SI9011362A - Fibre optic arrangement for measuring the strength of an electric current - Google Patents

Fibre optic arrangement for measuring the strength of an electric current Download PDF

Info

Publication number
SI9011362A
SI9011362A SI9011362A SI9011362A SI9011362A SI 9011362 A SI9011362 A SI 9011362A SI 9011362 A SI9011362 A SI 9011362A SI 9011362 A SI9011362 A SI 9011362A SI 9011362 A SI9011362 A SI 9011362A
Authority
SI
Slovenia
Prior art keywords
optical fiber
light
conductor
measuring
strength
Prior art date
Application number
SI9011362A
Other languages
Slovenian (sl)
Other versions
SI9011362B (en
Inventor
Dirk Peier
Holger Hirsch
Original Assignee
Mwb Messwandler-Bau Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mwb Messwandler-Bau Aktiengesellschaft filed Critical Mwb Messwandler-Bau Aktiengesellschaft
Publication of SI9011362A publication Critical patent/SI9011362A/en
Publication of SI9011362B publication Critical patent/SI9011362B/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/24Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices
    • G01R15/245Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect
    • G01R15/246Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using light-modulating devices using magneto-optical modulators, e.g. based on the Faraday or Cotton-Mouton effect based on the Faraday, i.e. linear magneto-optic, effect

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Communication Cables (AREA)

Abstract

The invention deals with a fibre optic arrangement for measuring the strength of an electric current by using the Faraday principle, where the magnetic field, which encloses the conductor (1) carrying the current, has an effect onto the polarisation of light. The optic fibre (2) is twisted around its longitudinal axis and exposed to double circular separation, while one end (4) of the optic fibre (2) features a reflective surface (5) which is positioned near the other end (6) so that the complete optic fibre (2) represents a perfect loop.

Description

NAPRAVA Z OPTIČNIM VLAKNOM ZA MERJENJE JAKOSTI ELEKTRIČNEGA TOKAOPTICAL FIBER DEVICE FOR MEASURING ELECTRICAL POWER

Področje tehnike, kamor spada izum.FIELD OF THE INVENTION

Izum se nanaša na napravo z optičnimi vlakni za merjenje jakosti električnega toka in spada v področje elektrotehnike oziroma v področje proizvodnje instrumentov za merjenje jakosti toka.The invention relates to an optical fiber device for measuring the current of electricity and falls within the field of electrical engineering or the field of production of instruments for measuring the current.

Tehnični problem.A technical problem.

Tehnični problem, ki se rešuje z izumom, je naslednji: kako realizirati napravo z optičnimi vlakni za merjenje jakosti električnega toka, ki izkorišča prednosti zavrtenja optičnega vlakna in istočasno zmanjšuje vse nadaljnje merilne napake?The technical problem to be solved by the invention is the following: how to realize an optical fiber device for measuring the electric current that takes advantage of the rotation of the optical fiber and at the same time reduces any further measurement errors?

Stanje tehnike.The state of the art.

Naprave te vrste uporabljajo zlasti v visokonapetostnih postrojenjih za merjenje toka v vodnikih pod visokonapetostnim potencialom. Ker so prevodniki svetlobnih valov narejeni iz stekla, ki je, kot je poznano, dober izolator, ni problemov pri izolaciji kazalnih aparatov, ki so povezani z zemeljskim potencialom, pri prevodnikih pod visokonapetostnim potencialom, kjer je treba izmeriti tok in ga pokazati.In particular, devices of this type are used in high-voltage installations for measuring current in conductors under high-voltage potential. Since light wave conductors are made of glass, which is known to be a good insulator, there is no problem in isolating pointing devices that are connected to ground potential in conductors under high voltage potential where current is to be measured and indicated.

Iz DE-AS 22 61 151 je poznana naprava, pri kateri se svetlobni vir usmerja preko polarizatorja na polprevodniško ploščo. Polarizirana svetloba prihaja odtod v optično vlakno (tam imenovano “prevodnik svetlobnega vala”), ki je deloma navito v tuljavo, v čigar osi se nahaja visokonapetostni prevodnik, v katerem teče tok, ki ga je treba izmeriti. Tuljava iz vlakna ima na svojem koncu odbojno površino ali pa je tam postavljeno zrcalo. Polarizirana svetloba prehaja skozi vsa optična vlakna, pri čemer pride znotraj tuljavnega dela vlakna, na osnovi Faradayevega efekta do obračanja polarizacijske ravnine v odvisnosti od magnetnega polja, ki ga povzroča tok, ki teče v prevodniku. Na koncu tuljave se svetlobni snop odbije in prehaja še enkrat skozi tuljavo, pri čemer pride do nadaljnjega obračanja polarizacijske ravnine. V svoji polarizacijski ravnini obrnjena svetloba izstopa iz optičnega vlakna, prehaja skozi polprevodniško ploščo in pride v napravo za vrednotenje, ki ugotavlja in pokaže kot med polarizacijsko ravnino svetlobe, ki vstopa v optično vlakno in polarizacijsko ravnino svetlobe, ki izstopa iz vlakna, pri čemer je velikost kota proporcionalna integralu po poti jakosti magnetnega polja.DE-AS 22 61 151 discloses a device in which a light source is directed through a polarizer to a semiconductor board. Polarized light comes from there into an optical fiber (called a "waveguide conductor"), which is partly wound into a coil whose axis contains a high voltage conductor in which the current to be measured flows. The fiber coil has a reflective surface at its end or a mirror is placed there. Polarized light passes through all the optical fibers, and within the coil part of the fiber, based on the Faraday effect, the polarization plane is reversed depending on the magnetic field caused by the current flowing in the conductor. At the end of the coil, the light beam reflects off and passes through the coil once more, causing the polarization plane to turn further. In its polarization plane, the inverted light exits the optical fiber, passes through the semiconductor panel, and enters the evaluation device, which detects and shows the angle between the polarization plane of light entering the optical fiber and the polarizing plane of light exiting the fiber, the magnitude of the angle proportional to the integral along the path of the magnetic field strength.

Iz DE - AS 28 35 794 je prav tako poznana naprava z optičnim vlaknom za merjenje jakosti električnega toka z uporabo Faradayevega efekta, pri čemer magnetno polje, ki obkroža prevodnik, skozi katerega teče tok, vpliva na stanje polarizacije svetlobe, ki jo pot vodi skozi jedro optičnega vlakna, ki ga prevodnik obsega v obliki navitja. V nasprotju z DE - AS 22 61 151 se pri tej napravi, ki na enem koncu nima odbojne površine, na enem koncu svetloba že spaja, na drugem pa spet razdvaja, pri čemer mora imeti tuljava navita iz optičnih vlaken dvojno število navojev, tako da obdrži enak kot obračanja polarizacijske ravnine, ker svetloba prehaja skozi tuljavo samo enkrat.DE-AS 28 35 794 also discloses an optical fiber device for measuring current strength using the Faraday effect, wherein the magnetic field surrounding the conductor through which the current flows influences the polarization state of the light passing through the path the optical fiber core enclosed by a conductor in the form of a winding. In contrast to DE - AS 22 61 151, this device, which does not have a reflecting surface at one end, already connects the light at one end and splits it at the other end, and the fiber coil must have double the number of threads so that it keeps the same angle as the polarization plane turns because light passes through the coil only once.

Iz te poznane naprave in iz prikaza “Magneto-optic current sensing with birefringent fibers” avtorjev S.C. Rashleigh in R. Ulrich, objavljenega v Appl. Phys. Lett. 34 (11) s 1.junija 1979 je dalje poznano, da se optično vlakno z zavrtenjem okoli svoje podolžne osi izpostavlja dvojnemu krožnemu lomu, s čimer bo v nadaljevanju opisani nedostatek, ki je nastal v v obliki tuljave navitem optičnem vlaknu, s tem kompenziran. Z neobhodnim zavrtenjem vlakna pri navijanju tuljave se bo prečni prerez vlakna deformiral eliptično, pri čemer je vlakno izpostavljeno znatnemu linearnemu dvojnemu lomu, ki zmajŠuje delovanje Faradayevega efekta in lahko v neugodnih primerih privede do tega, da Faradayev efekt ni več merljiv oziroma ne pomeni isto. Z vrtenjem vlakna, ki ga dosežemo z dvojnim lomom, dosežemo, da se skupno razpoložljivi linearni dvojni lom upošteva le kot motnja na skupno razpoložljivem krožnem dvojnem lomu, tako da na Faradayev efekt ne vpliva z nazivno vrednostjo, tako da je le-ta popolnoma učinkovit.From this known device and from the display of "Magneto-optic current sensing with birefringent fibers" by S.C. Rashleigh and R. Ulrich, published in Appl. Phys. Lett. 34 (11) of 1 June 1979, it is further known that by rotating the optical fiber about its longitudinal axis, it is exposed to a double circular fracture, thereby defining the disadvantage resulting from the coil of the coiled optical fiber, thereby compensating. The necessary twist of the fiber when winding the coil will cause the cross-section of the fiber to be elliptically deformed, leaving the fiber subject to a significant linear double refraction that impairs the Faraday effect and may, in unfavorable cases, cause the Faraday effect to no longer be measurable or equal. By twisting the fiber obtained by double refraction, it is achieved that the total available linear double refraction is only considered as a disturbance on the jointly available circular double refraction, so that the Faraday effect is not affected by the nominal value, so that it is fully effective .

Pokazalo se je, da so prisotne pri istočasnem upoštevanju naukov pojasnjenih v člankih, namreč pri napravi z optičnim vlaknom, pri kateri okoli podolžne osi navito optično vlakno obkroža prevodnik pod visokonapetostnim potencialom v obliki navitja in ki ima na enem koncu odbojno površino, prav tako na visokonapetostnem potencialu, na drugem koncu vlakna pa izvedemo spajanje in razdvajanje svetlobe, še nedopustno visoke merilne napake, ki znašajo v neugodnih primerih več kot 100 %.They have been shown to be present at the same time as the teachings explained in the articles, namely, an optical fiber device in which an optical fiber wound around a longitudinal axis is surrounded by a conductor under high voltage winding potential and which has a reflecting surface at one end as well. high-voltage potential, and at the other end of the fiber, the coupling and separation of light are carried out, which is still unacceptably high measurement errors, amounting to more than 100% in adverse cases.

Opis rešitve tehničnega problema.Description of solution to a technical problem.

Tehnični problem smo rešili na ta način, da smo z zavijanjem optičnega vlakna okoli podolžne osi na znani način, izpostavili le-tega krožnemu dvojnemu razdvajanju in da smo en konec optičnega vlakna z odbojno površino tako postavili v neposredno bližino drugega konca, da predstavlja celo optično vlakno popolnoma v sebe zaprto pot.The technical problem was solved by wrapping the optical fiber around the longitudinal axis in a known manner, exposing it to a circular double separation, and placing one end of the optical fiber with a reflecting surface in close proximity to the other end to represent even the optical the fiber is completely closed in itself.

Prednosti dosežene z izumom so v tem, da postane preko v sebi zaprte poti optičnega vlakna uporaben zakon o pretoku in se lahko izzovejo magnetna polja prevodnika, čigar tok je treba meriti, pri čemer sosednji prevodnik ne more izzvati takih obračanj polarizacijske ravnine svetlobe v optičnem vlaknu, ki bi vplivala na rezultate meritve.The advantages of the invention are that a flow law becomes applicable through a closed optical fiber path and magnetic fields of a conductor whose current is to be measured can be elicited, and the adjacent conductor cannot induce such rotations of the polarizing plane of light in the optical fiber that would affect the measurement results.

Izum bo pobliže objasnjen na osnovi izvedbenega primera prikazanega na sl. 1, ki shematsko prikazuje napravo v skladu z izumom.The invention will be explained in greater detail on the basis of the embodiment shown in FIG. 1 which schematically shows a device according to the invention.

Naprava z optičnim vlaknom za merjenje jakosti električnega toka je sestavljena iz optičnega vlakna 2 ovitega okoli njegove podolžne osi, ki sega z enim svojim koncem 6, pred katerim je leča 7, k prevodniku 1 pod visokonapetostnim potencialom, in to kot navitje 3 okrog prevodnika 1 z določenim številom drugega ob drugem navitih navojev in se ponovno vrača v bližino leče 7, pri čemer ima drugi konec 4 odbojno površino 5, ki je postavljena pod pravim kotom glede na podolžno os vlakna.An optical fiber device for measuring current strength consists of optical fiber 2 wrapped around its longitudinal axis, extending at one end 6, preceded by the lens 7, to conductor 1 at high voltage potential, as a winding 3 around conductor 1 with a certain number of side-by-side winding threads and returning again to the lens 7, the other end 4 having a reflecting surface 5 at right angles to the longitudinal axis of the fiber.

Leča 7 združuje skozi prizmo 8 prepuščeno, polarizirano svetlobo, ki jo izžareva laser 10, v en konec 6 optičnega vlakna 2. Prevodnik svetlobe je znotraj dela optičnega vlakna 2 oblikovanega v navitje 3 izpostavljen magnetnemu polju, ki nastane zaradi toka, ki teče skozi prevodnik 1. Na osnovi Faradayevega efekta se polarizira ravnina vodene svetlobe v času prehoda skozi navitje 3 in s tem se obrne tudi magnetno polje, pri čemer je velikost kota obračanja merilo za integral po poti jakosti magnetnega polja.The lens 7 combines, through prism 8, the transmitted, polarized light emitted by the laser 10 into one end 6 of the optical fiber 2. The light conductor is exposed to a magnetic field generated by the flow through the conductor through a part of the optical fiber 2 formed into the coil 3. 1. Based on the Faraday effect, the plane of guided light is polarized at the time of passage through the winding 3, thus also turning the magnetic field, the magnitude of the turning angle being a measure of the integral along the magnetic field path.

Za navitjem 3 svetloba prehaja dalje po optičnem vlaknu do njegovega drugega konca 4, kjer se odbija na površini 5, tako da je pot skozi optično vlakno 2 in skozi magnetno polje v področju navitja 3 v obratni smeri, pri čemer se polarizacijska ravnina ponovno obrne, tako da je kot obračanja polarizacijske ravnine pri prihodu svetlobe na lečo 7 glede na kot obračanja pri vstopu svetlobe na odbojno površino 5 skupaj podvojen.After coil 3, light passes further along the optical fiber to its other end 4, where it is reflected on the surface 5, so that the path is through the optical fiber 2 and through the magnetic field in the coil region 3 in the opposite direction, with the polarization plane reversed, so that the angle of rotation of the polarization plane when the light arrives at the lens 7 with respect to the angle of rotation at the light's entrance to the reflecting surface 5 is doubled together.

Združevanje in razdvajanje svetlobe se izvaja s pomočjo leče 7. Po razdvajanju pride svetloba iz optičnega vlakna 2 skozi prizmo 8 do naprave za vrednotenje, ki ima še eno prizmo, dva polarizatorja 11, 12 in dva fotodetektorja 13, 14, kjer določimo kot obračanja, kateremu je bila s prehodom skozi optično vlakno 2 izpostavljena polarizacijska ravnina svetlobe in ki je merilo za jakost električnega toka, ki teče v prevodniku 1.The combining and separation of light is accomplished by means of lens 7. After separation, light from optical fiber 2 passes through the prism 8 to the evaluation device having another prism, two polarizers 11, 12 and two photodetectors 13, 14, where the rotation angle is determined, to which a polarization plane of light has been exposed by passing through optical fiber 2 and which is a measure of the strength of the electric current flowing in conductor 1.

Merilne napake so zanemarljivo majhne, ker z zavijanjem optičnega vlakna 2 po eni strani odstranimo vpliv linearnega dvojnega loma, po drugi strani pa pri zaprti poti optičnega vlakna 2, magnetna polja prevodnika 1, čigar tok merimo, kot tudi drugih bližnjih prevodnikov ne morejo izzvati dodatnih obračanj polarizacijske ravnine svetlobe v optičnih vlaknih 2.Measurement errors are negligible, because by twisting optical fiber 2, on the one hand, the influence of linear double refraction is eliminated and, on the closed path of optical fiber 2, the magnetic fields of conductor 1 whose current is measured, as well as of other nearby conductors, cannot cause additional rotations of the polarization plane of light in optical fibers 2.

Za MWB MESSVVANDLER-BAU AG, Bamberg NemčijaFor MWB MESSVVANDLER-BAU AG, Bamberg Germany

Claims (1)

1. Naprava z optičnim vlaknom za merjenje jakosti električnega toka z uporabo Faradayevega efekta, pri čemer magnetno polje, ki obkroža prevodnik (1), skozi katerega teče tok, vpliva na stanje polarizacije svetlobe, pot katere vodi skozi jedro optičnega vlakna (2), ki je navito okoli prevodnika (1) v obliki navitja (3), pri čemer je na enem koncu (4) optičnega vlakna (2) predvidena odbojna površina (5), medtem ko se na drugem koncu (6) izvaja združevanje in razdvajanje svetlobe, označena s tem, da je optično vlakno (2) z zavijanjem na znani način okoli podolžne osi izpostavljeno krožnemu dvojnemu razdvajanju in da je en konec (4) optičnega vlakna (2) z odbojno površino (5) tako nameščen v neposredno bližino drugega konca (6), da celotno optično vlakno (2) predstavlja popolnoma v sebe zaprto pot.An optical fiber device for measuring the strength of an electric current using the Faraday effect, wherein the magnetic field surrounding the conductor (1) through which the current flows influences the state of polarization of light passing through the optical fiber core (2), which is wound around a conductor (1) in the form of a winding (3), at which one reflecting surface (5) is provided at one end (4) of the optical fiber (2), while at the other end (6) the light is grouped and separated , characterized in that the optical fiber (2) is subjected, in a known manner, to a circular double separation by wrapping in a known manner around the longitudinal axis, and that one end (4) of the optical fiber (2) with a reflecting surface (5) is thus placed in close proximity to the other end (6) that the entire optical fiber (2) represents a completely closed path.
SI9011362A 1989-07-19 1990-07-12 Fibre optic arrangement for measuring the strength of an electric current SI9011362B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3923804A DE3923804A1 (en) 1989-07-19 1989-07-19 FIBER OPTICAL ARRANGEMENT FOR MEASURING THE STRENGTH OF AN ELECTRIC CURRENT
YU136290A YU47724B (en) 1989-07-19 1990-07-12 OPTICAL FIBER DEVICE FOR ELECTRICAL CURRENT MEASUREMENT

Publications (2)

Publication Number Publication Date
SI9011362A true SI9011362A (en) 1998-08-31
SI9011362B SI9011362B (en) 1999-10-31

Family

ID=6385322

Family Applications (1)

Application Number Title Priority Date Filing Date
SI9011362A SI9011362B (en) 1989-07-19 1990-07-12 Fibre optic arrangement for measuring the strength of an electric current

Country Status (14)

Country Link
EP (1) EP0483189B1 (en)
CN (1) CN1026159C (en)
AT (1) ATE99063T1 (en)
AU (1) AU5954790A (en)
BA (1) BA97215A (en)
DD (1) DD296751A5 (en)
DE (2) DE3923804A1 (en)
DK (1) DK0483189T3 (en)
ES (1) ES2063972T3 (en)
SI (1) SI9011362B (en)
TR (1) TR26408A (en)
WO (1) WO1991001501A1 (en)
YU (1) YU47724B (en)
ZA (1) ZA905606B (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9100924D0 (en) * 1991-01-16 1991-02-27 Rogers Alan J Interference-free optical-fibre current measurement
DE4115370A1 (en) * 1991-05-10 1992-11-26 Asea Brown Boveri Fibre=optic sensor for alternating electric fields or voltages - has piezoelectric element with attached optical fibre carrying two coherent light modes, and also fibre length variation detector
FR2686423B1 (en) * 1992-01-22 1996-12-13 Balteau France POLARIMETRIC BOX FOR MEASURING THE ANGLE OF FARADAY.
DE4224190B4 (en) * 1992-07-22 2007-01-18 Abb Research Ltd. Fiber optic current sensor
DE4311328A1 (en) * 1993-04-06 1994-10-13 Siemens Ag Optical measuring arrangement for measuring an electrical current with intertwined transmission lines
DE4312183A1 (en) * 1993-04-14 1994-10-20 Siemens Ag Optical measuring method for measuring an electrical alternating current with temperature compensation and device for carrying out the method
DE4312184A1 (en) * 1993-04-14 1994-10-20 Siemens Ag Optical measuring method for measuring an electrical alternating current with temperature compensation and device for carrying out the method
EP0721589B1 (en) * 1993-10-01 1997-06-04 Siemens Aktiengesellschaft Method and device for measuring an alternating electrical quantity to include temperature compensation
DE4432146A1 (en) * 1994-09-09 1996-03-14 Siemens Ag Method and device for measuring an electrical alternating current with temperature compensation
DE4436181A1 (en) * 1994-10-10 1996-04-11 Siemens Ag Method and device for measuring an electrical variable with temperature compensation by fitting
DE19654909A1 (en) * 1996-03-08 1997-11-13 Daimler Benz Ag Magneto-optical current sensor, especially for high voltage systems
JP3488576B2 (en) 1996-08-30 2004-01-19 株式会社東芝 Optical current transformer
DE29711683U1 (en) * 1997-07-03 1998-11-05 Felten & Guilleaume Energietechnik AG, 51063 Köln Sensor arrangement

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3746983A (en) * 1970-07-20 1973-07-17 Transformatoren Union Ag Apparatus fur measuring very high currents particularly direct currents
AU1440676A (en) * 1975-06-05 1977-12-01 Gen Electric Co Ltd Magneto-optical transducers
DE2924804A1 (en) * 1979-06-20 1981-01-15 Licentia Gmbh Prevention of temperature effects on fibre optic polarisation - has detector sensing changes in light polarisation caused by variation in tensional stress due to temperature
FR2461956A1 (en) * 1979-07-24 1981-02-06 Thomson Csf INTERFEROMETRIC DEVICE FOR MEASURING ELECTRICAL CURRENT WITH OPTICAL FIBER
GB2104213A (en) * 1981-08-12 1983-03-02 Giers Electric current measurement
DE3132414A1 (en) * 1981-08-17 1983-02-24 Ernst Dr. 5600 Wuppertal Brinkmeyer Arrangement for separating backscattered light in systems having optical fibres
DE3363682D1 (en) * 1982-03-12 1986-07-03 Thomson Csf Interferometric glass fibre current measuring device

Also Published As

Publication number Publication date
EP0483189B1 (en) 1993-12-22
ES2063972T3 (en) 1995-01-16
DD296751A5 (en) 1991-12-12
CN1026159C (en) 1994-10-05
DK0483189T3 (en) 1994-01-31
DE59003976D1 (en) 1994-02-03
YU47724B (en) 1996-01-08
TR26408A (en) 1995-03-15
DE3923804A1 (en) 1991-01-31
BA97215A (en) 2001-09-14
YU136290A (en) 1993-11-16
WO1991001501A1 (en) 1991-02-07
SI9011362B (en) 1999-10-31
EP0483189A1 (en) 1992-05-06
ZA905606B (en) 1991-06-26
AU5954790A (en) 1991-02-22
ATE99063T1 (en) 1994-01-15
CN1051427A (en) 1991-05-15

Similar Documents

Publication Publication Date Title
KR100248128B1 (en) Optical current transformer
US5136235A (en) Rugged fiber-optical current sensor based on the faraday effect
SI9011362A (en) Fibre optic arrangement for measuring the strength of an electric current
RU2677990C2 (en) Optical sensor with double-surface measuring spun-fiber
DE112013006884T5 (en) Fiber optic current sensor with spun fiber and temperature compensation
CN101226210A (en) Reflection type polarization irrespective miniaturization photo-electricity mutual-inductor
CA2064020C (en) Fibre optic arrangement for measuring the strength of an electric current
KR102383843B1 (en) Current Sensing System using Optical Cable for Sensing
CN201749141U (en) Full fiber current transformer
GB2190744A (en) Magnetic field sensors
US5677622A (en) Current sensor using a Sagnac interferometer and spun, single mode birefringent optical fiber to detect current via the Faraday effect
CN113341236B (en) Polarization maintaining fiber coupling type electrooptical crystal electric field sensor
ATE154443T1 (en) CURRENT MEASURING ARRANGEMENT FOR A CABLE ROUTE
EP0619021B1 (en) Current sensor
ATE154442T1 (en) CURRENT MEASURING ARRANGEMENT FOR A CABLE ROUTE
JP4215312B2 (en) Light current transformer
KR20230046162A (en) Fiber-based Faraday Rotating Mirror and Optical Fiber Current Sensing System Using the Same
IL96060A (en) Optical fiber current sensor
KR20050064682A (en) Optical fiber sensor for the measuerment of high current and its method
JPH07280849A (en) Optical current transformer
Vitsinskii et al. Fiber-optic ac transformers
JPH07174791A (en) Current measuring instrument
JPH07280850A (en) Current measuring method
JPH0980137A (en) Light magnetic field sensor

Legal Events

Date Code Title Description
IF Valid on the event date
KO00 Lapse of patent

Effective date: 20050412