KR20220125215A - Method for preparing organic zinc catalyst composition - Google Patents

Method for preparing organic zinc catalyst composition Download PDF

Info

Publication number
KR20220125215A
KR20220125215A KR1020227015130A KR20227015130A KR20220125215A KR 20220125215 A KR20220125215 A KR 20220125215A KR 1020227015130 A KR1020227015130 A KR 1020227015130A KR 20227015130 A KR20227015130 A KR 20227015130A KR 20220125215 A KR20220125215 A KR 20220125215A
Authority
KR
South Korea
Prior art keywords
acid
zinc
carboxylic acid
catalyst composition
composition
Prior art date
Application number
KR1020227015130A
Other languages
Korean (ko)
Inventor
나오히사 하야미즈
요이치 나카무라
Original Assignee
스미토모 세이카 가부시키가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 스미토모 세이카 가부시키가이샤 filed Critical 스미토모 세이카 가부시키가이샤
Publication of KR20220125215A publication Critical patent/KR20220125215A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C55/00Saturated compounds having more than one carboxyl group bound to acyclic carbon atoms
    • C07C55/02Dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F3/00Compounds containing elements of Groups 2 or 12 of the Periodic Table
    • C07F3/06Zinc compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/32General preparatory processes using carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/32General preparatory processes using carbon dioxide
    • C08G64/34General preparatory processes using carbon dioxide and cyclic ethers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

이산화탄소와 에폭시드를 반응시켜서 폴리알킬렌카보네이트를 안정되게 고수율로 얻는 수단이 제공된다. 보다 구체적으로는, 아연 화합물 및 지방족 카르복실산을 반응시켜서 얻어지는 아연 촉매 조성물로서, 상기 지방족 카르복실산 함유량이 해당 조성물에 대하여 5질량% 미만인 조성물이 제공된다.A means for stably obtaining polyalkylene carbonate in high yield by reacting carbon dioxide with an epoxide is provided. More specifically, a zinc catalyst composition obtained by reacting a zinc compound and an aliphatic carboxylic acid, wherein the aliphatic carboxylic acid content is less than 5% by mass relative to the composition is provided.

Description

유기 아연 촉매 조성물의 제조 방법Method for preparing organic zinc catalyst composition

본 개시는 아연 촉매 조성물의 제조 방법 및 해당 제조 방법으로 제조된 아연 촉매 조성물 등에 관한 것이다. 또한, 본 명세서에 기재되는 모든 문헌의 내용은 참조에 의해 본 명세서에 편입된다.The present disclosure relates to a method for preparing a zinc catalyst composition, a zinc catalyst composition prepared by the method, and the like. In addition, the contents of all documents described herein are incorporated herein by reference.

이산화탄소와 에폭시드로부터 폴리알킬렌카보네이트를 얻는 반응을 촉매하는 유기 아연 촉매로서, 무기 아연 화합물과 지방족 디카르복실산과 지방족 모노카르복실산을 반응시켜서 얻어지는 유기 아연 화합물을 이용하는 것이 알려져 있다(예를 들면, 특허문헌 1 및 2).As an organozinc catalyst that catalyzes the reaction for obtaining polyalkylene carbonate from carbon dioxide and epoxide, it is known to use an organozinc compound obtained by reacting an inorganic zinc compound, an aliphatic dicarboxylic acid, and an aliphatic monocarboxylic acid (for example, , Patent Documents 1 and 2).

특허문헌 1: 일본국 특개2007―302731호 공보Patent Document 1: Japanese Patent Laid-Open No. 2007-302731 특허문헌 2: 국제 공개 제 2011/142259호Patent Document 2: International Publication No. 2011/142259

본 발명자들은 아연 화합물과 지방족 카르복실산을 반응시킨 후, 해당 반응 조성물을 촉매로서 이용하여, 이산화탄소와 에폭시드로부터 폴리알킬렌카보네이트를 얻는 반응을 실시하는 데 있어서, 폴리알킬렌카보네이트의 수율이 안정되지 않은 것을 발견했다. 그래서 폴리알킬렌카보네이트가 안정되게 고수율로 얻어지는 방법을 검토했다.After reacting a zinc compound with an aliphatic carboxylic acid, the present inventors use the reaction composition as a catalyst to perform a reaction to obtain a polyalkylene carbonate from carbon dioxide and an epoxide, the yield of the polyalkylene carbonate is stable found that it was not. Then, the method of obtaining polyalkylene carbonate in high yield stably was examined.

본 발명자들은 아연 화합물과 지방족 카르복실산을 반응시켜서 반응 조성물(아연 촉매 조성물)을 얻은 후, 해당 반응 조성물을 이산화탄소와 에폭시드를 반응시킬 때에 촉매로서 이용하는 경우에 있어서, 해당 반응 조성물 중에 포함되는 미반응 지방족 카르복실산량이 특정한 범위 내인 것에 의해, 이산화탄소와 에폭시드의 반응에 의해 폴리알킬렌카보네이트를 특히 고수율로 얻을 수 있을 가능성을 발견하고, 더욱 검토를 거듭했다.The present inventors reacted a zinc compound with an aliphatic carboxylic acid to obtain a reaction composition (zinc catalyst composition), and then used the reaction composition as a catalyst when reacting carbon dioxide with an epoxide. When the amount of reactive aliphatic carboxylic acid was in a specific range, the possibility that polyalkylene carbonate could be obtained especially in a high yield by reaction of a carbon dioxide and an epoxide was discovered, and further examination was repeated.

본 개시는 예를 들면, 이하의 항에 기재된 주제를 포함한다.The present disclosure includes, for example, the subject matter described in the following paragraphs.

항 1.Section 1.

아연 화합물 및 지방족 카르복실산을 반응시켜서 얻어지는 아연 촉매 조성물로서, 상기 지방족 카르복실산 함유량이 해당 조성물에 대하여 5질량% 미만인 조성물.A zinc catalyst composition obtained by reacting a zinc compound and an aliphatic carboxylic acid, wherein the content of the aliphatic carboxylic acid is less than 5% by mass relative to the composition.

항 2.Section 2.

아연 화합물이 산화아연 및 수산화아연으로 이루어지는 군으로부터 선택되는 적어도 1종인 항 1에 기재된 조성물.The composition according to item 1, wherein the zinc compound is at least one selected from the group consisting of zinc oxide and zinc hydroxide.

항 3.Section 3.

지방족 카르복실산이 지방족 디카르복실산 및 지방족 모노카르복실산으로 이루어지는 군으로부터 선택되는 적어도 1종인 항 1 또는 2에 기재된 조성물.The composition according to item 1 or 2, wherein the aliphatic carboxylic acid is at least one selected from the group consisting of aliphatic dicarboxylic acids and aliphatic monocarboxylic acids.

항 4.Section 4.

지방족 모노카르복실산이 포름산, 아세트산, 프로피온산 및 트리플루오로아세트산으로 이루어지는 군으로부터 선택되는 적어도 1종인 항 3에 기재된 조성물.The composition according to item 3, wherein the aliphatic monocarboxylic acid is at least one selected from the group consisting of formic acid, acetic acid, propionic acid and trifluoroacetic acid.

항 5.Section 5.

지방족 카르복실산이 적어도 지방족 디카르복실산을 포함하는 항 1 내지 4 중 어느 한 항에 기재된 조성물.The composition according to any one of claims 1 to 4, wherein the aliphatic carboxylic acid comprises at least an aliphatic dicarboxylic acid.

항 6.Section 6.

지방족 디카르복실산이 옥살산, 말론산, 석신산, 글루타르산, 아디프산 및 세바신산으로 이루어지는 군으로부터 선택되는 적어도 1종인 항 3 내지 5 중 어느 한 항에 기재된 조성물.The composition according to any one of Items 3 to 5, wherein the aliphatic dicarboxylic acid is at least one selected from the group consisting of oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid and sebacic acid.

항 7.Section 7.

항 1 내지 6 중 어느 한 항에 기재된 아연 촉매 조성물의 존재하에서 이산화탄소와 에폭시드를 반응시키는 것을 포함하는 폴리알킬렌카보네이트의 제조 방법.A method for producing a polyalkylene carbonate comprising reacting carbon dioxide with an epoxide in the presence of the zinc catalyst composition according to any one of claims 1 to 6.

이산화탄소와 에폭시드로부터 폴리알킬렌카보네이트를 얻는 반응에서의 촉매로서 이용함으로써 고수율로 폴리알킬렌카보네이트를 얻을 수 있는 아연 촉매 조성물이 제공된다. 또한, 해당 아연 촉매 조성물이면, 분자량이 비교적 높은(즉, 비교적 고분자량의) 폴리알킬렌카보네이트가 얻어진다.A zinc catalyst composition capable of obtaining polyalkylene carbonate in high yield by using it as a catalyst in a reaction for obtaining polyalkylene carbonate from carbon dioxide and epoxide is provided. In addition, if it is the zinc catalyst composition, a polyalkylene carbonate having a relatively high molecular weight (that is, a relatively high molecular weight) can be obtained.

도 1은 실시예 5에서 아연 화합물(구체적으로는, 산화아연) 및 지방족 카르복실산(구체적으로는, 글루타르산)을 반응시킨 후, 잔존 슬러리 중의 글루타르산을 TG/DTA장치에 의해 측정한 결과 중, TG의 결과를 발췌하여 도시한 개요도이다.1 is a TG/DTA apparatus for measuring glutaric acid in the residual slurry after reacting a zinc compound (specifically, zinc oxide) and an aliphatic carboxylic acid (specifically, glutaric acid) in Example 5; It is a schematic diagram showing extracts of TG results among the results.

이하, 본 개시에 포함되는 각 실시 형태에 대하여 더욱 상세히 설명한다. 본 개시는 특정한 아연 촉매 조성물, 해당 아연 촉매 조성물의 제조 방법, 해당 아연 촉매 조성물을 이용한 폴리알킬렌카보네이트의 제조 방법 등을 바람직하게 포함하지만, 이들에 한정되는 셈은 아니고, 본 개시는 본 명세서에 개시되어, 당업자가 인식할 수 있는 전부를 포함한다.Hereinafter, each embodiment included in the present disclosure will be described in more detail. The present disclosure preferably includes, but is not limited to, a specific zinc catalyst composition, a method for producing the zinc catalyst composition, a method for producing a polyalkylene carbonate using the zinc catalyst composition, and the like, and the present disclosure is not limited thereto. Disclosed are all that would be appreciated by one of ordinary skill in the art.

본 개시에 포함되는 아연 촉매 조성물은 아연 화합물 및 지방족 카르복실산을 반응시켜서 얻어지는 아연 촉매 조성물로서, 상기 지방족 카르복실산 함유량이 해당 조성물에 대하여 5질량% 미만인 조성물이다. 해당 아연 촉매 조성물을 “본 개시의 촉매 조성물”이라고 하는 일이 있다.The zinc catalyst composition included in the present disclosure is a zinc catalyst composition obtained by reacting a zinc compound and an aliphatic carboxylic acid, wherein the content of the aliphatic carboxylic acid is less than 5% by mass relative to the composition. The zinc catalyst composition is sometimes referred to as "the catalyst composition of the present disclosure."

상기와 같이, 본 개시의 아연 촉매 조성물은 아연 화합물 및 지방족 카르복실산을 반응시켜서 얻어진다. 바꾸어 말하면, 본 개시의 촉매 조성물은 아연 화합물 및 지방족 카르복실산의 반응 조성물이라고 할 수도 있다.As described above, the zinc catalyst composition of the present disclosure is obtained by reacting a zinc compound and an aliphatic carboxylic acid. In other words, the catalyst composition of the present disclosure may be said to be a reaction composition of a zinc compound and an aliphatic carboxylic acid.

아연 화합물로서는, 무기 아연 화합물이 바람직하다. 무기 아연 화합물로서는, 예를 들면, 산화아연, 황산아연, 염소산아연, 질산아연, 아세트산아연, 또는 수산화아연 등을 들 수 있고, 그 중에서도, 산화아연 및 수산화아연을 바람직하게 들 수 있고, 산화아연이 특히 바람직하다. 아연 화합물은 1종 단독으로 또는 2종 이상을 조합하여 이용할 수 있다.As a zinc compound, an inorganic zinc compound is preferable. Examples of the inorganic zinc compound include zinc oxide, zinc sulfate, zinc chlorate, zinc nitrate, zinc acetate, and zinc hydroxide. Among them, zinc oxide and zinc hydroxide are preferred, and zinc oxide This is particularly preferred. A zinc compound can be used individually by 1 type or in combination of 2 or more types.

지방족 카르복실산으로서는, 예를 들면, 지방족 모노카르복실산, 지방족 디카르복실산 및 지방족 트리카르복실산 등을 이용할 수 있다. 그 중에서도, 지방족 디카르복실산을 이용하는 것이 바람직하다. 지방족 카르복실산은 1종 단독으로 또는 2종 이상을 조합하여 이용할 수 있다. 그 중에서도, 지방족 디카르복실산을 이용하거나, 또는 지방족 디카르복실산 및 지방족 모노카르복실산을 이용하는 것이 바람직하다. 또한, 지방족 디카르복실산 및 지방족 모노카르복실산을 이용하는 경우에는, 지방족 모노카르복실산은 해당 지방족 디카르복실산에 대한 몰 비율이 0.0001∼0.1 정도 또는 0.001∼0.05 정도로 되도록 이용하는 것이 바람직하다.As aliphatic carboxylic acid, aliphatic monocarboxylic acid, aliphatic dicarboxylic acid, aliphatic tricarboxylic acid, etc. can be used, for example. Especially, it is preferable to use an aliphatic dicarboxylic acid. Aliphatic carboxylic acid can be used individually by 1 type or in combination of 2 or more type. Especially, it is preferable to use an aliphatic dicarboxylic acid, or to use an aliphatic dicarboxylic acid and an aliphatic monocarboxylic acid. Moreover, when using an aliphatic dicarboxylic acid and an aliphatic monocarboxylic acid, it is preferable to use the aliphatic monocarboxylic acid so that the molar ratio with respect to the said aliphatic dicarboxylic acid may become about 0.0001-0.1 or about 0.001-0.05.

지방족 디카르복실산으로서는, 탄소수 2∼15(2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 또는 15)의 지방족 디카르복실산이 바람직하고, 보다 구체적으로는 예를 들면, 옥살산, 말론산, 석신산, 글루타르산, 아디프산 및 세바신산 등을 들 수 있다. 또한, 지방족 모노카르복실산으로서는, 탄소수 1∼15(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 또는 15)의 지방족 모노카르복실산이 바람직하고, 보다 구체적으로는 예를 들면, 포름산, 아세트산, 프로피온산 및 트리플루오로아세트산 등을 들 수 있다. 지방족 트리카르복실산으로서는, 탄소수 3∼15(3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 또는 15)의 지방족 트리카르복실산이 바람직하고, 보다 구체적으로는 예를 들면, 트리카르발릴산 및 3, 3’, 3 ’’―니트릴로트리프로피온산 등을 들 수 있다. 지방족 카르복실산 중에서도, 특히 말론산, 석신산, 글루타르산, 아디프산, 세바신산, 포름산, 아세트산 및 프로피온산이 바람직하다.The aliphatic dicarboxylic acid is preferably an aliphatic dicarboxylic acid having 2 to 15 carbon atoms (2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15); More specifically, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, etc. are mentioned, for example. Moreover, as an aliphatic monocarboxylic acid, C1-C15 (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15) aliphatic monocarboxyl. An acid is preferable, and more specifically, formic acid, acetic acid, propionic acid, trifluoroacetic acid, etc. are mentioned, for example. The aliphatic tricarboxylic acid is preferably an aliphatic tricarboxylic acid having 3 to 15 carbon atoms (3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15), and more specifically As examples, tricarballylic acid and 3,3',3''-nitrilotripropionic acid etc. are mentioned. Among the aliphatic carboxylic acids, malonic acid, succinic acid, glutaric acid, adipic acid, sebacic acid, formic acid, acetic acid and propionic acid are particularly preferable.

상기와 같이, 본 개시의 촉매 조성물은 지방족 카르복실산의 함유량이 조성물에 대하여 5질량% 미만이다. 예를 들면, 4.5질량% 이하, 4질량% 이하, 3.5질량% 이하, 3질량% 이하, 2.5질량% 이하, 2질량% 이하, 1.5질량% 이하, 1질량% 이하, 또는 0.5질량% 이하이어도 좋다. 또한, 해당 지방족 카르복실산의 함유량의 하한은 특별히 제한되지는 않지만, 예를 들면, 0.01질량% 이상, 0.02질량% 이상, 또는 0.05질량% 이상이 예시된다.As described above, in the catalyst composition of the present disclosure, the content of the aliphatic carboxylic acid is less than 5% by mass relative to the composition. For example, 4.5 mass% or less, 4 mass% or less, 3.5 mass% or less, 3 mass% or less, 2.5 mass% or less, 2 mass% or less, 1.5 mass% or less, 1 mass% or less, or 0.5 mass% or less good night. Moreover, the minimum in particular of content of this aliphatic carboxylic acid is although it does not restrict|limit, For example, 0.01 mass % or more, 0.02 mass % or more, or 0.05 mass % or more is illustrated.

또한, 본 개시의 촉매 조성물 중, 지방족 카르복실산의 함유량이 조성물에 대하여 2.5질량% 이상(5질량% 미만)인 경우에는, 해당 촉매 조성물을 이용하여 얻어지는 폴리알킬렌카보네이트의 질량 평균 분자량의 값이 비교적 높아지는 경향에 있다. 이 때문에, 질량 평균 분자량이 예를 들면, 100만 이상(보다 구체적으로는 예를 들면, 100∼200만 정도)의 폴리알킬렌카보네이트를 얻고 싶은 경우에는, 해당 촉매 조성물에서의 카르복실산 함유량을 5질량% 이상으로 하는 것이 바람직하다.Moreover, in the catalyst composition of this indication, when content of an aliphatic carboxylic acid is 2.5 mass % or more (less than 5 mass %) with respect to a composition, the value of the mass average molecular weight of the polyalkylene carbonate obtained using this catalyst composition tends to be relatively high. For this reason, when it is desired to obtain a polyalkylene carbonate having a mass average molecular weight of, for example, 1 million or more (more specifically, about 1 to 2 million), the carboxylic acid content in the catalyst composition is It is preferable to set it as 5 mass % or more.

해당 지방족 카르복실산은 아연 화합물 및 지방족 카르복실산을 반응시켰을 때에 미반응인 채 남은 것이어도 좋고, 또는 아연 촉매에 첨가한 것이어도 좋다. 따라서, 미반응의 것을 이용하는 경우에는, 아연 화합물 및 지방족 카르복실산의 반응 조건을 조정함으로써 본 개시의 촉매 조성물에서의 지방족 카르복실산의 함유량을 조정할 수 있다. 보다 구체적으로는 예를 들면, 아연 화합물 및 지방족 카르복실산을 반응시키는 시간을 길게 함으로써, 얻어지는 촉매 조성물에서의 지방족 카르복실산의 함유량을 저감할 수 있다.The aliphatic carboxylic acid may remain unreacted when the zinc compound and the aliphatic carboxylic acid are reacted, or may be added to the zinc catalyst. Therefore, when using an unreacted thing, content of the aliphatic carboxylic acid in the catalyst composition of this indication can be adjusted by adjusting the reaction conditions of a zinc compound and an aliphatic carboxylic acid. More specifically, for example, by lengthening the time for making a zinc compound and aliphatic carboxylic acid react, content of the aliphatic carboxylic acid in the catalyst composition obtained can be reduced.

본 개시의 촉매 조성물에서의 지방족 카르복실산의 함유량은 TG(열중량 측정) 데이터로부터 구해진다. 구체적으로는, 건조시킨 촉매 조성물을 30에서 300℃ 10℃/min 분위기 N2 200mL/min, 시료 5㎎±1㎎의 조건으로 TG(열중량 측정)를 실시한다. 해당 TG(열중량 측정)의 데이터에 있어서, 100℃에서의 접선을 T1, 250℃에서의 접선을 T2 및 100∼250℃ 사이의 변곡점에서의 접선을 T3로 한다. 다음으로, 접선(T1과 T3)의 교점에서의 질량(W1)을 구한다. 또한, 접선(T2와 T3)의 교점에서의 질량(W2)을 구한다. 교점 사이의 질량차(W1-W2)를 지방족 카르복실산 함유량으로 하고, 저온측에서의 교점의 질량(W1)으로 지방족 카르복실산 함유량을 나눈 값을 지방족 카르복실산 함유율로 한다. 카르복실산 함유율(CCA[%])을 식으로 나타내면 다음과 같이 된다.The content of the aliphatic carboxylic acid in the catalyst composition of the present disclosure is determined from TG (thermogravimetry) data. Specifically, TG (thermogravimetry) is performed on the dried catalyst composition at 30 to 300°C 10°C/min atmosphere N 2 200 mL/min, and sample 5 mg±1 mg. In the TG (thermogravimetric measurement) data, T 1 is a tangent at 100° C., T 2 is a tangent at 250° C., and T 3 is a tangent at an inflection point between 100 and 250° C. Next, the mass W 1 at the intersection of the tangents T 1 and T 3 is obtained. In addition, the mass W 2 at the intersection of the tangents T 2 and T 3 is obtained. Let the mass difference (W1 - W2) between intersections be aliphatic carboxylic acid content, and let the value which divided the aliphatic carboxylic acid content by the mass (W1) of the intersection on the low-temperature side be an aliphatic carboxylic acid content rate. The carboxylic acid content (C CA [%]) is expressed as follows.

CCA [%]=(W1-W2)/W1×100C CA [%] = (W 1 -W 2 )/W 1 × 100

CCA: 글루타르산(지방족 카르복실산) 함유율[%]C CA : Glutaric acid (aliphatic carboxylic acid) content [%]

W1: 저온측 질량[㎎]W 1 : mass of low temperature side [mg]

W2: 고온측 질량[㎎]W 2 : mass of high temperature side [mg]

아연 화합물 및 지방족 카르복실산의 사용 비율로서는, 예를 들면, 아연 화합물 1몰에 대하여 지방족 카르복실산 0.1∼1.2몰 정도가 바람직하고, 0.5∼1.2몰 정도가 보다 바람직하고, 0.8∼1.0몰 정도가 더욱 바람직하다.The use ratio of the zinc compound and the aliphatic carboxylic acid is, for example, about 0.1 to 1.2 mol of the aliphatic carboxylic acid, more preferably about 0.5 to 1.2 mol, and about 0.8 to 1.0 mol, per 1 mol of the zinc compound. is more preferable.

아연 화합물 및 지방족 카르복실산의 반응으로서는, 공지의 반응을 이용할 수 있고, 예를 들면, 상기 특허문헌 1 또는 2에 기재된 반응 조건을 이용할 수 있다. 또한, 보다 구체적으로는 예를 들면, 반응 촉매로서는, 특별히 한정되는 것은 아니고, 여러 가지 유기 용매를 이용할 수 있다. 이와 같은 유기 용매로서는, 구체적으로는 예를 들면, 벤젠, 톨루엔, 크실렌 등의 방향족 탄화수소계 용매, 헥산, 헵탄, 시클로헥산 등의 지방족 탄화수소계 용매, 디클로로메탄, 클로로포름, 1, 2―디클로로에탄 등의 할로겐계 탄화수소 용매, 메탄올, 에탄올, 이소프로판올 등의 알코올계 용매, 디에틸에테르, 테트라히드로푸란, 디옥산 등의 에테르계 용매, 아세트산에틸, 아세트산부틸 등의 에스테르계 용매, 아세톤, 메틸에틸케톤, 메틸이소부틸케톤 등의 케톤계 용매 및 디메틸카보네이트, 디에틸카보네이트, 프로필렌카보네이트 등의 카보네이트계 용매 및 아세토니트릴, 디메틸포름아미드, 디메틸설폭시드, 헥사메틸포스포트리아미드 등을 들 수 있다. 그 중에서도, 반응을 원활히 진행하는 관점에서, 벤젠, 톨루엔, 크실렌 등의 방향족 탄화수소계 용매가 바람직하다.As reaction of a zinc compound and an aliphatic carboxylic acid, a well-known reaction can be used, For example, the reaction conditions described in the said patent document 1 or 2 can be used. Moreover, it does not specifically limit as a reaction catalyst, For example, More specifically, various organic solvents can be used. Specific examples of such an organic solvent include aromatic hydrocarbon solvents such as benzene, toluene and xylene, aliphatic hydrocarbon solvents such as hexane, heptane and cyclohexane, dichloromethane, chloroform, 1,2-dichloroethane, and the like. of halogenated hydrocarbon solvents, alcohol solvents such as methanol, ethanol and isopropanol, ether solvents such as diethyl ether, tetrahydrofuran and dioxane, ester solvents such as ethyl acetate and butyl acetate, acetone, methyl ethyl ketone, Ketone solvents, such as methyl isobutyl ketone, carbonate solvents, such as dimethyl carbonate, diethyl carbonate, and propylene carbonate, acetonitrile, dimethylformamide, dimethyl sulfoxide, hexamethylphosphotriamide, etc. are mentioned. Among them, an aromatic hydrocarbon-based solvent such as benzene, toluene or xylene is preferable from the viewpoint of smoothly proceeding the reaction.

반응 용매의 사용량은 특별히 제한되는 것은 아니지만, 반응을 원활하게 하는 관점 및 사용량에 알맞은 만큼의 효과를 얻는 관점에서, 예를 들면, 아연 화합물 100질량부에 대하여 500∼10000질량부인 것이 바람직하다.The amount of the reaction solvent used is not particularly limited, but it is preferably 500 to 10000 parts by mass based on 100 parts by mass of the zinc compound, for example, from the viewpoint of facilitating the reaction and obtaining an effect suitable for the amount used.

반응 온도는 특별히 한정되지 않지만, 예를 들면, 0∼110℃인 것이 바람직하고, 20∼100℃인 것이 보다 바람직하고, 50∼80℃인 것이 더욱 바람직하다. 반응 온도가 0℃ 이상인 것에 의해, 반응이 보다 효율 좋게 진행될 수 있다. 또한, 반응 온도가 110℃ 이하인 것에 의해, 부반응이 보다 일어나기 어려워져서, 수율의 저하가 억제될 수 있다. 반응 시간은 반응 온도에 따라 다르기 때문에 일률적으로는 말할 수 없지만, 예를 들면, 1∼20시간이다. 얻어진 촉매를 예를 들면, 아세톤이나 메탄올 등의 유기 용매로 세정함으로써 원하는 지방족 카르복실산량을 가지는 아연 촉매 조성물을 얻을 수 있다.Although reaction temperature is not specifically limited, For example, it is preferable that it is 0-110 degreeC, It is more preferable that it is 20-100 degreeC, It is still more preferable that it is 50-80 degreeC. When the reaction temperature is 0°C or higher, the reaction can proceed more efficiently. In addition, when the reaction temperature is 110° C. or less, a side reaction becomes more difficult to occur, and a decrease in the yield can be suppressed. Since the reaction time varies with the reaction temperature, it cannot be said uniformly, but is, for example, 1 to 20 hours. A zinc catalyst composition having a desired amount of aliphatic carboxylic acid can be obtained by washing the obtained catalyst with an organic solvent such as acetone or methanol.

또한, 반응은 불활성 가스(예를 들면, 질소) 분위기하에서 실시하는 것이 바람직하다.In addition, it is preferable to carry out the reaction in an inert gas (for example, nitrogen) atmosphere.

특별히 제한되는 셈은 아니지만, 본 개시의 아연 촉매 조성물의 특히 바람직한 일 형태로서, 적어도 산화아연 및 글루타르산을 반응시켜서 얻어지는 아연 촉매 조성물을 들 수 있다. 해당 아연 촉매 조성물에는 예를 들면, 아연 화합물로서는 산화아연만을 반응시킨 것 및 지방족 카르복실산으로서는 글루타르산만을 반응시킨 것이나 산화아연 및 글루타르산만을 반응시킨 것이 바람직하게 포함된다.Although not particularly limited, a particularly preferred embodiment of the zinc catalyst composition of the present disclosure includes a zinc catalyst composition obtained by reacting at least zinc oxide and glutaric acid. The zinc catalyst composition preferably includes, for example, a zinc compound in which only zinc oxide is reacted, an aliphatic carboxylic acid in which only glutaric acid is reacted, and a zinc oxide and glutaric acid alone are reacted.

본 개시의 아연 촉매 조성물은 특히, 이산화탄소와 에폭시드로부터 폴리알킬렌카보네이트를 얻는 반응(공중합 반응)을 촉매하기 위해 바람직하게 이용된다. 또한, 본 개시는 본 개시의 아연 촉매 조성물 존재하에서 이산화탄소와 에폭시드를 반응(공중합 반응)시켜서 폴리알킬렌카보네이트를 제조하는 방법도 바람직하게 포함한다.The zinc catalyst composition of the present disclosure is particularly preferably used for catalyzing a reaction (copolymerization reaction) for obtaining a polyalkylene carbonate from carbon dioxide and an epoxide. In addition, the present disclosure preferably includes a method of preparing polyalkylene carbonate by reacting carbon dioxide and epoxide in the presence of the zinc catalyst composition of the present disclosure (copolymerization reaction).

에폭시드로서는, 특별히 한정되는 것은 아니지만, 예를 들면, 에틸렌옥시드, 프로필렌옥시드, 1―부텐옥시드, 2―부텐옥시드, 이소부틸렌옥시드, 1―펜텐옥시드, 2―펜텐옥시드, 1―헥센옥시드, 1―옥텐옥시드, 1―데센옥시드, 시클로펜텐옥시드, 시클로헥센옥시드, 스티렌옥시드, 비닐시클로헥산옥시드, 3―페닐프로필렌옥시드, 3, 3, 3―트리플루오로프로필렌옥시드, 3―나프틸프로필렌옥시드, 3―페녹시프로필렌옥시드, 3―나프톡시프로필렌옥시드, 부타디엔모노옥시드, 알릴글리시딜에테르, 3―비닐옥시프로필렌옥시드 및 3―트리메틸실릴옥시프로필렌옥시드 등을 들 수 있다. 그 중에서도, 높은 반응성을 가지는 관점에서, 에틸렌옥시드 및 프로필렌옥시드가 바람직하다. 이들의 에폭시드는 각각 단독으로 이용해도 좋고, 2종 이상을 조합하여 이용해도 좋다.Although it does not specifically limit as an epoxide, For example, ethylene oxide, propylene oxide, 1-butene oxide, 2-butene oxide, isobutylene oxide, 1-pentene oxide, 2-pentene oxide , 1-hexene oxide, 1-octene oxide, 1-decene oxide, cyclopentene oxide, cyclohexene oxide, styrene oxide, vinylcyclohexane oxide, 3-phenylpropylene oxide, 3, 3, 3-trifluoropropylene oxide, 3-naphthylpropylene oxide, 3-phenoxypropylene oxide, 3-naphthoxypropylene oxide, butadiene monooxide, allyl glycidyl ether, 3-vinyloxy propylene oxide Seed, 3-trimethylsilyloxypropylene oxide, etc. are mentioned. Especially, from a viewpoint of having high reactivity, ethylene oxide and propylene oxide are preferable. These epoxides may be used individually, respectively, and may be used in combination of 2 or more type.

이산화탄소의 사용 압력은 특별히 한정되지 않지만, 통상 0.1∼20MPa인 것이 바람직하고, 0.1∼10MPa인 것이 보다 바람직하고, 0.1∼5MPa인 것이 더욱 바람직하다. 이산화탄소는 일괄로 공급해도 좋고, 간헐적으로 또는 연속적으로 공급해도 좋다.Although the working pressure of carbon dioxide is not specifically limited, Usually, it is preferable that it is 0.1-20 MPa, It is more preferable that it is 0.1-10 MPa, It is still more preferable that it is 0.1-5 MPa. Carbon dioxide may be supplied collectively, and may be supplied intermittently or continuously.

상기 아연 촉매 조성물의 사용량은 예를 들면, 에폭시드 100질량부에 대하여 0.001∼50질량부인 것이 바람직하고, 0.01∼40질량부인 것이 보다 바람직하고, 0.1∼30질량부인 것이 더욱 바람직하다.The usage-amount of the said zinc catalyst composition is, for example, it is preferable that it is 0.001-50 mass parts with respect to 100 mass parts of epoxides, It is more preferable that it is 0.01-40 mass parts, It is still more preferable that it is 0.1-30 mass parts.

상기 공중합 반응에 이용되는 용매로서는, 특별히 한정되는 것은 아니고, 여러 가지 유기 용매를 이용할 수 있다. 이와 같은 유기 용매로서는, 구체적으로는 예를 들면, 펜탄, 헥산, 옥탄, 데칸, 시클로헥산 등의 지방족 탄화수소계 용매; 벤젠, 톨루엔, 크실렌 등의 방향족 탄화수소계 용매; 디클로로메탄, 클로로포름, 1, 2―디클로로에탄, 클로로벤젠, 브로모벤젠 등의 할로겐화 탄화수소계 용매; 아세트산에틸, 아세트산이소프로필, 아세트산부틸 등의 에스테르계 용매; 테트라히드로푸란, 1, 4―디옥산 등의 에테르계 용매; 디메틸카보네이트, 디에틸카보네이트, 프로필렌카보네이트 등의 카보네이트류계 용매 등을 들 수 있다.It does not specifically limit as a solvent used for the said copolymerization reaction, Various organic solvents can be used. Specific examples of such an organic solvent include aliphatic hydrocarbon solvents such as pentane, hexane, octane, decane, and cyclohexane; aromatic hydrocarbon solvents such as benzene, toluene, and xylene; halogenated hydrocarbon solvents such as dichloromethane, chloroform, 1,2-dichloroethane, chlorobenzene and bromobenzene; ester solvents such as ethyl acetate, isopropyl acetate, and butyl acetate; ether solvents such as tetrahydrofuran and 1,4-dioxane; and carbonate solvents such as dimethyl carbonate, diethyl carbonate and propylene carbonate.

상기 용매의 사용량은 특별히 제한되는 것은 아니지만, 반응을 원활하게 하는 관점 및 사용량에 알맞은 만큼의 효과를 얻는 관점에서, 예를 들면, 에폭시드 100질량부에 대하여 500∼10000질량부인 것이 바람직하다. 또한, 용매를 사용하지 않아도 좋다.The amount of the solvent used is not particularly limited, but from the viewpoint of facilitating the reaction and obtaining an effect appropriate to the amount used, for example, it is preferably 500 to 10000 parts by mass based on 100 parts by mass of the epoxide. Moreover, it is not necessary to use a solvent.

또한, 해당 폴리알킬렌카보네이트의 제조 방법은 이들 이용하는 용매의 종류 및 사용량에 따라 용액 중합 및 침전 중합 등의 다른 중합 형태로 되지만, 어느 쪽의 중합 형태이어도 공중합 반응은 문제 없이 진행되고, 그들의 반응 효율은 매우 높다.In addition, the production method of the polyalkylene carbonate may be in other polymerization forms such as solution polymerization and precipitation polymerization depending on the type and amount of the solvent used. is very high

해당 공중합 반응의 반응 온도는 특별히 한정되지 않지만, 예를 들면, 20∼100℃인 것이 바람직하고, 40∼80℃인 것이 보다 바람직하다. 반응 시간은 반응 온도에 따라 다르기 때문에 일률적으로는 말할 수 없지만, 예를 들면, 2∼40시간이다.Although the reaction temperature of this copolymerization reaction is although it does not specifically limit, For example, it is preferable that it is 20-100 degreeC, and it is more preferable that it is 40-80 degreeC. Since the reaction time varies with the reaction temperature, it cannot be said uniformly, but is, for example, 2 to 40 hours.

상기 아연 촉매 조성물과 이산화탄소와 에폭시드의 혼합 방법은 특별히 한정되는 것은 아니지만, 혼합의 용이함에서, 예를 들면, 상기 아연 촉매 조성물과 에폭시드를 혼합한 후에 이산화탄소를 첨가하는 방법이 있다.A method of mixing the zinc catalyst composition with carbon dioxide and epoxide is not particularly limited, but for ease of mixing, for example, there is a method of adding carbon dioxide after mixing the zinc catalyst composition with the epoxide.

또한, 이렇게 하여 얻어지는 폴리알킬렌카보네이트는 예를 들면, 여과 또는 희산 수용액이나 희알칼리 수용액을 이용한 세정에 의해 촉매 등을 제거한 후, 필요에 따라서 재침전한 후에 감압 건조법 등을 이용하여 건조함으로써 단리할 수 있다.In addition, the polyalkylene carbonate obtained in this way can be isolated by, for example, filtering or washing with a dilute acid aqueous solution or a diluted alkali aqueous solution to remove a catalyst, etc. can

또한, 본 명세서에 있어서 “포함하는”이란, “본질적으로 이루어지는”과 “로 이루어지는”도 포함한다(The term “comprising” includes “consisting essentially of” and “consisting of.”). 또한, 본 개시는 본 명세서에 설명한 구성 요건의 임의의 조합을 모두 포함한다.In addition, as used herein, “comprising” includes “consisting essentially of” and “consisting of” (The term “comprising” includes “consisting essentially of” and “consisting of.”). In addition, this disclosure includes all combinations of any of the elements described herein.

또한, 상기한 본 개시의 각 실시 형태에 대하여 설명한 각종 특성(성질, 구조, 기능 등)은 본 개시에 포함되는 주제를 특정하는 데 있어서, 어떻게 조합되어도 좋다. 즉, 본 개시에는 본 명세서에 기재되는 조합 가능한 각 특성의 모든 조합으로 이루어지는 주제가 전부 포함된다.In addition, various characteristics (properties, structures, functions, etc.) described with respect to each embodiment of the present disclosure described above may be combined in any way in specifying the subject matter included in the present disclosure. That is, the present disclosure includes all subject matter that consists of all combinations of each combinable characteristic described herein.

(실시예)(Example)

이하, 예를 나타내어 본 개시의 실시 형태를 보다 구체적으로 설명하지만, 본 개시의 실시 형태는 하기의 예에 한정되는 것은 아니다.Hereinafter, although an example is shown and embodiment of this indication is described more specifically, embodiment of this indication is not limited to the following example.

각 분석은 이하의 방법으로 실시했다.Each analysis was performed by the following method.

<잔존 글루타르산량 측정><Measurement of residual glutaric acid>

반응 후에 남은 혼합 슬러리를 70℃ 감압하에서 1시간 건조시켜서 고형물을 얻었다. 얻어진 고형물 약 5㎎을 TG/DTA장치에 도입했다. 질소 분위기하에서 30℃에서 300℃까지 10℃/min으로 승온시키고, 잔존 글루타르산에 유래하는 중량 감소로부터 잔존 글루타르산량을 구했다.The mixed slurry remaining after the reaction was dried under reduced pressure at 70°C for 1 hour to obtain a solid. About 5 mg of the obtained solid material was introduce|transduced into the TG/DTA apparatus. It heated up at 10 degreeC/min from 30 degreeC to 300 degreeC in nitrogen atmosphere, and the amount of residual glutaric acid was calculated|required from the weight loss originating in residual glutaric acid.

ㆍ분석 장치: TG/DTA 7220(주식회사 히타치 하이테크 사이언스제)ㆍAnalysis device: TG/DTA 7220 (manufactured by Hitachi High-Tech Science Co., Ltd.)

ㆍ샘플 전처리: 슬러리를 1g 채취하고, 70℃ 감압(1kPaㆍabs) 1Hr 건조ㆍSample pretreatment: 1 g of the slurry was collected and dried at 70°C under reduced pressure (1kPa·abs) for 1Hr

ㆍ분석 조건: 30에서 300℃ 10℃/min 분위기 N2 200mL/min, 시료 5㎎±1㎎ㆍAnalysis conditions: 30 to 300°C 10°C/min atmosphere N 2 200 mL/min, sample 5 mg±1 mg

ㆍ해석 조건: TG(열중량 측정)의 데이터에 있어서, 100℃에서의 접선을 T1, 250℃에서의 접선을 T2 및 100∼250℃ 사이의 변곡점에서의 접선을 T3로 했다. 다음으로, 접선(T1과 T3)의 교점에서의 질량(W1)을 구했다. 또한, 접선(T2와 T3)의 교점에서의 질량(W2)을 구했다. 교점 사이의 질량차(W1-W2)를 글루타르산(지방족 카르복실산) 함유량으로 하고, 저온측에서의 교점의 질량(W1)으로 글루타르산(지방족 카르복실산) 함유량을 나눈 값을 글루타르산(지방족 카르복실산) 함유율로 했다(도 1 및 식 1을 참조).Analysis conditions: In the TG (thermogravimetric measurement) data, T 1 was the tangent at 100°C, T 2 was the tangent at 250°C, and T 3 was the tangent at the inflection point between 100 and 250°C. Next, the mass W 1 at the intersection of the tangents T 1 and T 3 was calculated. In addition, the mass W 2 at the intersection of the tangents T 2 and T 3 was obtained. Let the mass difference (W 1 -W 2 ) between intersections be the glutaric acid (aliphatic carboxylic acid) content, and the value obtained by dividing the glutaric acid (aliphatic carboxylic acid) content by the mass (W 1 ) of the intersection on the low temperature side It was set as the content rate of glutaric acid (aliphatic carboxylic acid) (refer FIG. 1 and Formula 1).

CCA [%]=(W1-W2)/W1×100 (식 1)C CA [%] = (W 1 -W 2 )/W 1 × 100 (Equation 1)

CCA: 글루타르산(지방족 카르복실산) 함유율[%]C CA : Glutaric acid (aliphatic carboxylic acid) content [%]

W1: 저온측 질량[㎎]W 1 : mass of low temperature side [mg]

W2: 고온측 질량[㎎]W 2 : mass of high temperature side [mg]

<폴리알킬렌카보네이트의 분자량 측정><Measurement of molecular weight of polyalkylene carbonate>

각 실시예 및 제조예에 기재하는 폴리알킬렌카보네이트의 질량 평균 분자량에 대해서는, 겔ㆍ퍼미에이션ㆍ크로마토그래프(GPC) 측정 장치(Waters제, 제품명 “waters2695”세퍼레이션 모듈)를 이용하여, 하기 조건으로 측정한 표준 폴리스티렌 환산의 질량 평균 분자량이다. 샘플은 폴리머 농도 0.3질량%의 N, N―디메틸포름아미드 용액으로 하여, 측정 장치에 도입했다.For the mass average molecular weight of the polyalkylene carbonate described in each Example and Production Example, using a gel permeation chromatography (GPC) measuring device (manufactured by Waters, product name “waters2695” separation module), the following conditions It is the mass average molecular weight in terms of standard polystyrene measured by . The sample was introduced into the measuring device as a N,N-dimethylformamide solution having a polymer concentration of 0.3% by mass.

GPC 측정 조건GPC measurement conditions

ㆍ컬럼 : 쇼와 덴코제 “Shodex OHpak SB―804 HQ”, “Shodex ㆍColumn: Showa Denko “Shodex OHpak SB-804 HQ”, “Shodex”

OHpak SB―805”를 차례 차례 접속한 것OHpak SB-805” connected sequentially

ㆍ컬럼 온도 : 40℃ ㆍColumn temperature: 40℃

ㆍ전개 용매 : 5m㏖/L LiBr―N, N―디메틸포름아미드 용액 ㆍDeveloping solvent: 5 mmol/L LiBr-N, N-dimethylformamide solution

ㆍ유속 : 1.0mL/min ㆍFlow rate: 1.0mL/min

ㆍ검출기 : 시차 굴절계 ㆍDetector: Differential Refractometer

ㆍ표준 시료 : 폴리스티렌 ㆍStandard sample: polystyrene

실시예 1Example 1

<아연 촉매의 제조><Production of zinc catalyst>

냉각관ㆍ온도계 및 교반기를 구비한 1.5L 용적의 4구 플라스크에 산화아연 81g(1㏖), 글루타르산 129g(98m㏖), 아세트산 1.5g(2m㏖) 및 톨루엔 776g을 넣었다. 이어서, 질소 분위기하에서 55℃까지 승온하고, 또한 동일 온도로 20시간 교반하여 반응시켰다. 그 후, 110℃까지 승온하고, 또한 동일 온도로 2시간 교반하여 공비시키고, 수분을 제거한 후, 실온까지 냉각 후, 여과하여 건조 공정을 거쳐서, 유리 카르복실산량은 0.10질량%인 아연 촉매 조성물을 190g 얻었다. 또한, 유리 카르복실산은 구체적으로는 잔존 글루타르산이다.81 g (1 mol) of zinc oxide, 129 g (98 mmol) of glutaric acid, 1.5 g (2 mmol) of acetic acid and 776 g of toluene were placed in a 1.5 L volume four-necked flask equipped with a cooling tube, a thermometer and a stirrer. Then, it heated up to 55 degreeC in nitrogen atmosphere, and stirred at the same temperature for 20 hours, and made it react. Thereafter, the temperature was raised to 110° C., stirred at the same temperature for 2 hours to azeotrope, water was removed, cooled to room temperature, filtered and dried to obtain a zinc catalyst composition having a free carboxylic acid content of 0.10 mass% 190 g were obtained. In addition, the free carboxylic acid is specifically residual glutaric acid.

<폴리알킬렌카보네이트의 제조><Production of polyalkylene carbonate>

온도계 및 교반기를 구비한 1L 용적의 오토클레이브에 상기의 유기 아연 촉매 20.5g, 탄산디메틸 510g, 프로필렌옥시드 70g(1.2㏖) 및 이산화탄소를 추가하고, 반응계를 60℃, 0.99MPa로 하고, 소비되는 이산화탄소를 보급하면서 24시간 중합 반응을 실시했다. 그 후, 오토클레이브를 냉각하여 탈압하고, 백색 폴리머의 슬러리를 얻었다. 이것을 여과한 후, 메탄올로 정제하고, 감압 건조하여 폴리프로필렌카보네이트 94.6g(수율 77.5%)을 얻었다.20.5 g of the above organic zinc catalyst, 510 g of dimethyl carbonate, 70 g (1.2 mol) of propylene oxide and carbon dioxide were added to a 1 L volume autoclave equipped with a thermometer and a stirrer, and the reaction system was set to 60 ° C., 0.99 MPa, and consumed The polymerization reaction was performed for 24 hours while supplying carbon dioxide. Thereafter, the autoclave was cooled and depressurized to obtain a white polymer slurry. After filtering this, it refine|purified with methanol, and it dried under reduced pressure and obtained 94.6 g (yield 77.5%) of polypropylene carbonate.

실시예 2Example 2

<아연 촉매의 제조><Production of zinc catalyst>

반응 시간을 20시간으로 바꾸어서 10시간 반응시키고, 반응 후의 여과 공정에서 아세톤 600g을 사용하여 아연 촉매의 세정을 실시한 이외는, 실시예 1과 동일하게 하여 유리 카르복실산량이 0.35질량%인 아연 촉매 조성물을 얻었다.A zinc catalyst composition having a free carboxylic acid content of 0.35 mass % in the same manner as in Example 1 except that the reaction time was changed to 20 hours and reacted for 10 hours, and the zinc catalyst was washed using 600 g of acetone in the filtration step after the reaction. got

<폴리알킬렌카보네이트의 제조><Production of polyalkylene carbonate>

얻어진 아연 촉매 조성물을 이용해서, 실시예 1과 동일하게 하여 폴리프로필렌카보네이트 87.0g(수율 71.3%)을 얻었다.Using the obtained zinc catalyst composition, it carried out similarly to Example 1, and obtained 87.0 g (yield 71.3%) of polypropylene carbonate.

실시예 3Example 3

<아연 촉매의 제조><Production of zinc catalyst>

반응 후의 여과 공정에서 아세톤에 의한 샘플의 세정을 실시하지 않은 이외는, 실시예 2와 동일하게 하여 유리 카르복실산량이 0.65질량%인 아연 촉매 조성물을 얻었다.The zinc catalyst composition whose free carboxylic acid amount is 0.65 mass % was obtained like Example 2 except not washing|cleaning the sample by acetone in the filtration process after reaction.

<폴리알킬렌카보네이트의 제조><Production of polyalkylene carbonate>

얻어진 아연 촉매 조성물을 이용해서, 실시예 1과 동일하게 하여 폴리프로필렌카보네이트 92.0g(수율 75.4%)을 얻었다.Using the obtained zinc catalyst composition, it carried out similarly to Example 1, and obtained 92.0 g (yield 75.4%) of polypropylene carbonate.

실시예 4Example 4

<유기 아연 촉매의 제조><Production of organic zinc catalyst>

반응 시간을 20시간으로 바꾸어서 6시간 반응시킨 이외는, 실시예 1과 동일하게 하여 유리 카르복실산량은 2.00질량%인 아연 촉매 조성물을 얻었다.Except for changing the reaction time to 20 hours and making it react for 6 hours, it carried out similarly to Example 1, and obtained the zinc catalyst composition whose free carboxylic acid amount is 2.00 mass %.

<폴리알킬렌카보네이트의 제조><Production of polyalkylene carbonate>

얻어진 아연 촉매 조성물을 이용해서, 실시예 1과 동일하게 하여 폴리프로필렌카보네이트 84.0g(수율 68.9%)을 얻었다.Using the obtained zinc catalyst composition, it carried out similarly to Example 1, and obtained 84.0 g (yield 68.9%) of polypropylene carbonate.

실시예 5Example 5

<아연 촉매의 제조><Production of zinc catalyst>

실시예 4에서 얻어진 촉매 조성물에 글루타르산을 추가하여 유리 카르복실산량이 3.00질량%인 아연 촉매 조성물을 얻었다.Glutaric acid was added to the catalyst composition obtained in Example 4 to obtain a zinc catalyst composition having an amount of free carboxylic acid of 3.00 mass%.

<폴리알킬렌카보네이트의 제조><Production of polyalkylene carbonate>

얻어진 아연 촉매 조성물을 이용해서, 실시예 1과 동일하게 하여 폴리프로필렌카보네이트 79.6g(수율 65.3%)을 얻었다.Using the obtained zinc catalyst composition, it carried out similarly to Example 1, and obtained 79.6g (yield 65.3%) of polypropylene carbonate.

비교예 1Comparative Example 1

<아연 촉매의 제조><Production of zinc catalyst>

반응 시간을 20시간으로 바꾸어서 1시간 반응시킨 이외는, 실시예 1과 동일하게 하여 유리 카르복실산량은 5.00질량%인 아연 촉매 조성물을 얻었다.Except for changing the reaction time into 20 hours and making it react for 1 hour, it carried out similarly to Example 1, and obtained the zinc catalyst composition whose free carboxylic acid amount is 5.00 mass %.

<폴리알킬렌카보네이트의 제조><Production of polyalkylene carbonate>

얻어진 아연 촉매 조성물을 이용해서, 실시예 1과 동일하게 하여 폴리프로필렌카보네이트 20g을 얻었다.Using the obtained zinc catalyst composition, it carried out similarly to Example 1, and obtained 20 g of polypropylene carbonates.

이상의 결과 및 얻어진 각 폴리프로필렌카보네이트의 분자량을 정리하여 표 1에 나타낸다.The above results and the molecular weight of each obtained polypropylene carbonate are summarized and shown in Table 1.

잔존 유리 카르복실산
(질량%)
residual free carboxylic acid
(mass%)
폴리알킬렌카보네이트수율(%) Polyalkylene carbonate yield (%) 질량 평균 분자량(Mw)
(만)
Mass average molecular weight (Mw)
(only)
실시예 1Example 1 0.100.10 77.877.8 30.430.4 실시예 2Example 2 0.350.35 71.371.3 32.832.8 실시예 3Example 3 0.650.65 75.475.4 35.535.5 실시예 4Example 4 2.002.00 68.968.9 28.928.9 실시예 5Example 5 3.003.00 65.365.3 125.5125.5 비교예 1Comparative Example 1 5.005.00 42.442.4 13.513.5

Claims (7)

아연 화합물 및 지방족 카르복실산을 반응시켜서 얻어지는 아연 촉매 조성물로서, 상기 지방족 카르복실산 함유량이 해당 조성물에 대하여 5질량% 미만인
조성물.
A zinc catalyst composition obtained by reacting a zinc compound and an aliphatic carboxylic acid, wherein the content of the aliphatic carboxylic acid is less than 5% by mass with respect to the composition.
composition.
제1항에 있어서,
아연 화합물이 산화아연 및 수산화아연으로 이루어지는 군으로부터 선택되는 적어도 1종인
조성물.
According to claim 1,
The zinc compound is at least one selected from the group consisting of zinc oxide and zinc hydroxide.
composition.
제1항 또는 제2항에 있어서,
지방족 카르복실산이 지방족 디카르복실산 및 지방족 모노카르복실산으로 이루어지는 군으로부터 선택되는 적어도 1종인
조성물.
3. The method of claim 1 or 2,
The aliphatic carboxylic acid is at least one selected from the group consisting of aliphatic dicarboxylic acids and aliphatic monocarboxylic acids.
composition.
제3항에 있어서,
지방족 모노카르복실산이 포름산, 아세트산, 프로피온산 및 트리플루오로아세트산으로 이루어지는 군으로부터 선택되는 적어도 1종인
조성물.
4. The method of claim 3,
The aliphatic monocarboxylic acid is at least one selected from the group consisting of formic acid, acetic acid, propionic acid and trifluoroacetic acid.
composition.
제1항 내지 제4항 중 어느 한 항에 있어서,
지방족 카르복실산이 적어도 지방족 디카르복실산을 포함하는
조성물.
5. The method according to any one of claims 1 to 4,
wherein the aliphatic carboxylic acid comprises at least an aliphatic dicarboxylic acid.
composition.
제3항 내지 제5항 중 어느 한 항에 있어서,
지방족 디카르복실산이 옥살산, 말론산, 석신산, 글루타르산, 아디프산 및 세바신산으로 이루어지는 군으로부터 선택되는 적어도 1종인
조성물.
6. The method according to any one of claims 3 to 5,
The aliphatic dicarboxylic acid is at least one selected from the group consisting of oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid and sebacic acid.
composition.
제1항 내지 제6항 중 어느 한 항에 기재된 아연 촉매 조성물의 존재하에서 이산화탄소와 에폭시드를 반응시키는 것을 포함하는
폴리알킬렌카보네이트의 제조 방법.
A method comprising reacting carbon dioxide with an epoxide in the presence of the zinc catalyst composition according to any one of claims 1 to 6
A method for producing polyalkylene carbonate.
KR1020227015130A 2020-01-08 2020-12-18 Method for preparing organic zinc catalyst composition KR20220125215A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2020001556 2020-01-08
JPJP-P-2020-001556 2020-01-08
PCT/JP2020/047343 WO2021140870A1 (en) 2020-01-08 2020-12-18 Method for producing organozinc catalyst composition

Publications (1)

Publication Number Publication Date
KR20220125215A true KR20220125215A (en) 2022-09-14

Family

ID=76787953

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020227015130A KR20220125215A (en) 2020-01-08 2020-12-18 Method for preparing organic zinc catalyst composition

Country Status (4)

Country Link
JP (1) JPWO2021140870A1 (en)
KR (1) KR20220125215A (en)
TW (1) TW202135936A (en)
WO (1) WO2021140870A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102705225B1 (en) 2023-05-15 2024-09-11 국립공주대학교 산학협력단 A preparation method of organic zinc catalyst with high activity and a preparation method of polyalkylene carbonate using the catalyst prepared by the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302731A (en) 2006-05-09 2007-11-22 Sumitomo Seika Chem Co Ltd Organic zinc catalyst and method for producing polyalkylene carbonate using the same
JP2011142259A (en) 2010-01-08 2011-07-21 Ulvac Japan Ltd Method for manufacturing amorphous si solar cell substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011142259A1 (en) * 2010-05-13 2011-11-17 住友精化株式会社 Method for producing aliphatic polycarbonate
WO2017155307A2 (en) * 2016-03-09 2017-09-14 주식회사 엘지화학 Organic zinc catalyst, preparation method thereof, and method for preparing polyalkylene carbonate resin using same catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007302731A (en) 2006-05-09 2007-11-22 Sumitomo Seika Chem Co Ltd Organic zinc catalyst and method for producing polyalkylene carbonate using the same
JP2011142259A (en) 2010-01-08 2011-07-21 Ulvac Japan Ltd Method for manufacturing amorphous si solar cell substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102705225B1 (en) 2023-05-15 2024-09-11 국립공주대학교 산학협력단 A preparation method of organic zinc catalyst with high activity and a preparation method of polyalkylene carbonate using the catalyst prepared by the same

Also Published As

Publication number Publication date
JPWO2021140870A1 (en) 2021-07-15
WO2021140870A1 (en) 2021-07-15
TW202135936A (en) 2021-10-01

Similar Documents

Publication Publication Date Title
KR101386337B1 (en) Organic zinc catalyst, and process for production of poly(alkylene carbonate)using the same
US5026676A (en) Catalyst for the copolymerization of epoxides with CO2
US6977291B2 (en) Production of polytrimethylene ether glycol and copolymers thereof
US8779087B2 (en) Method for producing aliphatic polycarbonate
US6617419B1 (en) Long-chain polyether polyols with a high proportion of primary oh groups
KR102220786B1 (en) Double Metal Cyanide Catalyst and Epoxide/Carbon Dioxide Copolymer
CN113278143B (en) Efficient unsaturated carbon dioxide-based polyol and preparation method thereof
KR20220125215A (en) Method for preparing organic zinc catalyst composition
EP3048129A1 (en) Organic zinc catalyst, preparation method therefor, and method for preparing polyalkylene carbonate resin by using same
WO2011142259A1 (en) Method for producing aliphatic polycarbonate
CN111378107B (en) Preparation method of reactive sealant resin
KR102549914B1 (en) Chain-extended polyol composition and surfactant using the same
CN102050943A (en) Compounding method for glycidyl ether polyether
KR20220125214A (en) organic zinc catalyst
CN114426483B (en) Method for degrading polyethylene terephthalate
KR20220122599A (en) Method for preparing organic zinc catalyst
Kuran et al. A new route for synthesis of oligomeric polyurethanes. Alternating copolymerization of carbon dioxide and aziridines
JP3630850B2 (en) Production method of polyalcohol
WO2022209774A1 (en) Organozinc catalyst regeneration method
KR102519511B1 (en) Composition comprising polyols having dicarboxylic acid diester-based ester groups and alkylene oxide-based ether groups in molecules and surfactant using the same
KR102525470B1 (en) Composition comprising polyols having lactone-based ester groups and alkylene oxide-based ether groups in molecules and surfactant using the same
CN117887062B (en) Method for controllably synthesizing low molecular weight narrow distribution polyether polyol
JP2013163772A (en) Catalyst for copolymerization, and method for production of polycarbonate
JPH09183840A (en) Improved production of copolymer using carbon monoxide and at least one compound containing alkenyl unsaturation as base
JP2019127442A (en) Method for producing alicyclic carbonate