NO322196B1 - Hybrid aircraft - Google Patents
Hybrid aircraft Download PDFInfo
- Publication number
- NO322196B1 NO322196B1 NO20042823A NO20042823A NO322196B1 NO 322196 B1 NO322196 B1 NO 322196B1 NO 20042823 A NO20042823 A NO 20042823A NO 20042823 A NO20042823 A NO 20042823A NO 322196 B1 NO322196 B1 NO 322196B1
- Authority
- NO
- Norway
- Prior art keywords
- rotor
- aircraft
- wing
- hybrid aircraft
- specified
- Prior art date
Links
- 125000004122 cyclic group Chemical group 0.000 description 9
- 230000007704 transition Effects 0.000 description 6
- 230000001133 acceleration Effects 0.000 description 3
- 238000005096 rolling process Methods 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/38—Adjustment of complete wings or parts thereof
- B64C3/385—Variable incidence wings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/38—Adjustment of complete wings or parts thereof
- B64C3/42—Adjusting about chordwise axes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/22—Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/22—Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
- B64C27/26—Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft characterised by provision of fixed wings
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/22—Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft
- B64C27/30—Compound rotorcraft, i.e. aircraft using in flight the features of both aeroplane and rotorcraft with provision for reducing drag of inoperative rotor
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/32—Rotors
- B64C27/46—Blades
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C3/00—Wings
- B64C3/38—Adjustment of complete wings or parts thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/10—Drag reduction
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Toys (AREA)
- Radio Relay Systems (AREA)
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
- Jet Pumps And Other Pumps (AREA)
Description
Foreliggende oppfinnelse vedrører et hybrid luftfartøy omfattende en langstrakt fartøyskropp, en rotor med rotorblader som gir løftekraft og en vingedel som rager ut fra hver side av fartøyskroppen. The present invention relates to a hybrid aircraft comprising an elongated vessel body, a rotor with rotor blades that provide lifting power and a wing part that protrudes from each side of the vessel body.
Bakgrunnen for den foreliggende oppfinnelsen er ønsket om å utvikle et helt nytt konsept for et hybrid luftfartøy. Så langt som mulig skal det utgjøre et optimalt kompromiss mellom et helikopter og et luftfartøy med fast vinge. Konseptet er først og fremst beregnet på ubemannede, mindre fartøyer, så som rekognoseringsfly, uten at dette skal anses som noen begrensning. Luftfartøyer av denne typen er vist i WO 01/56879 Al og WO 02/096752 Al. The background for the present invention is the desire to develop a completely new concept for a hybrid aircraft. As far as possible, it should constitute an optimal compromise between a helicopter and a fixed-wing aircraft. The concept is primarily intended for unmanned, smaller vessels, such as reconnaissance aircraft, without this being considered a limitation. Aircraft of this type are shown in WO 01/56879 A1 and WO 02/096752 A1.
Eksempler på teknikkens stand med hensyn til helikoptre med inntrekkbare rotorvinger er vist i US 6,062,508 og US 5,240,204. Ytterligere eksempler på teknikkens stand er vist i US patent nr. 1,418,248 og US patent nr. 4,913,376. Examples of the state of the art with respect to helicopters with retractable rotor blades are shown in US 6,062,508 and US 5,240,204. Further examples of the state of the art are shown in US Patent No. 1,418,248 and US Patent No. 4,913,376.
Et formål med den foreliggende oppfinnelse har vært å tilveiebringe et hybrid luftfartøy som kan regulere jevnt og trinnløst i overgangen fra rotormodus, dvs helikopterdrift, til fastvingemodus, dvs flydrift. One purpose of the present invention has been to provide a hybrid aircraft which can regulate smoothly and steplessly in the transition from rotor mode, i.e. helicopter operation, to fixed-wing mode, i.e. airplane operation.
Konseptet forbedrer kontrollert overgang, eller transisjon, på flere områder (faguttrykkene eksisterer først og fremst på engelsk så disse er tatt med i parentes): 1) Full syklisk og kollektiv kontroll av rotorsystemet under hele transisjonsfasen - det betyr svært god kontroll med rulling (roll), hivbevegelser (pitch) og vertikale bevegelser. 2) Retningsstyrt kraftpådrag (thrust-vectoring) i halepartiet gir stor mulighet for kontroll av hivbevegelser og giringsbevegelser (yaw). 3) Hovedvinger med høyt sideforhold og styrbare dynamiske kontrollflater som utsettes for nedadgående luftstrøm fra rotor (rotor-downwash) i hele transisjonsfasen, gir svært god kontroll med rulling og giringsbevegelser. The concept improves controlled transition, or transition, in several areas (the technical terms exist primarily in English so these are included in brackets): 1) Full cyclical and collective control of the rotor system during the entire transition phase - this means very good control of rolling (roll ), heaving movements (pitch) and vertical movements. 2) Directional force application (thrust-vectoring) in the tail section provides great opportunity for control of heave and yaw movements. 3) Main wings with a high aspect ratio and steerable dynamic control surfaces which are exposed to downward airflow from the rotor (rotor downwash) throughout the transition phase, provide very good control with rolling and yawing movements.
Teknologien vil gi en kontrollert og sikker transisjon fra rotorkraftmodus til fastvingemodus og tilbake igjen. Dette vil kunne åpne opp for en lang rekke anvendelser: 1) Effektive helikopteregenskaper og samtidig ha: høyhastighetsegenskaper, rekkevidde og aksjonstid som et fastvingefartøy. 2) Effektive fastvingeegenskaper og samtidig ha: gode sveveegenskaper (hovering), sakteflygningsegenskaper som et konvensjonelt helikopter og muligheter for vertikal letting og landing. The technology will provide a controlled and safe transition from rotor power mode to fixed wing mode and back again. This could open up a wide range of applications: 1) Effective helicopter characteristics and at the same time have: high-speed characteristics, range and action time as a fixed-wing vessel. 2) Effective fixed-wing properties and at the same time have: good hovering properties (hovering), slow flight properties like a conventional helicopter and possibilities for vertical take-off and landing.
Dette oppnås i samsvar med den foreliggende oppfinnelse ved at det er tilveiebrakt et hybrid luftfartøy av den irmledningsvis nevnte art som kjennetegnes ved at hver vingedel er om sin lengdeakse vridbart anordnet til fartøyskroppen og at rotoren omfatter et rotorhus som opptar respektive inntrekk- og utkjørbare rotorblader. This is achieved in accordance with the present invention by providing a hybrid aircraft of the type previously mentioned which is characterized by the fact that each wing part is rotatably arranged about its longitudinal axis to the body of the vessel and that the rotor comprises a rotor housing which accommodates respective retractable and extendable rotor blades.
Rotorkonstruksjon kan i en utførelse være av den typen som er vist og beskrevet i norsk patentsøknad nr. 2003 5350. Rotorkonstruksjonen er her kombinert med en vinge der rotorbladene sin virksomme del er nær doblet i forhold til det som har vært foreslått tidligere. Dette innebærer at rotorbladets virksomme del ikke bare tilsvarer en radiuslengde av det faste hus eller vinge, men faktisk tilnærmet en diameterlengde. Hensikten med å ha inntrekkbare rotorblader på et luftfartøy av denne typen er å redusere luftmotstand (drag) i høye hastigheter. Jo høyere forholdstall mellom rotorareal og vingeareal som rotoren skal trekke seg inn i, jo bedre er det - dvs mindre luftmotstand (drag). In one embodiment, the rotor structure can be of the type shown and described in Norwegian patent application no. 2003 5350. The rotor structure is here combined with a wing where the active part of the rotor blades is nearly doubled compared to what has been proposed previously. This means that the active part of the rotor blade does not just correspond to a radius length of the fixed housing or wing, but actually approximately a diameter length. The purpose of having retractable rotor blades on an aircraft of this type is to reduce air resistance (drag) at high speeds. The higher the ratio between rotor area and wing area into which the rotor must retract, the better it is - i.e. less air resistance (drag).
Med fordel er respektive rotorblader vridbare om sin lengdeakse i forhold til rotorhuset. Advantageously, respective rotor blades are rotatable about their longitudinal axis in relation to the rotor housing.
I hensiktsmessige utførelser innbefatter luftfartøyet en haleroter. Halerotoren omfatter fortrinnsvis en propell som igjen er omsluttet av en kanal. Videre kan kanalen innbefatte en eller flere styrefinner. In appropriate embodiments, the aircraft includes a tail rotor. The tail rotor preferably comprises a propeller which is again enclosed by a channel. Furthermore, the channel can include one or more steering fins.
Hensiktsmessig omfatter vingen til det hybride luftfartøy respektive styringsflater. Hver vingehalvdel kan eventuelt omfatte flere uavhengig regulerbare styringsflater. Appropriately, the wing of the hybrid aircraft includes respective control surfaces. Each wing half may possibly include several independently adjustable control surfaces.
Andre og ytterligere formål, særtrekk og fordeler vil fremgå av den følgende beskrivelse av en foretrukket utførelse av oppfinnelsen, som er gitt for beskrivelsesforma! og gitt i forbindelse med de vedlagte tegninger, hvor: Fig. 1 viser skjematisk i perspektiv et luftfartøy ifølge oppfinnelsen under vertikalt løft, Fig. 2 viser skjematisk luftfartøyet ifølge figur 1 under akselerert bevegelse fremover, ved om lag 50 km/t, Fig. 3 viser skjematisk luftfartøyet ifølge figur 1 under flukt fremover, ved om lag 120 km/t, Fig. 4 viser skjematisk luftfartøyet ifølge figur 1 under flukt fremover, ved om lag 170 km/t, Fig. 5 viser skjematisk luftfartøyet ifølge figur 1 under flukt fremover, ved om lag 200 km/t, Other and further purposes, special features and advantages will be apparent from the following description of a preferred embodiment of the invention, which is given for the purpose of description! and given in connection with the attached drawings, where: Fig. 1 schematically shows in perspective an aircraft according to the invention during vertical lift, Fig. 2 schematically shows the aircraft according to Figure 1 during accelerated forward movement, at approximately 50 km/h, Fig. 3 schematically shows the aircraft according to Figure 1 during forward flight, at approximately 120 km/h, Fig. 4 schematically shows the aircraft according to Figure 1 during forward flight, at approximately 170 km/h, Fig. 5 schematically shows the aircraft according to Figure 1 during forward flight, at about 200 km/h,
Med henvisning til figurene 1-5 vil nå et hybrid luftfartøy 1 under ulike manøvreirngsfaser bli nærmere beskrevet. Luftfartøyet 1 omfatter en luftfartøyskropp 2, en hovedrotor 3 og en vinge 4. Hovedrotoren 3 omfatter i et rotorhus 6 som opptar en rotormekanisme (ikke vist) med minst to rotorblader 7 som kan trekkes fullstendig inn i rotorhuset 6. Det skal spesielt bemerkes at rotorhuset 6 er roterbart sammen med rotorbladene 7. Rotorbladene 7 er i sin tur noe vridbare om sine lengdeakser i forhold til rotorhuset 6. With reference to figures 1-5, a hybrid aircraft 1 during various maneuvering phases will now be described in more detail. The aircraft 1 comprises an aircraft body 2, a main rotor 3 and a wing 4. The main rotor 3 comprises in a rotor housing 6 which accommodates a rotor mechanism (not shown) with at least two rotor blades 7 which can be completely retracted into the rotor housing 6. It should be particularly noted that the rotor housing 6 is rotatable together with the rotor blades 7. The rotor blades 7 are in turn somewhat rotatable about their longitudinal axes in relation to the rotor housing 6.
I tillegg har luftfartøyet en haleroter 5 som sørger for skyvkraft til fremdrift. Halerotoren 5 omfatter en propell 5<*> som er roterbart anordnet inne i en omsluttende kanal 9 som igjen har utragende kontrollfinner 9' og stabiliseirngsfinner 9". In addition, the aircraft has a tail rotor 5 which provides thrust for propulsion. The tail rotor 5 comprises a propeller 5<*> which is rotatably arranged inside an enclosing channel 9 which in turn has projecting control fins 9' and stabilization fins 9".
Figur 1 viser luftfartøyet 1 under vertikalt løft og uten vesentlig horisontalt fremdrift. Det vertikale løft blir besørget av hovedrotoren 3 der respektive rotorblader 7 er helt utkjørt som vist på figuren. Hver vingehalvdel 4* er dreibart opplagret til luftfartøyskroppen 2 og er på figur 1 vist vridd om lag 90° i forhold til sin stilling under normal flygning. Hver vingehalvdel 4' har respektive styringsflater 8 som kan fjernstyres til å gjøre vinkelutslag i forhold til vingehalvdelen 4' for manøvrering av luftfartøyet i ulike faser og situasjoner. Under vertikalt løft peker styringsflatene 8 nedad og vingehalvdelene 4' tilveiebringer et giringsmoment for å motvirke det moment som genereres av hovedrotorsystemet. Det skal tillegges at halerotoren 5 tilveiebringer ytterligere motvirkende giringsmoment. Figure 1 shows the aircraft 1 during vertical lift and without significant horizontal propulsion. The vertical lift is provided by the main rotor 3 where respective rotor blades 7 are fully extended as shown in the figure. Each wing half 4* is rotatably supported to the aircraft body 2 and is shown in Figure 1 twisted by approximately 90° in relation to its position during normal flight. Each wing half 4' has respective control surfaces 8 which can be remotely controlled to make an angular deflection in relation to the wing half 4' for maneuvering the aircraft in various phases and situations. During vertical lift, the control surfaces 8 point downwards and the wing halves 4' provide a yawing moment to counteract the moment generated by the main rotor system. It must be added that the tail rotor 5 provides additional counteracting gearing torque.
Luftfartøyet 1 må kunne styres innenfor 6 frihetsgrader ved hjelp av: The aircraft 1 must be able to be controlled within 6 degrees of freedom using:
1) "Vertikalt løft": Hovedrotor 3 kollektiv angrepsvinkel 1) "Vertical lift": Main rotor 3 collective angle of attack
2) "Rullmgsstyring": Hovedrotor 3 syklisk angrepsvinkel 2) "Roll control": Main rotor 3 cyclic angle of attack
3) "Hivstyring": Hovedrotor 3 syklisk angrepsvinkel + remingsstyrt kraftpådrag haleseksjon 4) "Giringsstyring": Vippede hovedvinger m/styringsflater + retningsstyrt kraftpådrag haleseksjon 3) "Elevation control": Main rotor 3 cyclic angle of attack + belt-controlled power application tail section 4) "Gear control": Tilted main wings w/control surfaces + directional power application tail section
5) "Skyvkraft forover": Hovedrotor 3 syklisk angrepsvinkel + halepropell 5) "Forward thrust": Main rotor 3 cyclic angle of attack + tail thruster
6) "Sidekraft": Hovedrotor 3 syklisk angrepsvinkel 6) "Side force": Main rotor 3 cyclic angle of attack
Figur 2 viser luftfartøyet 1 under tidlig akselerasjon fremover, så som SO km/t. Luftfartøyet 1 blir akselerert fremover av den kanalomsluttede propell 5' anordnet i den bakre enden av luftfartøyskroppen 2. Hovedrotoren 3 tilveiebringer vertikalt løft, og har hovedkontrollen på hiv- og rullingsbevegelser. De vridbare vingehalvdeler 4<*> blir gradvis dreid opp mot fluktstilling for å begynne å skape en mindre løftkomponent i luftstrømmen fira hovedrotoren 3 og den frie luftstrøm på grunn av hastigheten fremover. Figure 2 shows the aircraft 1 during early forward acceleration, such as SO km/h. The aircraft 1 is accelerated forward by the ducted propeller 5' arranged at the rear end of the aircraft body 2. The main rotor 3 provides vertical lift, and has the main control of pitch and roll movements. The rotatable wing halves 4<*> are gradually turned up towards the flight position to begin to create a minor lift component in the air flow around the main rotor 3 and the free air flow due to the forward speed.
Luftfartøyet 1 sine 6 frihetsgrader styres ved hjelp av: Aircraft 1's 6 degrees of freedom are controlled using:
1) "Vertikalt løft": Hovedrotor 3 kollektiv angrepsvinkel + lite bidrag fra hovedvingen 1) "Vertical lift": Main rotor 3 collective angle of attack + small contribution from the main wing
2) "Rullmgsstyring": Hovedrotor 3 syklisk angrepsvinkel 2) "Roll control": Main rotor 3 cyclic angle of attack
3) "Hivstyring": Hovedrotor 3 syklisk angrepsvinkel + retningsstyrt kraftpådrag haleseksjon 4) "Giringsstyring": Vippede hovedvinger m/styringsflater + retningsstyrt kraftpådrag haleseksjon 3) "Elevation control": Main rotor 3 cyclic angle of attack + directional power application tail section 4) "Yaw control": Tilted main wings w/control surfaces + directional power application tail section
5) "Skyvkraft forover": Halepropell + hovedrotor 3 syklisk angrepsvinkel 5) "Forward thrust": Tail thruster + main rotor 3 cyclic angle of attack
6) "Sidekraft": 6) "Side force":
Figur 3 viser luftfartøyet 1 under videre akselerasjon fremover, så som ved 120 km/t Luftfartøyet 1 blir fortsatt akselerert fremover av den kanalomsluttede propell 5<*>. Hovedrotoren 3 gir nå mindre vertikalt løft og rotorbladene 7 er halvveis trukket inn i rotorhuset 6. De vridbare vingehalvdeler 4' er ytterligere dreid opp mot fluktstilling og gir omtrent halvparten av den nødvendige løftkraft. Figure 3 shows the aircraft 1 during further forward acceleration, such that at 120 km/h the aircraft 1 is still accelerated forward by the channel-enclosed propeller 5<*>. The main rotor 3 now provides less vertical lift and the rotor blades 7 are halfway retracted into the rotor housing 6. The rotatable wing halves 4' are further turned up towards the flight position and provide approximately half of the required lifting force.
Luftfartøyet 1 sine 6 frihetsgrader styres ved hjelp av: Aircraft 1's 6 degrees of freedom are controlled using:
1) "Vertikalt løft": Hovedvingen med høydøftiimretninger + hovedrotor 3 kollektiv angrepsvinkel 1) "Vertical lift": The main wing with high pitch timing + main rotor 3 collective angle of attack
2) "RulUngsstyring": Balanseror + hovedrotor 3 syklisk angrepsvinkel 2) "Roll Control": Balance rudder + main rotor 3 cyclic angle of attack
3) "Hivstyring": Elevator + retningsstyrt kraftpådrag haleseksjon + hovedrotor 3 syklisk angrepsvinkel 4) "Giringsstyring": Vertikal haleseksjon/retningsstyrt kraftpådrag + Vippede hovedvinger m/styreflater 3) "Elevator control": Elevator + directional power application tail section + main rotor 3 cyclic angle of attack 4) "Yaw control": Vertical tail section/directional power application + Tilted main wings w/control surfaces
5) "Skyvkraft forover": Halepropell 5) "Forward thrust": Tail thruster
6) "Sidekraft": 6) "Side force":
Figur 4 viser luftfartøyet 1 under ytterligere akselerasjon fremover, så som ved 170 km/t. Luftfartøyet 1 akselereres fortsatt fremover av den kanalomsluttede propell 5'. Hovedrotoren 3 gir nå minimalt vertikalt løft og rotorbladene 7 er helt inntrukket i rotorhuset 6. Rotorhuset 6 blir gradvis retardert og stoppet. De vridbare vingehalvdeler 4' er ytterligere dreid opp mot fluktstilling og gir nå mesteparten av den nødvendige løftkraft. Figure 4 shows the aircraft 1 under further forward acceleration, such as at 170 km/h. The aircraft 1 is still accelerated forward by the channel-enclosed propeller 5'. The main rotor 3 now gives minimal vertical lift and the rotor blades 7 are fully retracted into the rotor housing 6. The rotor housing 6 is gradually decelerated and stopped. The rotatable wing halves 4' are further turned up towards the flight position and now provide most of the required lifting power.
Luftfartøyet 1 sine 6 frihetsgrader styres ved hjelp av: Aircraft 1's 6 degrees of freedom are controlled using:
1) "Vertikalt løft": Hovedvingen med høytløftinnreminger + hovedrotor 3 kollektiv angrepsvinkel 1) "Vertical lift": Main wing with high-lift arrangements + main rotor 3 collective angle of attack
2) "Rullingsstyring": Balanseror 2) "Roll control": Balancer rudder
3) "Hivstyring": Elevator + retningsstyrt kraftpådrag 3) "Elevator steering": Elevator + directional power application
4) "Giringsstyring": Vertikal haleseksjon/retningsstyrt kraftpådrag 4) "Yaw steering": Vertical tail section/directional power application
5) "Skyvkraft forover": Halepropell 5) "Forward thrust": Tail thruster
6) "Sidekraft": 6) "Side force":
Figur S viser luftfartøyet 1 under stabil, jevn flukt, så som ved 200 km/t. Luftfartøyet 1 drives fortsatt fremover av den kanalomsluttede propell 5<*> og flyr i prinsipp på samme måte som et konvensjonelt luftfartøy med fast vinge. Rotorhuset 6 er stoppet i en til Figure S shows the aircraft 1 during stable, steady flight, such as at 200 km/h. The aircraft 1 is still driven forward by the channel-enclosed propeller 5<*> and flies in principle in the same way as a conventional fixed-wing aircraft. The rotor housing 6 is stopped in another
luftfartøyskroppen 2 tversgående stilling og rotorbladene 7 er fortsatt helt inntrukket i rotorhuset 6. De vridbare vingehalvdeler 4" er dreid helt opp i fluktstilling og gir nå all nødvendig løftkraft. Under flukt fremover blir rotorhuset 6 trimmet slik at det gir minimum luftmotstand. Rotorhuset 6 vil ikke bidra til løft under flukt. the aircraft body 2 transverse position and the rotor blades 7 are still fully retracted into the rotor housing 6. The rotatable wing halves 4" are turned all the way up into the flight position and now provide all the necessary lifting power. During forward flight, the rotor housing 6 is trimmed so that it provides minimum air resistance. The rotor housing 6 will do not contribute to lift in flight.
Luftfartøyet 1 sine 6 frihetsgrader styres ved hjelp av: Aircraft 1's 6 degrees of freedom are controlled using:
1) "Vertikalt løft": Hovedvingen 1) "Vertical lift": The main wing
2) "Rullingsstyring": Balanseror 2) "Roll control": Balancer rudder
3) " Hivstyring": Elevator + retningsstyrt kraftpådrag haleseksjon 3) "Elevator steering": Elevator + directional power application tail section
4) "Giringsstyring": Vertikal haleseksjon/retningsstyrt kraftpådrag 4) "Yaw steering": Vertical tail section/directional power application
5) "Skyvkraft forover": Halepropell 5) "Forward thrust": Tail thruster
6) "Sidekraft": 6) "Side force":
Claims (7)
Priority Applications (11)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20042823A NO322196B1 (en) | 2004-07-02 | 2004-07-02 | Hybrid aircraft |
US11/571,442 US20080272244A1 (en) | 2004-07-02 | 2005-06-24 | Hybrid Aircraft |
CNA2005800291650A CN101010235A (en) | 2004-07-02 | 2005-06-24 | Hybrid aircraft |
CA002572929A CA2572929A1 (en) | 2004-07-02 | 2005-06-24 | Hybrid aircraft |
AU2005260287A AU2005260287A1 (en) | 2004-07-02 | 2005-06-24 | Hybrid aircraft |
EP05761268A EP1773654A1 (en) | 2004-07-02 | 2005-06-24 | Hybrid aircraft |
KR1020077002511A KR20070045216A (en) | 2004-07-02 | 2005-06-24 | Hybrid aircraft |
PCT/NO2005/000228 WO2006004416A1 (en) | 2004-07-02 | 2005-06-24 | Hybrid aircraft |
RU2007102848/11A RU2380276C2 (en) | 2004-07-02 | 2005-06-24 | Combined aircraft |
IL180467A IL180467A0 (en) | 2004-07-02 | 2006-12-31 | Hybrid aircraft |
ZA200700666A ZA200700666B (en) | 2004-07-02 | 2007-01-24 | Hybrid aircraft |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20042823A NO322196B1 (en) | 2004-07-02 | 2004-07-02 | Hybrid aircraft |
Publications (3)
Publication Number | Publication Date |
---|---|
NO20042823D0 NO20042823D0 (en) | 2004-07-02 |
NO20042823L NO20042823L (en) | 2006-01-03 |
NO322196B1 true NO322196B1 (en) | 2006-08-28 |
Family
ID=35013273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
NO20042823A NO322196B1 (en) | 2004-07-02 | 2004-07-02 | Hybrid aircraft |
Country Status (11)
Country | Link |
---|---|
US (1) | US20080272244A1 (en) |
EP (1) | EP1773654A1 (en) |
KR (1) | KR20070045216A (en) |
CN (1) | CN101010235A (en) |
AU (1) | AU2005260287A1 (en) |
CA (1) | CA2572929A1 (en) |
IL (1) | IL180467A0 (en) |
NO (1) | NO322196B1 (en) |
RU (1) | RU2380276C2 (en) |
WO (1) | WO2006004416A1 (en) |
ZA (1) | ZA200700666B (en) |
Families Citing this family (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8403255B2 (en) * | 2009-08-14 | 2013-03-26 | Frederick W. Piasecki | Compound aircraft with autorotation |
WO2011146349A2 (en) * | 2010-05-17 | 2011-11-24 | Piasecki Aircraft Corp. | Modular and morphable air vehicle |
CN103057703A (en) * | 2011-10-18 | 2013-04-24 | 顾惠群 | Dual-rotor coaxial helicopter with wing-shaped rotors |
CN102530248A (en) * | 2011-12-12 | 2012-07-04 | 周景荣 | Design method for multifunctional helicopter |
US9616995B2 (en) * | 2012-12-13 | 2017-04-11 | Stoprotor Technology Pty Ltd | Aircraft and methods for operating an aircraft |
CN103129737A (en) * | 2013-03-27 | 2013-06-05 | 南京傲翼伟滕自动化科技有限公司 | Inclined fixed wing unmanned plane |
CN103708029A (en) * | 2014-01-06 | 2014-04-09 | 姚昊 | Light aircraft |
EP2899118B1 (en) * | 2014-01-27 | 2019-01-16 | AIRBUS HELICOPTERS DEUTSCHLAND GmbH | Rotorcraft with a fuselage and at least one main rotor |
RU2568234C2 (en) * | 2014-04-04 | 2015-11-10 | Михаил Николаевич Колеватов | Hybrid airborne vehicle |
CN103935512A (en) * | 2014-05-12 | 2014-07-23 | 马轶 | High endurable multi-rotor craft |
RU2581110C1 (en) * | 2014-11-26 | 2016-04-10 | Сергей Михайлович Есаков | Combined aircraft |
CN104608924B (en) * | 2015-02-12 | 2018-07-06 | 中电科(德阳广汉)特种飞机系统工程有限公司 | Band verts the multi-rotor aerocraft and its control method of fixed-wing |
CN104773291A (en) * | 2015-04-08 | 2015-07-15 | 南昌航空大学 | Disc-shaped rotor wing unmanned helicopter |
US10112697B2 (en) * | 2015-05-11 | 2018-10-30 | Sikorsky Aircraft Corporation | Aircraft with thrust vectoring tail |
FR3038882B1 (en) | 2015-07-16 | 2018-03-23 | Airbus Helicopters | COMBINED AIRCRAFT PROVIDED WITH AN ADDITIONAL ANTICOUPLE DEVICE |
FR3043389A1 (en) * | 2015-11-05 | 2017-05-12 | Daniel Jean Pierre Piret | DESIGN ELEMENTS OF A HIGH SPEED HELICOPTER |
CN105501439B (en) * | 2015-12-31 | 2018-02-23 | 北京航空航天大学 | A kind of rotor deceleration locking device for rotor fixed-wing combined type vertically taking off and landing flyer |
US10065749B2 (en) | 2016-01-07 | 2018-09-04 | The Boeing Company | Wing lift system capability expansion |
CN106114835A (en) * | 2016-06-29 | 2016-11-16 | 南京航空航天大学 | A kind of compound un-manned aerial helicopter |
CN106314761B (en) * | 2016-08-31 | 2018-11-23 | 北京航空航天大学 | A kind of all-moving wing mechanism applied to small compound helicopter |
CN106428524B (en) * | 2016-11-25 | 2019-09-13 | 南京柯尔航空科技有限公司 | A kind of multi-rotor aerocraft with the free wing |
CN106741857A (en) * | 2017-03-02 | 2017-05-31 | 南京那尔朴电子有限公司 | A kind of propeller that can be adjusted with thrust |
KR20180116849A (en) * | 2017-04-18 | 2018-10-26 | 주식회사 창성에프티 | Fixed wing drone using variable pitch propeller |
CN107891974A (en) * | 2017-11-03 | 2018-04-10 | 西安冰果智能航空科技有限公司 | A kind of single bladed paddle quadrotor |
CN108750101A (en) * | 2018-06-28 | 2018-11-06 | 彩虹无人机科技有限公司 | A kind of super maneuver high speed compound unmanned rotary wing aircraft, assembly, assembly and disassembly methods |
CN109263903A (en) * | 2018-10-30 | 2019-01-25 | 佛山市神风航空科技有限公司 | A kind of multifunction aircraft |
CN111348177A (en) * | 2018-12-20 | 2020-06-30 | 中国航空工业集团公司西安飞机设计研究所 | Variable-configuration airplane with foldable telescopic wings |
CN109677602B (en) * | 2018-12-26 | 2020-08-07 | 张耀天 | Unmanned aerial vehicle wing |
CN109466762A (en) * | 2019-01-08 | 2019-03-15 | 贵州剑河中和时代科技有限公司 | A kind of unmanned plane |
USD894814S1 (en) * | 2019-09-27 | 2020-09-01 | Bell Textron Inc. | Aircraft |
USD896730S1 (en) * | 2019-09-27 | 2020-09-22 | Bell Textron Inc. | Combined aircraft fuselage and empennage |
CN111572756A (en) * | 2020-05-14 | 2020-08-25 | 中国空气动力研究与发展中心 | Ducted fan power low-cost high-speed long-endurance layout aircraft |
US11851172B1 (en) * | 2020-05-30 | 2023-12-26 | Piasecki Aircraft Corporation | Apparatus, system and method for a supplemental wing for a rotary wing aircraft |
DE102022000073A1 (en) | 2022-01-12 | 2023-07-13 | Gerd BERCHTOLD | Adjustable auxiliary wing as lift support for vertical take-off aircraft with non-pivotable lift rotors |
US20240034465A1 (en) * | 2022-07-26 | 2024-02-01 | Textron Innovations Inc. | Protective shroud for aircraft tail rotor |
FR3141446A1 (en) | 2022-10-28 | 2024-05-03 | Airbus Helicopters | Hybrid helicopter equipped with a system for stopping and positioning the lift rotor in cruising flight and stopping method |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1418248A (en) * | 1920-08-06 | 1922-05-30 | Fulcher Joseph Thomas | Combined aeroplane and helicopter |
US2580312A (en) * | 1947-01-20 | 1951-12-25 | Hamilton K Moore | Convertible airplane and helicopter |
US3119577A (en) * | 1953-01-27 | 1964-01-28 | Edward F Andrews | Convertible aircraft |
US3029043A (en) * | 1958-01-27 | 1962-04-10 | Robert D Lindeman | Free floating wing structure and control system for convertible aircraft |
DE1194264B (en) * | 1959-05-23 | 1965-06-03 | Boelkow Gmbh | Safety device on a transformation aircraft |
US3241791A (en) * | 1964-04-03 | 1966-03-22 | Frank N Piasecki | Compound helicopter with shrouded tail propeller |
GB1394177A (en) * | 1971-08-11 | 1975-05-14 | Westland Aircraft Ltd | Helicopters |
US4913376A (en) * | 1988-10-21 | 1990-04-03 | Black Franklin E | VTLH autogyro |
US5131603A (en) * | 1991-05-02 | 1992-07-21 | Piasecki Aircraft Corporation | Rotary wing aircraft split segmented duct shrouded propeller tail assembly |
US5240204A (en) * | 1991-07-19 | 1993-08-31 | Kunz Bernard P | Lift generating method and apparatus for aircraft |
US5280863A (en) * | 1991-11-20 | 1994-01-25 | Hugh Schmittle | Lockable free wing aircraft |
JPH07132893A (en) * | 1993-11-12 | 1995-05-23 | Mitsubishi Heavy Ind Ltd | Rotary-wing aircraft |
FR2736889B1 (en) * | 1995-07-21 | 1997-09-12 | Eurocopter France | AIRCRAFT HAVING A TURNING WING OF THE COMBINED TYPE AND REAR STRUCTURAL MEMBER FOR SUCH AN AIRCRAFT |
US6062508A (en) * | 1998-08-26 | 2000-05-16 | Black; Franklin E. | Compound aircraft |
JP3973433B2 (en) * | 2002-01-31 | 2007-09-12 | 富士重工業株式会社 | Composite rotorcraft |
US7475847B2 (en) * | 2002-09-09 | 2009-01-13 | Gerbino Allen J | Retractable lifting blades for aircraft |
-
2004
- 2004-07-02 NO NO20042823A patent/NO322196B1/en not_active IP Right Cessation
-
2005
- 2005-06-24 US US11/571,442 patent/US20080272244A1/en not_active Abandoned
- 2005-06-24 CA CA002572929A patent/CA2572929A1/en not_active Abandoned
- 2005-06-24 CN CNA2005800291650A patent/CN101010235A/en active Pending
- 2005-06-24 KR KR1020077002511A patent/KR20070045216A/en not_active Application Discontinuation
- 2005-06-24 RU RU2007102848/11A patent/RU2380276C2/en not_active IP Right Cessation
- 2005-06-24 WO PCT/NO2005/000228 patent/WO2006004416A1/en active Application Filing
- 2005-06-24 EP EP05761268A patent/EP1773654A1/en not_active Withdrawn
- 2005-06-24 AU AU2005260287A patent/AU2005260287A1/en not_active Abandoned
-
2006
- 2006-12-31 IL IL180467A patent/IL180467A0/en unknown
-
2007
- 2007-01-24 ZA ZA200700666A patent/ZA200700666B/en unknown
Also Published As
Publication number | Publication date |
---|---|
NO20042823L (en) | 2006-01-03 |
WO2006004416A1 (en) | 2006-01-12 |
US20080272244A1 (en) | 2008-11-06 |
EP1773654A1 (en) | 2007-04-18 |
CN101010235A (en) | 2007-08-01 |
RU2380276C2 (en) | 2010-01-27 |
ZA200700666B (en) | 2008-09-25 |
AU2005260287A1 (en) | 2006-01-12 |
IL180467A0 (en) | 2007-06-03 |
RU2007102848A (en) | 2008-08-10 |
KR20070045216A (en) | 2007-05-02 |
CA2572929A1 (en) | 2006-01-12 |
NO20042823D0 (en) | 2004-07-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
NO322196B1 (en) | Hybrid aircraft | |
RU2670356C2 (en) | Aircraft capable of vertical take-off | |
US10967964B2 (en) | Air wheel rotor, a gyro stabilized aircraft and a wind-driven power generator using the air wheel rotor, and a stationary launching device | |
CN106573678B (en) | Aircraft suitable for vertical take-off and horizontal flight | |
US20180215464A1 (en) | Devices and methods for in flight transition vtol/fixed wing hybrid aircraft structures and flight modes | |
RU2682954C1 (en) | Aircraft | |
AU2018239445B2 (en) | Vertical takeoff and landing aircraft | |
CN109229376B (en) | Cross-domain amphibious carrier | |
RU2563921C1 (en) | Rotorcraft with vertical takeoff | |
WO2016109408A4 (en) | Rotary wing vtol with fixed wing forward flight mode | |
WO2005066020A1 (en) | Tilt-rotor aircraft | |
CN108528692B (en) | Folding wing dual-rotor aircraft and control method thereof | |
EP2688800A2 (en) | Long endurance vertical takeoff and landing aircraft | |
WO2013120912A1 (en) | Aircraft for vertical take-off and landing with two wing arrangements | |
WO2015024044A1 (en) | Omni-directional thrust vectoring propulsor | |
CN109229360A (en) | Scissor DCB Specimen seesaw type autogyro | |
RU2661277C1 (en) | Unmanned carrier-based convertible rotorcraft | |
RU146302U1 (en) | SPEED COMBINED HELICOPTER | |
RU172022U1 (en) | TAIL SCREW INSTALLATION DEVICE ON A SINGLE-SCREW HELICOPTER | |
CN209192220U (en) | Scissor DCB Specimen seesaw type autogyro | |
RU2412869C1 (en) | Universal "push-pull" aircraft | |
RU2397919C1 (en) | Combined helicopter (versions) | |
EP4420979A1 (en) | A swash plate | |
EP4420978A1 (en) | A hybrid air vehicle | |
KR102548772B1 (en) | Flying object with Wing-Rotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM1K | Lapsed by not paying the annual fees |