seven weeks and restimulated in vitro as described above. One lytic unit (LU 35 ) is defined as the number of effector cells in the chromium release assay required for 35% lysis (determined by regression analysis). Table 13 lists the results of CTL activities specific for H1N1 in these spleens of mice immunized with SK&F 106160 (D protein) in aluminum hydroxide and 3D-MPL.
Tabela 13Table 13
LU35 na kulturoLU 35 on culture
* = antigenska doza je 50 gg flu D proteina.* = antigen dose is 50 gg flu D protein.
+ = p < 0,05 proti adjuvantni kontrolni skupini *+ = p < 0,05 proti ΑΓ3 adjuvantni skupini. + = p <0.05 vs adjuvant control group * + = p <0.05 vs ΑΓ 3 adjuvant group.
V poskusih tega primera 3D-MPL ne vpliva na spominske CD8+ CTL restringirane na razred I glede na odziv, generiran z aluminijevim hidroksidom (prikazano kot Al+3), kot je navedeno v tabeli 13. Poleg tega je iz rezultatov v tabeli 13 razvidno, da so vranični CTL primerljivi pri miših, ki smo jim dah 1 proti 2 sc injekciji, medtem ko je zaščita jasno izboljšana v miših, ki smo jim dali drugo injekcijo.In the experiments of this example, 3D-MPL does not affect class I memory-restored CD8 + CTLs relative to the response generated by aluminum hydroxide (shown as Al +3 ), as indicated in Table 13. In addition, the results in Table 13 show that that spleen CTLs are comparable in mice given 1 to 2 sc injection, whereas protection is clearly improved in mice given a second injection.
Zaradi tega smatramo, da mora biti mehanizem, drugačen kot CD8+ CTL odgovoren za izboljšano imunost, ki jo dobimo, če je 3D-MPL vključen v vakcinski sestavek, ki vsebuje antigenski peptid in aluminijev adjuvant ah če mišim damo booster injekcijo.For this reason, we believe that a mechanism other than CD8 + CTL should be responsible for the enhanced immunity obtained when 3D-MPL is included in a vaccine composition containing an antigenic peptide and an aluminum adjuvant if given to a booster injection in mice.
Primer 24 - študije deplecijeExample 24 - Depression studies
Za nadaljnje določevanje kateri podset cehe T je najbolje v soodnosu z aktivnostjo sTo further determine which subset of guild T is best correlated with activity s
3D-MPL adjuvanta, smo naredili študije deplecije z anti-CD-4 ali anti-CD-8 monoklonskimi protitelesi (Mabs). Začetni študij smo izvedli z uporabo predpisa povakciniranja za deplecijo podseta celic T kot sledi. Miši (15/skupino) smo imunizirali z dvema subkutanima injekcijama 50 /tg flu D (SK&F 106160) v A1/3D-MPL na dan 0 in 21 in izzvali s 5 LD50 dozami A/R/8/34 na dan 42. Protitelesa (300 /tg/miš) smo dali ip po vakcinaciji na dan 32, 33, 34, 39, 40 in 41 pred izzivom in na dan 43, 48 in 53 po izzivu. V drugi študiji smo miši obdelali z Mabs za deplecijo podseta T celic pred prvo injekcijo vakcine (predpis predvakcinacije) na dan -3, -2, -1. Po vakcinaciji na dan 0 smo miši nadalje obdelali z Mabs na dan 7, 14, 18, 19 in 20 in jim nato dali booster injekcijo z vakcino na dan 21. Miši smo nadalje obdelali z Mabs na dan 28, 35, 39, 40 in 41 pred virusnim izzivom na dan 42. Miši smo nadalje obdelali z Mabs po izzivu na dan 43, 49 in 54. Rezultati eksperimentov deplecije podsetov celic T so prikazani v tabeli 14 spodaj. Iz rezultatov je razvidno, da je učinkovitost vakcinacije znižana, če smo miši depletirali bodisi CD4+ ali CD8+ podsetov celic T, učinek je bolj izražen, če smo Mab obdelavo začeli pred vakcinacijo. Zato je iz teh rezultatov definitivno razvidno, da je mehanizem delovanja flu D vakcine v Al/MPL formulaciji posredovan s celicami T in sta oba podseta celic T potrebna za učinkovitost.3D-MPL adjuvant, we performed depletion studies with anti-CD-4 or anti-CD-8 monoclonal antibodies (Mabs). Initial studies were performed using the vaccination rule for depletion of the T cell subset as follows. Mice (15 / group) were immunized with two subcutaneous injections of 50 / tg flu D (SK&F 106160) in A1 / 3D-MPL on days 0 and 21 and challenged with 5 LD 50 doses of A / R / 8/34 on day 42. Antibodies (300 / tg / mouse) were given ip after vaccination on days 32, 33, 34, 39, 40 and 41 before challenge and on days 43, 48 and 53 after challenge. In another study, mice were treated with Mabs for the depletion of the T cell subset before the first vaccine injection (pre-vaccination rule) on days -3, -2, -1. After vaccination on day 0, mice were further treated with Mabs on days 7, 14, 18, 19 and 20 and then booster injected with the vaccine on day 21. The mice were further treated with Mabs on days 28, 35, 39, 40 and 41 before viral challenge on day 42. Mice were further treated with Mabs after challenge on days 43, 49 and 54. The results of the T cell subset depletion experiments are shown in Table 14 below. The results show that the effectiveness of vaccination is reduced if mice depleted of either CD4 + or CD8 + T cell subsets, the effect is more pronounced if Mab treatment was initiated before vaccination. Therefore, it is clear from these results that the mechanism of action of the flu D vaccine in the Al / MPL formulation is mediated by T cells, and both T cell subsets are required for efficacy.
Ker je produkcija gama interferona soodnosna z zaščito (tabela 11), smo izvedli študijo za določitev fenotipa celice T, odgovorne za produciranje tega citokina v vakciniranih miših. Miši smo depletirali CD4+ ali CD8+ podsetov celic T z injiciranjem anti-CD4 ali anti-CD8 Mab ip dnevno 3 dni (300 gg/injekcijo). Štiri dni po zadnji Mab injekciji, smo miši imunizirali z 20 gg flu D proteina v aluminijeveim hidroksidu (100 gg) in 3D-MPL (20 gg) formulacijo in bezgavke odstranili 7 dni kasneje. Celice bezgavk smo restimulirali in vitro z 0,1 ali 10 gg/ml D proteina in supernatante zbrali na dan 1-4 za teste interferona in IL-2. Iz rezultatov na sl. 5 je razvidno, da je IL-2 produkcija popolnoma eliminirana z anti-CD4 obdelavo in je tudi delno znižana v anti-CD-8 obdelanih miših (sl. 5B). Vrh IFNy produkcije (dan 4 supernatanti) je znižan za približno 50% v anti-CD4 ali anti-CD8 obdelanih miših (sl. 5C). Torej tako CD4+ kot tudi CD8+ podseta celic T proizvajata IL-2 in IFNy.Because the production of interferon gamma is correlated with protection (Table 11), a study was conducted to determine the phenotype of the T cell responsible for the production of this cytokine in vaccinated mice. Mice were depleted of CD4 + or CD8 + T cell subsets by injecting anti-CD4 or anti-CD8 Mab ip daily for 3 days (300 gg / injection). Four days after the last Mab injection, mice were immunized with 20 gg of flu D protein in aluminum hydroxide (100 gg) and the 3D-MPL (20 gg) formulation and the lymph nodes were removed 7 days later. Lymph node cells were restimulated in vitro with 0.1 or 10 gg / ml D protein, and the supernatants were collected on days 1-4 for interferon and IL-2 assays. From the results in Figs. 5 shows that IL-2 production is completely eliminated by anti-CD4 treatment and is also partially reduced in anti-CD-8 treated mice (Fig. 5B). The peak of IFNγ production (day 4 supernatants) was reduced by about 50% in anti-CD4 or anti-CD8 treated mice (Fig. 5C). Thus, both CD4 + and CD8 + T cell subsets produce IL-2 and IFNγ.
Tabela 14Table 14
* p < 0,002 proti adjuvantni kontroli (skupina 5) so < 0,02 proti adjuvantni kontroli (skupina 5) + p < 0,01 proti neobdelani kontroli (skupina 1).* p <0.002 against adjuvant control (group 5) are <0.02 against adjuvant control (group 5) + p <0.01 versus untreated control (group 1).
Primeri, predstavljeni zgoraj, prikazujejo, da rekombinantna influenčna H1N1 vakcina formulirana z aluminijem in 3D-MPL olajšuje virusno čiščenje in preživetje in zniža antigensko dozo, potrebno za znatno zaščito proti letalnemu izzivu, pri čemer doseže nivo učinkovitosti, ki je ekvivalenten tistemu, ki ga dobimo s CFA. Iz podatkov, zbranih do danes, je evidentno, da mehanizem, s katerim 3D-MPL deluje na povečanje aktivnosti te rekombinantne influenčne vakcine, nastane s selektivno zmožnostjo CD4+ T celičnih odzivov in je lahko restringiran na celice tipa TH1, ki proizvajajo IL-2 in IFNy.The examples presented above show that a recombinant influenza H1N1 vaccine formulated with aluminum and 3D-MPL facilitates viral purification and survival and lowers the antigen dose required to significantly protect against the aviation challenge while achieving an efficacy level equivalent to one obtained with CFA. From the data collected to date, it is evident that the mechanism by which 3D-MPL acts to enhance the activity of this recombinant influenza vaccine is generated by the selective ability of CD4 + T cell responses and may be restriction to IL-2-producing TH1 cells and IFNy.
Primer 25 - priprava razcepljenega virusaExample 25 - preparation of a split virus
Razcepljene viruse, kot npr. tiste, ki jih proizvaja Sachsisches Serumwerkl GmbH (SSW) (Dresden, Nemčija), lahko pripravimo z znanimi postopki, kot so tisti, navedeni v European Pharmacopoeia PA/PH/Exp 3 (1992); DAB 10 Vaccines Influenzae ex virorum fragmentis preaparatum in zahtevah za influenčne vakcine (invaktivirane), revidiranih z osnutkom Svetovne zdravstvene organizacije (1990).Split viruses, such as those manufactured by Sachsisches Serumwerkl GmbH (SSW) (Dresden, Germany) can be prepared by known methods such as those listed in European Pharmacopoeia PA / PH / Exp 3 (1992); DAB 10 Vaccines Influenzae ex virorum fragmentis preaparatum and requirements for influenza vaccines (inactivated), revised by World Health Organization draft (1990).
Take razcepljene viruse pripravimo z uporabo enega ali več sevov influenčnih virusov, ki jih priporoča WHO in EEC, kot npr. A/Singapur/6/86, A/Beijing/32/92 in B/Panama/45/90. Te seve lahko menjamo, odvisno od tega, kateri so popularni v določenem letu.Such split viruses are prepared using one or more influenza virus strains recommended by WHO and EEC, such as e.g. A / Singapore / 6/86, A / Beijing / 32/92 and B / Panama / 45/90. These strains can be changed depending on which ones are popular in a given year.
Kot je podrobno opisano drugod, influenčne viruse dobimo iz oplojenih kurjih jajc, inokuliranih z zasevnim materialom. Te virusne suspenzije so delno očiščene in koncentrirane. Koncentrirano virusno suspenzijo obdelamo z detergentom, natrijevim dezoksilholatom, da razbijemo (ali razcepimo) virusne delce. Po odstranitvi virusnih fosfolipidov med cepitvenim postopkom se potencial reaktogenosti močno zniža. Suspenzijo razcepljenega virusa popolnoma inaktiviramo s kombiniranim učinkom detergenta in formaldehida.As described elsewhere, influenza viruses are obtained from fertilized chicken eggs inoculated with the seed material. These viral suspensions are partially purified and concentrated. The concentrated viral suspension is treated with detergent, sodium deoxycholate to break down (or split) the viral particles. Following removal of viral phospholipids during the vaccination process, the potential for reactogenicity is greatly reduced. The split virus suspension is completely inactivated by the combined effect of detergent and formaldehyde.
Bolj podrobno je postopek za izdelavo razcepljenega virusa v smislu izuma naslednji:In more detail, the process for making a split virus of the invention is as follows:
A. Priprava monovalentnega popolnega virusnega inokulumaA. Preparation of a monovalent complete viral inoculum
Na dan inokulacije oplojenih jajc pripravimo svež inokulum z mešanjem influenčno delujočega zasevka s fosfatnim pufrom, ki vsebuje gentamicin sulfat 0,5 mg/ml in hidrokortizon 25 ml/ml. Virusni inokulum vzdržujemo pri 2-8°C.On the day of inoculation of the fertilized eggs, a fresh inoculum is prepared by mixing the influenza-inducing phosphate buffer containing gentamicin sulfate 0.5 mg / ml and hydrocortisone 25 ml / ml. The viral inoculum was maintained at 2-8 ° C.
do 11 dni stara oplojena jajca uporabimo za virusno replikacijo. Jajca inkubiramo na farmah predno prispejo v obrat za izdelavo in pridejo v produkcijske prostore po dekontaminaciji lupin. Jajca inokuliramo z 0,2 ml virusnega inokuluma na napravi za avtomatsko inokulacijo jajc. Inokulum injiciramo pri tlaku ±0,3 MPa. Inokulirana jajca inkubiramo pri ustrezni temperaturi (odvisno od virusnega seva) 50 do 96 ur. Na koncu inkubacijske periode embrije ubijemo z ohlajevanjem jajc in shranjevanjem 12-60 ur pri 2-8°C.Up to 11 days old fertilized eggs are used for viral replication. The eggs are incubated on the farms before they arrive at the production plant and arrive at the production premises after decontamination of the shells. Eggs are inoculated with 0.2 ml of viral inoculum on an automatic egg inoculation machine. The inoculum is injected at a pressure of ± 0.3 MPa. The inoculated eggs were incubated at the appropriate temperature (depending on the viral strain) for 50 to 96 hours. At the end of the incubation period, the embryos are killed by cooling the eggs and storing them at 2-8 ° C for 12-60 hours.
Alantoično tekočino iz ohlajenih oplojenih jajc zberemo z ustrezno napravo za žetje jajc. Navadno lahko zberemo 8 do 10 ml surove alantoične tekočine na jajce. K surovi monovalentni virusni masi dodamo 0,100 mg/ml tiomersala.The allantoic fluid from the cooled fertilized eggs is collected with an appropriate egg harvesting device. Usually, 8 to 10 ml of raw allantoic fluid per egg can be collected. 0.100 mg / ml thiomersal was added to the crude monovalent viral mass.
Zbrano alantoično tekočino očistimo s pretokom skozi centrifugo z volumnom 100200 1/uro in centrifugalno silo 1-17000 g. To predhodno očiščeno tekočino lahko nadalje očistimo na 6-8 μτη membranskem filtru.The collected allantoic fluid is purified by flow through a centrifuge with a volume of 100200 1 / hour and a centrifugal force of 1-17000 g. This previously purified liquid can be further purified on a 6-8 μτη membrane filter.
Da dobimo CaHPO4 gel v očiščenem virusnem poolu dodamo 0,5 M Na2HPO4 in 0,5 M CaCl2 raztopini, da dosežemo končno koncentracijo CaHPO4 1,5 g do 3,5 g CaHPO4/l, odvisno od virusnega seva. Po sedimentiranju vsaj 10 ur supematant odstranimo in sediment, ki vsebuje influenčni virus, resolubiliziramo z dodatkom 0,26 M EDTA raztopine. Koncentracija EDTA variira med 4,5 in 10 g/1 originalnega zbranega volumna.To obtain a CaHPO 4 gel in the purified viral pool, 0.5 M Na 2 HPO 4 and 0.5 M CaCl 2 solution were added to achieve a final CaHPO 4 concentration of 1.5 g to 3.5 g CaHPO 4 / l, depending on the viral strain. After sedimentation for at least 10 hours, the supernatant is removed and sediment containing the influenza virus is resolubilized by the addition of 0.26 M EDTA solution. The EDTA concentration varies between 4.5 and 10 g / l of the original volume collected.
Resuspendiran sediment filtriramo na 6 do 8 μπι membranskem filtru.The resuspended sediment is filtered on a 6 to 8 μπι membrane filter.
Influenčni virus koncentriramo z izopikničnim centrifugiranjem v linearnem saharoznem gradientu (0-55%) pri 90000 g. Volumski pretok je od 8-12 1/h. Na koncu centrifugiranja vsebnost rotorja rekuperiramo s štirimi različnimi frakcijami (saharozo izmerimo v refraktometru):The influenza virus was concentrated by isopycnic centrifugation in a linear sucrose gradient (0-55%) at 90000 g. The volume flow is from 8-12 1 / h. At the end of the centrifugation, the contents of the rotor are recovered with four different fractions (sucrose is measured in a refractometer):
- frakcija 1 55-52% saharoze- fraction 1 55-52% sucrose
- frakcija 2 52-38% saharoze- fraction 2 52-38% sucrose
- frakcija 3 38-20% saharoze- fraction 3 38-20% sucrose
- frakcija 4 20-0% saharoze- fraction 4 20-0% sucrose
Za nadaljnjo pripravo vakcine uporabimo samo frakcijo 2 in 3. Frakcijo 3 razredčimo zato, da znižamo vsebnost saharoze na približno 6%. Influenčni virus, prisoten v tej razredčeni frakciji, peletiramo pri 53000 g, da odstranimo topne kontaminante. Pelet resuspendiramo in temeljito zmešamo, da dobimo homogeno suspenzijo. Frakcijo 2 in resuspendiran pelet frakcije 3 združimo v poole in dodamo fosfatni pufer, da dobimo volumen 30 1. V tej stopnji produkt imenujemo monovalententni popolni virusni koncentrat.Only fraction 2 and 3 are used to further prepare the vaccine. Dilute fraction 3 to reduce the sucrose content to about 6%. The influenza virus present in this diluted fraction was pelleted at 53000 g to remove soluble contaminants. The pellet is resuspended and thoroughly mixed to give a homogeneous suspension. Fraction 2 and the resuspended pellet of fraction 3 were combined into pooles and phosphate buffer was added to give a volume of 30 1. At this stage, the product was called a monovalent complete viral concentrate.
B. Monovalentna masa razcepljenega virusaB. Monovalent mass of the split virus
Izbran influenčni virus prednostno monovalentni popolni virusni koncentrat iz prejšnjega dela A razbijemo s centrifugiranjem pri 70000 g skozi Nadoc linearni saharozni gradient 0-55%, ki vsebuje linearno porazdelitev natrijevega dezoksiholata od 1,2-1,5%. Tweena 80 je 0,1% v gradientu. Virusni koncentrat črpamo s hitrostjo 5 1/h. Na koncu centrifugiranja vsebnost rotorja zberemo v treh različnih frakcijah:The selected influenza virus, preferably the monovalent complete viral concentrate from the previous part A, is broken down by centrifugation at 70000 g through a Nadoc linear sucrose gradient of 0-55% containing a linear distribution of sodium deoxycholate of 1.2-1.5%. Tweena 80 is 0.1% in gradient. The viral concentrate is pumped at a rate of 5 l / h. At the end of the centrifugation, the contents of the rotor are collected in three different fractions:
- frakcija: 1 55-40% saharoze- fraction: 1 55-40% sucrose
- frakcija: 2 40-13% saharoze- fraction: 2 40-13% sucrose
- frakcija: 3 13-0% saharoze- fraction: 3 13-0% sucrose
Hemaglutinin je koncentriran v frakciji 2. Fosfatni pufer, ki vsebuje tiomersal 0,01% in Tween 80 0,01% dodamo k razredčini frakciji 4-krat (±51).Hemagglutinin is concentrated in fraction 2. Phosphate buffer containing thiomersal 0.01% and Tween 80 0.01% added to the dilution fraction 4 times (± 51).
Razredčeno frakcijo 2 filtriramo na filtrnih membranah, pri čemer končamo z 0,2 gm membrano. Na koncu filtracije filtre izperemo s fosfatnim pufrom, ki vsebuje 0,01% tiomersala in 0,01% Tweena 80. Rezultat je končni volumen filtrirane frakcije 2, kije 5-kratni volumen originalne frakcije. Odvisno od virusnega seva lahko uvedemo kratko sonifikacijo snovi razcepljenega virusa, da olajšamo sterilno filtracijo.The diluted fraction 2 was filtered on the filter membranes, ending with a 0.2 gm membrane. At the end of the filtration, the filters are washed with phosphate buffer containing 0.01% thiomersal and 0.01% Tween 80. The result is a final volume of filtered fraction 2, which is 5 times the volume of the original fraction. Depending on the viral strain, a brief sonication of the split virus material can be introduced to facilitate sterile filtration.
Filtriran monovalenten razcepljen material inkubiramo pri 22 ± 2°C vsaj 84 ur, da pride do inaktivacije virusov in mikoplazme z učinkom natrijevega dezoksiholata. Po tem inkubacijskem času dodamo fosfatni pufer, ki vsebuje 0,01% tiomersala in 0,01% Tween 80 zato, da privedemo celotno vsebnost proteina pod maksimum 250 gg/ml. Formaldehid dodamo v količini 50 gg/ml in inaktiviranje poteka pri 4°C ± 2°C vsaj 72 ur.The filtered monovalent cleavage material was incubated at 22 ± 2 ° C for at least 84 hours to inactivate the viruses and mycoplasma with sodium deoxycholate. After this incubation time, phosphate buffer containing 0.01% thiomersal and 0.01% Tween 80 was added to bring the total protein content to a maximum of 250 gg / ml. Formaldehyde is added in an amount of 50 gg / ml and the inactivation takes place at 4 ° C ± 2 ° C for at least 72 hours.
Inaktiviran material razcepljenega virusa ultrafiltriramo na membranah, katerih povprečna velikost por je 20000 daltonov. Med ultrafiltracijo se vsebnost formaldehida, NaDOC in saharoze precej zniža. Volumen ohranimo konstanten med ultrafiltracijo (diafiltracijo) z dodajanjem fosfatnega pufra, ki vsebuje 0,01% tiomersala in 0,01% Tween 80.The inactivated material of the cleaved virus is ultrafiltered on membranes whose average pore size is 20000 daltons. During the ultrafiltration, the content of formaldehyde, NaDOC and sucrose is significantly reduced. Keep the volume constant during ultrafiltration (diafiltration) by adding phosphate buffer containing 0.01% thiomersal and 0.01% Tween 80.
Ultrafiltriran razcepljen material filtriramo na membranah, pri čemer končamo z 0,2 gm membrano, odvisno od virusnega seva pa je zadnja filtracijska membrana lahko 0,8 gm. V tej stopnji se produkt imenuje: monovalentna končna masa. Monovalentno končno maso shranimo pri 2-8°C maksimalno 18 mesecev.The ultrafiltered split material is filtered on membranes, ending with a 0.2 gm membrane, and depending on the viral strain, the last filtration membrane may be 0.8 gm. At this stage, the product is called: monovalent end mass. The monovalent final mass is stored at 2-8 ° C for a maximum of 18 months.
Primer 26 - Vakcinski sestavek razcepljenega virusa (a) Priprava MPL z delci velikosti 60 -120 nm.Example 26 - Vaccine composition of split virus (a) Preparation of MPL with 60-120 nm particle size.
Vodo za injekcijo injiciramo v fiole, ki vsebujejo liofiliziran 3 deaciliran monofosforilni lipid A (MPL) od Ribi Immunochem, Montana, z uporabo injekcij, da dosežemo koncentracijo 1 do 2 mg na ml. Preliminarno suspenzijo dobimo z vrtinčastim mešanjem. Vsebnost fiol nato prenesemo v 25 ml Corexove cevi z okroglim dnom (10 ml suspenzije na cev) in suspenzijo sonificiramo z uporabo sonifikatorja z vodno kopeljo. Ko suspenzija postane bistra, ocenimo velikost delcev z uporabo dinamičnega svetlobnega sipanja (Malvem Zetasizer 3). Obdelavo nadaljujemo dokler ni velikost MPL delcev v območju 60 - 120 nm in prednostno pod 100 nm.Water for injection was injected into vials containing lyophilized 3 deacylated monophosphoryl lipid A (MPL) from Pisces Immunochem, Montana, using injections to obtain a concentration of 1 to 2 mg per ml. The preliminary suspension is obtained by vortex stirring. The contents of the vials were then transferred to a 25 ml round bottom Corex tube (10 ml suspension per tube) and sonicated using a water bath sonifier. When the suspension becomes clear, the particle size is estimated using dynamic light scattering (Malvem Zetasizer 3). The treatment is continued until the MPL particle size is in the range of 60-120 nm and preferably below 100 nm.
Suspenzije lahko v nekaterih primerih shranimo pri 4 °C brez znatne agregacije do 5 mesecev. Izotoničen NaCl (0,15M) ali izotoničen NaCl in 10 mM fosfata inducira hitro agregacijo (velikost >3-5/xm).Suspensions can in some cases be stored at 4 ° C without significant aggregation for up to 5 months. Isotonic NaCl (0.15M) or isotonic NaCl and 10 mM phosphate induces rapid aggregation (size> 3-5 / xm).
(b) Vakcinski sestavek razcepljenega virusa v smislu izuma pripravimo naslednje.(b) The vaccine composition of the split virus of the invention is prepared as follows.
Končno pufrno maso pripravimo z dodajanjem vodi za injekcijo koncentriranih raztopin soli: NaCl 4 mg; Na2HPO4 0,52 mg; KH2PO4 0,19 mg; KC1 0,1 mg; in MgCl2 0,05 mg in tiomersal 50 /xg. Nastalo raztopino mešamo 15 minut pred nadaljnjo uporabo.The final buffer was prepared by adding water for injection of concentrated salt solutions: NaCl 4 mg; At 2 HPO 4 0.52 mg; KH 2 PO 4 0.19 mg; KC1 0.1 mg; and MgCl 2 0.05 mg and thiomersal 50 / xg. The resulting solution was stirred for 15 minutes before further use.
Monovalentno maso razcepljenega virusa (15 /ig HA) nato zmešamo s 3D-MPL 50 /xg in nastalo zmes mešamo približno uro pri sobni temperaturi.The monovalent mass of the split virus (15 / ig HA) was then mixed with 3D-MPL 50 / xg and the resulting mixture stirred for about an hour at room temperature.
Pufrno zmes in zmes virusne mase nato zmešamo skupaj. Po 30 minutah mešanja pri sobni temperaturi naravnamo pH na 7,15 ± 0,1. Nastalo končno vakcino shranimo pri +2- +8°C.The buffer mixture and the mixture of viral mass are then mixed together. After stirring at room temperature for 30 minutes, the pH was adjusted to 7.15 ± 0.1. The resulting final vaccine is stored at + 2- + 8 ° C.
Da pripravimo multivalentno vakcino razcepljenega virusa, kot npr. trivalentno vakcino, monovalentne razcepljene virusne poole izbranih sevov, pripravljene, kot je opisano zgoraj, zmešamo, da sestavimo končno multivalentno vakcino. Nastali material, združen v poole, mešamo 30 minut pri sobni temperaturi (pH 7,15 ± 0,1). Nastalo končno vakcino lahko shranimo pri temperaturah med približno 2°C do približno 8°C. Vakcina je brezbarvna rahlo opalescenčna vodna suspenzija očiščenega razcepljenega influenČnega virusa.To prepare a multivalent vaccine for a split virus, such as trivalent vaccine, monovalent cleavage viral pools of selected strains prepared as described above are mixed to form the final multivalent vaccine. The resulting pooled material was stirred for 30 minutes at room temperature (pH 7.15 ± 0.1). The resulting vaccine can be stored at temperatures between about 2 ° C and about 8 ° C. The vaccine is a colorless, slightly opalescent aqueous suspension of purified split influenza virus.
Za namene primerjave v testih naslednjih primerov, vakcinski pripravek pripravimo brez adjuvanta. Za kontrolno vakcino končno monovalentno pufrno maso pripravimo tako, da vodi za injekcijo dodamo koncentrirane raztopine soh: NaCl 4 mg; Na2HPO4 0,52 mg; KH2PO4 0,19 mg; KC10,1 mg; MgCl2 0,05 mg in tiomersal 50 μ-g. Nastalo raztopino mešamo 15 minut pred nadaljnjo uporabo. Zmes mešamo 15 minut pri sobni temperaturi. Dodamo monovalentno maso (15 /ig HA), čemur sledi 30-minutno mešanje pri sobni temperaturi (pH 7,15 ± 0,1). Nastalo končno vakcino shranimo pri temperaturah med +2°C do +8°C.For the purpose of comparison in the tests of the following examples, the vaccine preparation is prepared without adjuvant. For the control vaccine, the final monovalent buffer mass is prepared by adding concentrated sox solutions to the water for injection: NaCl 4 mg; At 2 HPO 4 0.52 mg; KH 2 PO 4 0.19 mg; KC10.1 mg; MgCl 2 0.05 mg and thiomersal 50 μ-g. The resulting solution was stirred for 15 minutes before further use. The mixture was stirred for 15 minutes at room temperature. A monovalent mass (15 / ig HA) was added followed by stirring at room temperature for 30 minutes (pH 7.15 ± 0.1). The resulting final vaccine is stored at temperatures between + 2 ° C and + 8 ° C.
Dva monovalentna vakcinska sestavka v smislu izuma in monovalentne kontrolne vakcine pripravimo za naslednje primere z uporabo H1N1 sevov, A/PR/8 in Singapura, zmešanega z 3D-MPL 50 gg (velikost delcev <100 nm, kot jih dobimo iz primera 26 (a).Two monovalent vaccine compositions of the invention and a monovalent control vaccine were prepared for the following cases using H1N1 strains, A / PR / 8 and Singapore mixed with 3D-MPL 50 gg (particle size <100 nm as obtained from Example 26 (a ).
Primer 27 - Letalni izziv v mišihExample 27 - Flying challenge in mice
Imunogenost monovalentne vakcinske formulacije v smislu izuma ovrednotimo in primerjamo z imunogenostjo monovalentne neadjuvantirane formule in z adjuvantom 3D-MPL brez antigena v letalnem influenčnem izzivu v miših.The immunogenicity of the monovalent vaccine formulation of the invention is evaluated and compared with the immunogenicity of the monovalent non-adjuvanted formula and the antigen-free 3D-MPL adjuvant in the avian influenza challenge in mice.
Za vsako vakcino, CB6F1 miši (30 na skupino) imuniziramo subkutano z 2 injekcijama, ki ju damo v razmaku 3 tednov s pripravkom, ki vsebuje 5 gg naznačenega seva ± 5 gg 3D-MPL. Sedem tednov po prvi injekciji miši intranazalno izzovemo pod anestezijo z metofanom s 5 LD50 A/PR/8. Preživetje in klinične znake bolezni zasledujemo za 15 miši do 3 tednov po izzivu. Pljučne virusne titre določimo z MDCK mikrotestom [A. L. Frank et al, J. Ciin. Microbiol., 12:426-432 (1980)] na ostalih živalih (5 miši na skupino).For each vaccine, CB6F 1 mice (30 per group) were immunized subcutaneously with 2 injections, given at intervals of 3 weeks, with a preparation containing 5 gg of the indicated strain ± 5 gg 3D-MPL. Seven weeks after the first injection, mice were challenged intranasally under anesthesia with methophan with 5 LD 50 A / PR / 8. Survival and clinical signs of disease are monitored for 15 mice up to 3 weeks after challenge. Pulmonary viral titers were determined by MDCK microtest [AL Frank et al, J. Ciin. Microbiol., 12: 426-432 (1980)] in other animals (5 mice per group).
Rezultati so navedeni v tabeli 15 spodaj.The results are listed in Table 15 below.
Tabela 15Table 15
Letalni izziv miši: Stopnja preživetja in pljučni virusni titriFlying mice challenge: Survival rate and lung viral titers
Virusni titer*Viral titer *
* log TCID/pljuča (geometrično povprečje ± S.E.) # nobenih vidnih kliničnih simptomov* TCID / lung log (geometric mean ± S.E.) # no visible clinical symptoms
Dva seva (A/PR/8 in Singapur) inducirata določen nivo zaščite. Stopnja preživetja za obe skupini je znatno višja kot tista za kontrolni pripravek brez antigena (Alum + 3D-MPL), čiščenje pljučnega virusa je hitrejše. Ne presenetljivo se z A/PR/8 vakcinirana skupina (homologna glede na izziv) obnaša boljše kot skupina,vakcinirana s Singapurom (heterologna glede na izziv). Nadalje oba seva, dopolnjena s 3D-MPL, inducirata 100% preživetje, praktično brez pljučnega virusnega titra in brez kliničnih simptomov. Očitno, s 3D-MPL adjuvantirana vakcina v smislu izuma inducira superiorno zaščito pred infekcijo nižjega respiratornega trakta in zaradi tega pred resnimi kliničnimi pojavi kot npr. virusno pljučnico. Iz tega poskusa je zato razvidno, da 3DMPL adjuvantiranje izboljša homosubtipično in heterosubtipično aktivnost razcepljene vakcine in zato pričakujemo, da zagotavlja širšo zaščito pred antigenskimi premiki in naplavi kot neadjuvantirana vakcina.Two strains (A / PR / 8 and Singapore) induce a certain level of protection. The survival rate for both groups is significantly higher than that for the antigen-free control preparation (Alum + 3D-MPL), and lung clearance is faster. Not surprisingly, the A / PR / 8 vaccine group (homologous to the challenge) behaves better than the Singapore vaccinated (heterologous to the challenge) group. Furthermore, both strains supplemented with 3D-MPL induce 100% survival, with virtually no pulmonary viral titre and no clinical symptoms. Obviously, with the 3D-MPL, the adjuvanted vaccine of the invention induces superior protection against infection of the lower respiratory tract and, therefore, against serious clinical phenomena such as e.g. viral pneumonia. This experiment therefore demonstrates that 3DMPL adjuvanting improves the homosubtypic and heterosubtypic activity of the split vaccine and is therefore expected to provide broader protection against antigenic displacement and float than non-adjuvanted vaccine.
Primer 28 - Neletalni izziv v mišihExample 28 - Non-lethal challenge in mice
Predpis je enak kot v primeru 25 zgoraj, razen da miši anestetiziramo pred intranazalnim izzivom. Izvedemo virusno titracijo v respiratornem traktu, virusne nevtralizacijske teste in vrstično elektronsko mikroskopijo traheje.The prescription is the same as in Example 25 above except that the mice are anesthetized before the intranasal challenge. Viral titration in the respiratory tract, viral neutralization tests, and tracheal electron microscopy are performed.
Virusne nevtralizacijske titracije proti A/PR/8 virusu izvedemo na dan 1, 5 in 9 po izzivu (tabela 16).Viral neutralization titrations against A / PR / 8 virus were performed on days 1, 5, and 9 after challenge (Table 16).
Tabela 16Table 16
Virusni nevtralizacijski testViral neutralization test
Nevtralizirajoči titer*Neutralizing titer *
* povprečje log10 (5 miši)* log 10 average (5 mice)
Obe A/PR/8 skupini proizvedeta nevtralizirajoča protitelesa s titrom, ki vsebuje več 3D-MPL. Nasprotno vakcinacija s Singapurom ne inducira nevtralizacij skih protiteles niti z dodatkom 3D-MPL. Iz tega je razvidno, da heterosubtipična aktivnost, ki smo jo znanali pred tem s Singapurom in 3D-MPL, ni zaradi protitelesa, ampak je strogo evidentno, daje za to odgovorna celično posredovana imunost.Both A / PR / 8 groups produce neutralizing antibodies with a titer containing multiple 3D-MPL. By contrast, vaccination with Singapore does not induce neutralization of antibodies even with the addition of 3D-MPL. It follows that the heterosubtypic activity previously known with Singapore and 3D-MPL is not due to the antibody, but is strictly evident, to be responsible for cell-mediated immunity.
Vrstično elektronsko mikroskopijo (SEM) traheje izvedemo na vzorcih, zbranih na dan 3 in 5. Tkiva ovrednotimo za histopatološke spremembe v glavnih in ciliiranih epitelijskih celicah, s katerimi je obložen sapnik, posebno za deskvamacijo. Te spremembe so pokazatelj za resnost nadaljevanja influenčne infekcije ali okrevanja od infekcije (glej tabelo 17 spodaj).Linear electron microscopy (SEM) of the trachea was performed on samples collected on days 3 and 5. Tissues were evaluated for histopathological changes in the major and ciliated epithelial cells lining the trachea, especially for desquamation. These changes are indicative of the severity of the onset of influenza infection or recovery from infection (see Table 17 below).
Tabela 17Table 17
Neletalni izziv v miših: SEM traheje povprečni rezultat resnosti*Non-lethal challenge in mice: SEM trachea average severity score *
* polkvantitativno, narejeno slepo.* semi-quantitative, made blind.
Regeneracija: 1: resna lezijaRegeneration: 1: Serious lesion
2: delna lezija 3: normalno tkivo ** celoten rezultat, od 0 (ni zaščite) do 4+ (popolna zaščita)2: partial lesion 3: normal tissue ** overall score, from 0 (no protection) to 4+ (full protection)
Iz rezultatov SEM je razvidno, da vakcinacija bodisi z A/PR/8 ali Singapumim sevom samim daje zaščito; v obeh primerih je ta pozitiven učinek povečan z dodatkom 3DMPL, pri čemer je razvidno, da adjuvantirana razcepljena vakcina lahko spremeni progresijo influenčne bolezni.The SEM results show that vaccination with either A / PR / 8 or Singapore strain alone provides protection; in both cases, this positive effect is enhanced by the addition of 3DMPL, showing that the adjuvanted split vaccine may alter the progression of influenza disease.
Virusne titre določimo v nosu, traheji in pljučih z MDCK mikrotestom na dan 1, 3, 5, 7 in 9 po izzivu (5 miši na skupino). Rezultati so prikazani na sl. 6A do 6F spodaj. Nazalni titri so višji kot trahejski ali pulmonalni, kar ni presenetljivo. Vendar vse testirane obdelave ne rezultirajo v jasnih razlikah nazalnih ali trahejskih titrov. Nasprotno, se pljučni titri razlikujejo: A/PR/8 + 3D-MPL in Singapur + 3D-MPL titri so vedno nižji ali enaki vrednostim samega antigena ali samega 3D-MPL (sl. 6A do 6F). Iz tega je razvidno, da 3D-MPL adjuvantiranje nudi boljšo pljučno zaščito pri miših.Viral titers were determined in the nose, trachea, and lungs by MDCK microtest on days 1, 3, 5, 7, and 9 after challenge (5 mice per group). The results are shown in FIG. 6A to 6F below. The nasal titers are higher than the tracheal or pulmonary ones, which is not surprising. However, not all treatments tested result in clear differences in nasal or tracheal titres. In contrast, pulmonary titers differ: A / PR / 8 + 3D-MPL and Singapore + 3D-MPL titers are always lower than or equal to the values of the antigen or 3D-MPL itself (Figs. 6A to 6F). This suggests that 3D-MPL adjuvanting offers better lung protection in mice.
Oba seta poskusov miši (letalni in neletalni izziv) prikazujeta, da influenčna vakcinacija z dvema podtipoma H1N1 seva (Singapur ali A/PR/8) in kasnejši homotipični izziv izboljša vgradjo 3D-MPL kot adjuvanta v skladu s predloženim izumom.Both sets of mouse experiments (lethal and non-lethal challenge) demonstrate that influenza vaccination with two subtypes of H1N1 strain (Singapore or A / PR / 8) and subsequent homotypic challenge improves the incorporation of 3D-MPL as an adjuvant in accordance with the present invention.
Primer 29 - Imunogenost vakcineExample 29 - Immunogenicity of a vaccine
Za vsako vakcino CB6F1 miši (15 na skupino) imuniziramo subkutano z 2 injekcijama, danima v razmiku 3 tednov, pripravka, ki vsebuje desetino čoveške doze običajne neadjuvantirane Singapurne monovalentne razcepljene vakcine ali vakcinskega sestavka v smislu izuma, ki vsebuje Singapumi sev s 3D-MPL. Človeška doza je definirana kot 0,5 ml injekcija, ki vsebuje 15 /ig HA vsakega virusnega seva. Formulacija, ki smo jo uporabili, vsebuje hemaglutinin (HA) proti 3D-MPL v razmerju 1,5 /ig HA na 5 /ig 3D-MPL do 5 /tg HA na 5/tg 3D-MPL. Kontrolna skupina prejme samo 3D-MPL (5 /ig). 3 tedne po drugi injekciji mišim izpustimo kri in serumska protitelesa individualno testiramo z inhibiranjem hemaglutinacije. Titre izračunamo proti kalibrirani referenci. Miši smatramo za odzivne, če imajo protitelesne titre večje, kot odrezana vrednost.For each vaccine, CB6F 1 mice (15 per group) were immunized subcutaneously with 2 injections given every 3 weeks, a preparation containing one tenth of a human dose of a conventional non-adjuvanted Singapore monovalent split vaccine or vaccine composition of the invention comprising a Singaporean strain of 3D- MPL. The human dose is defined as 0.5 ml injection containing 15 µg HA of each viral strain. The formulation used contains hemagglutinin (HA) against 3D-MPL in a ratio of 1.5 / ig HA per 5 / ig 3D-MPL to 5 / tg HA per 5 / tg 3D-MPL. The control group received only 3D-MPL (5 / ig). 3 weeks after the second injection, the blood was released to the mice and serum antibodies tested individually by inhibiting hemagglutination. The titers are calculated against a calibrated reference. Mice are considered responsive when antibody titers are greater than the cut off value.
Rezultati so navedeni v tabeli 18. Oba tipa formulacij inducirata antihemaglutinacijska protitelesa v vseh živalih, torej je seroodzivna stopnja maksimalna. Vendar je imunski odziv znatno povečan z vakcinsko formulacijo v smislu izuma, ki vsebuje 3D-MPL in kot je prikazano z geometričnih srednjim titrom več kot 5-krat višji kot tisti od vakcine, ki vsebuje samo Singapumi sev.The results are listed in Table 18. Both types of formulations induce anti-haemagglutination antibodies in all animals, so the sero-response rate is maximal. However, the immune response is significantly increased by the vaccine formulation of the invention containing 3D-MPL and as shown by geometric mean titers more than 5 times higher than that of the vaccine containing only the Singaporean strain.
Tabela 18Table 18
* odrezana vrednost je nižja kot 25.* cut off value is less than 25.
Iz tega poskusa je razvidno, daje protitelesni odziv v miših izboljšan z uporabo vakcine adjuvantirane s 3D-MPL v smislu izuma.This experiment demonstrates that the antibody response in mice is enhanced by the use of the 3D-MPL adjuvanted vaccine of the invention.
Primer 30 - Študija hipersenzitivnosti v morskem prašičkuExample 30 - Guinea pig hypersensitivity study
Študijo hipersenzitivnosti izvedemo v morskih prašičkih, da določimo, če je dodatek 3D-MPL (delci velikosti < 100 mm;primer 26) k trivalentni razcepljeni vakcini modificira hipersenzitivnost. Trivalentno vakcino, označeno trivalentni Influsplit, pripravimo, kot je opisano v primeru 25 in vsebuje H1N1 sev Singapur/6/86, H3N2 sev Beijing/353/84 in sev tipa B, Β/Υamaghta/16/88.A hypersensitivity study is performed in guinea pigs to determine if the addition of 3D-MPL (particle size <100 mm; Example 26) to a trivalent split vaccine modifies hypersensitivity. The trivalent vaccine, labeled trivalent Influsplit, was prepared as described in Example 25 and contained the H1N1 strain Singapore / 6/86, the H3N2 strain Beijing / 353/84 and the type B strain Β / Υamaghta / 16/88.
Senzibilizirno sredstvo [alantoična tekočina 0,5 ali 2,5 mg ± 3D-MPL 50 μ-g; ena človeška doza (0,5 ml injekcija, ki vsebuje 15 μξ HA za vsakega od teh sevov influenčnega virusa) trivalentnega Influsplita ± 3D-MPL 50 μ-g] damo intraperitonealno s šestimi injekcijami na dan 0, 3, 5, 7, 10 in 12. Morske prašičke pustimo, da počivajo 4 tedne in jih nato izzovemo intravenozno, pod anestezijo, z izzivnim sredstevom (alantoična tekočina 0,45 mg; ena človeška doza trivalentnega Influsplita ± 3D-MPL 50 μ%). Živali opazujemo 30 minut po izzivu in ponovno po 2 ali 3 urah. Opažene simptome (praskanje, težave z dihanjem, krči, smrt) zabeležimo. Če po prvem izzivu ne pride do simptomov, živali ponovno izzovemo z alantoično tekočino (1,3 mg) 24 ur kasneje.Sensitizing agent [allantoic fluid 0.5 or 2.5 mg ± 3D-MPL 50 μ-g; one human dose (0.5 ml injection containing 15 μξ HA for each of these influenza virus strains) of trivalent Influsplit ± 3D-MPL 50 μ-g] is given intraperitoneally with six injections daily 0, 3, 5, 7, 10 and 12. Guinea pigs are allowed to rest for 4 weeks and then challenged intravenously under anesthesia with a challenge agent (allantoic fluid 0.45 mg; single human dose of trivalent Influsplit ± 3D-MPL 50 μ%). We observe the animals 30 minutes after the challenge and again after 2 or 3 hours. Observed symptoms (scratching, breathing problems, cramps, death) are recorded. If no symptoms emerge after the first challenge, the animals are challenged again with allantoic fluid (1.3 mg) 24 hours later.
Rezultati tega testa so prikazani v tabelah 19A in 19B spodaj.The results of this test are shown in Tables 19A and 19B below.
Tabela 19A - Hipersenzitivnostne študije Influsplita ± 3D-MPLTable 19A - Hypersensitivity studies of Influsplit ± 3D-MPL
IzzivThe challenge
Tabela 19B - Hipersenzitivnostne študije Influsplita ± 3D-MPLTable 19B - Hypersensitivity studies of Influsplit ± 3D-MPL
krčiit cramps
Iz odsotnosti učinka za skupine 1 do 3 (negativne kontrole) je razvidno, da je hipersenzitivnost potrebna pred intraperitonealnim senzibiliziranjem. Odsotnost hipersenzitivnosti v skupini 5 prikazuje, da Influsplit ne more senzibilizirati za alantoično tekočino. Podobne zaključke lahko dobimo iz skupine 6 (senzibilizacija za alantoično tekočino in izziv z Influsplitom). Dejansko je iz rezultatov skupin 5 in 6 tudi razvidno, da vakcina ne vsebuje preostankov proteinov alantoične tekočine. Dodatek 3D-MPL bodisi k senzibilimem sredstvu (skupini 7 in 8) ali k izzivnemu sredstvu (skupina 9) ne spremeni odziva (primerjava skupine 7 proti 4; skupine 8 proti 5; skupine 9 proti 6).The absence of effect for groups 1 to 3 (negative controls) indicates that hypersensitivity is required before intraperitoneal sensitization. The absence of hypersensitivity in group 5 indicates that Influsplit cannot sensitize to allantoic fluid. Similar conclusions can be drawn from group 6 (allantoic fluid sensitization and Influsplit challenge). Indeed, the results of groups 5 and 6 also show that the vaccine does not contain allantoic fluid protein residues. Addition of 3D-MPL to either the sensitizing agent (groups 7 and 8) or the challenge agent (group 9) does not change the response (comparison of groups 7 to 4; groups 8 to 5; groups 9 to 6).
Iz poskusa je razvidno, da trivalentna Influsplit vakcina, ki jo damo kot senzibilizirno sredstvo z ali brez 3D-MPL, ni sposobna inducirati hipersenzitivnosti. Trivalentno vakcino Influsplita, ki jo damo kot izzivno sredstvo z ali brez 3D-MPL, ni sposobna sprožiti nobene hipersenzitivnostne reakcije v živalih, predhodno hipersenzibiliziranih z alantoično tekočino; in v poskusnih pogojih 3D-MPL nima nobenega zaznavnega učinka na hipersenzibilnostne reakcije. Torej so vakcinski sestavki v smislu izuma varni za dajanje sesalcem.The experiment shows that the trivalent Influsplit vaccine given as a sensitizing agent with or without 3D-MPL is not capable of inducing hypersensitivity. The trivalent Influsplit vaccine, administered as a challenge agent with or without 3D-MPL, is not capable of initiating any hypersensitivity reaction in animals previously hypersensitized with allantoic fluid; and under the experimental conditions 3D-MPL has no detectable effect on hypersensitivity reactions. Therefore, the vaccine compositions of the invention are safe for administration to mammals.
Številne modifikacije in variante predloženega izuma so vključene v zgoraj identificiran opis in pričakujemo, da so strokovnjakom očitne. Za te modifikacije in spremembe sestavkov in postopkov v smislu predloženega izuma smatramo, da so zajeti v obsegu priloženih zahtevkov.Many modifications and variants of the present invention are included in the description described above and are expected to be readily apparent to those skilled in the art. These modifications and alterations to the compositions and processes of the present invention are considered to be within the scope of the appended claims.
ZaFor
1. SmithKline Beecham Corporation1. SmithKline Beecham Corporation
2. SmithKline Beecham Biologicals (s.a.):2. SmithKline Beecham Biologicals (s.a.):
*»« - - t . ·* »« - - t. ·
A' ' 'ZA '' 'Z
PATENTNI ZAHTEVKIPATENT APPLICATIONS
Claims (24)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US2153593A | 1993-02-19 | 1993-02-19 | |
US11575093A | 1993-09-01 | 1993-09-01 |
Publications (1)
Publication Number | Publication Date |
---|---|
SI9400085A true SI9400085A (en) | 1994-09-30 |
Family
ID=26694802
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
SI9400085A SI9400085A (en) | 1993-02-19 | 1994-02-18 | Vaccine compositions comprising antigenic polypeptide and 3d-mpl, useful in preventing infection with influenza |
Country Status (9)
Country | Link |
---|---|
EP (1) | EP0684838A1 (en) |
AP (1) | AP431A (en) |
AU (1) | AU6141094A (en) |
CA (1) | CA2156525A1 (en) |
IL (1) | IL108681A0 (en) |
MA (1) | MA23118A1 (en) |
MX (1) | MX9401225A (en) |
SI (1) | SI9400085A (en) |
WO (1) | WO1994019013A1 (en) |
Families Citing this family (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB9105992D0 (en) * | 1991-03-21 | 1991-05-08 | Smithkline Beecham Biolog | Vaccine |
SG48309A1 (en) * | 1993-03-23 | 1998-04-17 | Smithkline Beecham Biolog | Vaccine compositions containing 3-0 deacylated monophosphoryl lipid a |
UA56132C2 (en) * | 1995-04-25 | 2003-05-15 | Смітклайн Бічем Байолоджікалс С.А. | Vaccine composition (variants), method for stabilizing qs21 providing resistance against hydrolysis (variants), method for manufacturing vaccine |
US6306404B1 (en) | 1998-07-14 | 2001-10-23 | American Cyanamid Company | Adjuvant and vaccine compositions containing monophosphoryl lipid A |
GB9820525D0 (en) * | 1998-09-21 | 1998-11-11 | Allergy Therapeutics Ltd | Formulation |
US6261573B1 (en) * | 1998-10-30 | 2001-07-17 | Avant Immunotherapeutics, Inc. | Immunoadjuvants |
AT407958B (en) | 1999-02-11 | 2001-07-25 | Immuno Ag | INACTIVATED INFLUENZA VIRUS VACCINE FOR NASAL OR ORAL APPLICATION |
US6635261B2 (en) | 1999-07-13 | 2003-10-21 | Wyeth Holdings Corporation | Adjuvant and vaccine compositions containing monophosphoryl lipid A |
GB9923176D0 (en) * | 1999-09-30 | 1999-12-01 | Smithkline Beecham Biolog | Novel composition |
WO2002067983A1 (en) * | 2001-02-23 | 2002-09-06 | Glaxosmithkline Biologicals S.A. | Novel vaccine |
US20040071734A1 (en) * | 2001-02-23 | 2004-04-15 | Nathalie Garcon | Novel vaccine |
GB2386072A (en) * | 2001-04-27 | 2003-09-10 | Becton Dickinson Co | Novel vaccine |
PT1789084E (en) | 2004-09-09 | 2011-02-22 | Novartis Vaccines & Diagnostic | Decreasing potential iatrogenic risks associated with influenza vaccines |
WO2006062637A2 (en) | 2004-11-03 | 2006-06-15 | Novartis Vaccines And Diagnostics Inc. | Influenza vaccination |
AU2006226458B2 (en) | 2005-03-23 | 2012-08-30 | Glaxosmithkline Biologicals S.A. | Novel composition |
EP2043682B1 (en) | 2006-07-17 | 2014-04-02 | GlaxoSmithKline Biologicals S.A. | Influenza vaccine |
BRPI0721393B8 (en) * | 2007-03-22 | 2022-09-06 | Fund Butantan | method to obtain monophosphorylated lipid from bordetella pertussis as a by-product of cellular pertussis vaccine production |
AR066405A1 (en) | 2007-04-20 | 2009-08-19 | Glaxosmithkline Biolog Sa | VACCINE |
CN101998990B (en) * | 2008-03-18 | 2013-11-27 | 诺华股份有限公司 | Improvements in preparation of influenza virus vaccine antigens |
EP3012330A1 (en) | 2010-09-07 | 2016-04-27 | Novartis AG | Generic assays for detection of mammalian reovirus |
EP2653156A1 (en) * | 2012-10-01 | 2013-10-23 | College of Pharmacy of Taif University | Pharmaceutical emulsion composition and use thereof |
US20170165358A1 (en) * | 2014-03-25 | 2017-06-15 | The Government of the United States of America as Reprisented by Secretary of the Army | Methods for enhancing the immunostimulation potency of aluminum salt-absorbed vaccines |
CA3105880A1 (en) * | 2018-07-10 | 2020-01-16 | Seqirus Pty Ltd | Removal of agglomerates |
CN112361796A (en) * | 2020-11-13 | 2021-02-12 | 安徽省天长市周氏羊业有限公司 | Crushing and drying device used before straw recovery and storage |
CN114989269B (en) * | 2022-06-30 | 2023-09-19 | 天康制药股份有限公司 | Bovine akabane immunogenicity antigen and vaccine |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL79114A (en) * | 1985-08-07 | 1990-09-17 | Allergan Pharma | Method and composition for making liposomes |
US5230899A (en) * | 1985-08-07 | 1993-07-27 | Smithkline Beecham Corporation | Methods and compositions for making liposomes |
US4912094B1 (en) * | 1988-06-29 | 1994-02-15 | Ribi Immunochem Research Inc. | Modified lipopolysaccharides and process of preparation |
AU631377B2 (en) * | 1988-08-25 | 1992-11-26 | Liposome Company, Inc., The | Affinity associated vaccine |
AU640348B2 (en) * | 1988-08-31 | 1993-08-26 | Smithkline Beecham Corporation | Vaccinal Polypeptides |
DK425789A (en) * | 1988-08-31 | 1990-03-01 | Smithkline Beecham Corp | VACCINAL POLYPEPTIDES |
CA2092827A1 (en) * | 1990-09-28 | 1992-03-29 | Smithkline Beecham Biologicals S.A. | Derivatives of gp160 and vaccines based on gp160 or a derivative thereof, containing an adjuvant |
EP0563091A1 (en) * | 1990-12-20 | 1993-10-06 | SMITHKLINE BEECHAM BIOLOGICALS s.a. | Vaccines based on hepatitis b surface antigen |
FR2671974A1 (en) * | 1991-01-24 | 1992-07-31 | Pasteur Merieux Serums Vacc | INFLUENZA VACCINE COMPOSITION WITH SYNERGISTIC EFFECT, CONTAINING AS AN ADDITIVE TO INFLUENZA VIRUS CORE. |
GB9105992D0 (en) * | 1991-03-21 | 1991-05-08 | Smithkline Beecham Biolog | Vaccine |
PT761231E (en) * | 1992-06-25 | 2000-06-30 | Smithkline Beecham Biolog | COMPOSITION OF VACCINES CONTAINING ADJUVANTES |
-
1994
- 1994-02-15 EP EP94908327A patent/EP0684838A1/en not_active Withdrawn
- 1994-02-15 CA CA002156525A patent/CA2156525A1/en not_active Abandoned
- 1994-02-15 AU AU61410/94A patent/AU6141094A/en not_active Abandoned
- 1994-02-15 WO PCT/EP1994/000448 patent/WO1994019013A1/en not_active Application Discontinuation
- 1994-02-17 IL IL10868194A patent/IL108681A0/en unknown
- 1994-02-17 MX MX9401225A patent/MX9401225A/en unknown
- 1994-02-17 AP APAP/P/1994/000621A patent/AP431A/en active
- 1994-02-17 MA MA23425A patent/MA23118A1/en unknown
- 1994-02-18 SI SI9400085A patent/SI9400085A/en unknown
Also Published As
Publication number | Publication date |
---|---|
IL108681A0 (en) | 1994-05-30 |
MA23118A1 (en) | 1994-10-01 |
CA2156525A1 (en) | 1994-09-01 |
AU6141094A (en) | 1994-09-14 |
AP431A (en) | 1995-11-15 |
EP0684838A1 (en) | 1995-12-06 |
AP9400621A0 (en) | 1994-04-30 |
WO1994019013A1 (en) | 1994-09-01 |
MX9401225A (en) | 1994-08-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
SI9400085A (en) | Vaccine compositions comprising antigenic polypeptide and 3d-mpl, useful in preventing infection with influenza | |
ES2337901T3 (en) | SUBUNITY VACCINE AGAINST INFECTION BY THE RESPIRATORY VIRUS SYNC. | |
US10030053B2 (en) | Immunogenic compositions and methods of use thereof | |
ES2307494T3 (en) | VACCINE OF THE VIRUS OF THE INFECTIVE FLU FOR ITS ADMINISTRATION VIA ORAL NASALU. | |
JP5796011B2 (en) | vaccine | |
CN111375055B (en) | 2019-nCoV subunit vaccine composition and immunization method thereof | |
JP2016128457A (en) | Recombinant rsv antigens | |
BRPI0815008B1 (en) | multimeric vaccines with multiple influenza epitopes | |
TWI329130B (en) | Functionally reconstituted viral membranes containing adjuvant | |
CA2169297C (en) | Protein- or peptide-cochleate vaccines and methods of immunizing using the same | |
HU226214B1 (en) | Vaccines with an ltb adjuvant | |
US20230416311A1 (en) | Influenza vaccines | |
JP2018172417A (en) | Methods for eliciting immune response to rsv and bordetella pertussis in infants | |
BR112012022059B1 (en) | MUCOSAL VACCINE PRODUCING AN ANTIGEN-SPECIFIC MUCOSA IGA AND BLOOD IGG AND METHOD FOR PRODUCING A MUCOSA VACCINE | |
JPH08506592A (en) | Influenza vaccine composition containing 3-o-deacylated monophosphoryl lipid A | |
JP2015525794A (en) | Method for eliciting an immune response against RSV and Bordetella pertussis in infants | |
ES2338382T3 (en) | ANTIGRIPAL INTRANASAL VACCINE BASED ON VIROSOMES. | |
PL206260B1 (en) | Immunogenic liposome compositions | |
WO2016039620A2 (en) | Respiratory syncytial virus virosomes |