KR20030035831A - Chemical amplified type positive resist composition for liquid crystal element - Google Patents

Chemical amplified type positive resist composition for liquid crystal element Download PDF

Info

Publication number
KR20030035831A
KR20030035831A KR1020020046088A KR20020046088A KR20030035831A KR 20030035831 A KR20030035831 A KR 20030035831A KR 1020020046088 A KR1020020046088 A KR 1020020046088A KR 20020046088 A KR20020046088 A KR 20020046088A KR 20030035831 A KR20030035831 A KR 20030035831A
Authority
KR
South Korea
Prior art keywords
liquid crystal
resist composition
component
positive resist
mass
Prior art date
Application number
KR1020020046088A
Other languages
Korean (ko)
Other versions
KR100585301B1 (en
Inventor
닛따가즈유끼
가또데쯔야
아오끼도모사부로
Original Assignee
도오꾜오까고오교 가부시끼가이샤
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 도오꾜오까고오교 가부시끼가이샤 filed Critical 도오꾜오까고오교 가부시끼가이샤
Publication of KR20030035831A publication Critical patent/KR20030035831A/en
Application granted granted Critical
Publication of KR100585301B1 publication Critical patent/KR100585301B1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/0045Photosensitive materials with organic non-macromolecular light-sensitive compounds not otherwise provided for, e.g. dissolution inhibitors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/022Quinonediazides
    • G03F7/0226Quinonediazides characterised by the non-macromolecular additives
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0395Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having a backbone with alicyclic moieties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/039Macromolecular compounds which are photodegradable, e.g. positive electron resists
    • G03F7/0392Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition
    • G03F7/0397Macromolecular compounds which are photodegradable, e.g. positive electron resists the macromolecular compound being present in a chemically amplified positive photoresist composition the macromolecular compound having an alicyclic moiety in a side chain

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)

Abstract

PURPOSE: To provide a chemical amplification type positive working resist composition for a liquid crystal device which is low-cost, is excellent in resolution and sensitivity and has such excellent characteristics as a small reduction in film thickness and to provide a resist pattern using the resist composition. CONSTITUTION: The chemical amplification type positive working resist composition is obtained by dissolving (A) an alkali-soluble resin comprising a novolak resin having 375-1,000 Å/sec alkali solubility in 2.38 wt.% aqueous solution of tetramethylammonium hydroxide, (B) a compound which generates an acid when irradiated with radiation and (C) a crosslinkable polyvinyl ether compound in an organic solvent. The resist pattern for a liquid crystal device is obtained by disposing a coating on a glass square substrate using the resist composition, exposing the coating through a mask pattern after drying and carrying out post-exposure heating and alkali development.

Description

액정소자용 화학증폭형 포지티브형 레지스트 조성물{CHEMICAL AMPLIFIED TYPE POSITIVE RESIST COMPOSITION FOR LIQUID CRYSTAL ELEMENT}Chemical-Amplified Positive Resist Composition for Liquid Crystal Devices {CHEMICAL AMPLIFIED TYPE POSITIVE RESIST COMPOSITION FOR LIQUID CRYSTAL ELEMENT}

본 발명은 고해상성, 고감도로 막축소가 적은 것 등의 우수한 특성을 갖고, 박막 트랜지스터 (THIN FILM TRANSISTOR) 등의 액정소자 제조에 사용되는 액정소자용 화학증폭형 포지티브형 레지스트 조성물 및 이를 사용한 액정소자용 레지스트 패턴에 관한 것이다.The present invention has excellent characteristics such as high resolution, high sensitivity, low film shrinkage, and the like, and the chemically amplified positive resist composition for liquid crystal devices used in the manufacture of liquid crystal devices such as thin film transistors and the like and liquid crystal devices using the same It relates to a resist pattern.

최근 액정을 사용한 디스플레이가 각종 전자기기에 탑재되어 급속하게 보급되고 있지만, 그 배경에는 액정디스플레이의 저가격화가 있다. 당연히 이와 같은 저가격화에 따라, 그 제조시 사용되는 레지스트 등의 각종 재료의 저비용화도 요망되고 있다. 이와 같은 배경으로부터, 오늘날의 액정소자용 레지스트는, 첫째로 저렴한 것이 산업상 중요한 요건이 되고 있다.Recently, displays using liquid crystals have been widely used in various electronic devices, but the background of the liquid crystal displays has become lower in price. Naturally, with such a low price, it is also desired to reduce the cost of various materials such as resists used in the production thereof. From this background, firstly, inexpensive liquid crystal element resists are an important industrial requirement.

또 저온 폴리실리콘막이나 연속 입계 결정막이 형성된 기판용 레지스트로서 최근 고해상화의 요구가 더욱 커지고 있다.In addition, as a resist for a substrate on which a low-temperature polysilicon film or a continuous grain boundary crystal film is formed, the demand for high resolution has increased even more recently.

또 미노광부의 현상 후 레지스트 막두께가 현상 전의 레지스트 막두께보다 낮아지는, 소위 막축소가 커지면, 하기 공정의 드라이에칭시의 기초 기판과의 선택비가 작아져 문제가 생기기 때문에, 액정소자 제조용 레지스트에는 막축소의 낮은 감소가 요구되고 있다.In addition, when the so-called film reduction, in which the resist film thickness after development of the unexposed portion is lower than the resist film thickness before development, becomes large, the selectivity with respect to the base substrate during dry etching in the following step becomes small, which causes problems. Low reductions in film shrinkage are required.

또한 액정소자 제조용 레지스트는, 실리콘 웨이퍼와는 비교할 수 없는, 최신 기판에서는 세로 680㎜×가로 880㎜, 600㎜×720㎜, 550㎜×670㎜, 구세대에서도 360㎜×460㎜ 와 같은 초대형 유리기판에 적용되기 때문에, 노광량의 증대가 필요한 점에서, 높은 스루풋을 달성하기 위해 고감도화가 필요하다. 그리고 또 초대형 유리기판에 적용하기 위해 반도체소자 제조용 레지스트와는 완전히 다른 하기와 같은 요구를 충족하여야 한다.In addition, the resist for manufacturing a liquid crystal element is a very large glass substrate such as 680 mm x 880 mm, 600 mm x 720 mm, 550 mm x 670 mm in the latest substrate, which is incomparable with a silicon wafer. In order to achieve high throughput, high sensitivity is required in order to increase the exposure dose. In addition, in order to be applied to a very large glass substrate, it must meet the following requirements that are completely different from the resist for manufacturing a semiconductor device.

(프리베이크 (pre-bake) 마진의 향상)(Improved pre-bake margins)

액정소자 제조용 레지스트에서는 상기와 같은 대형 기판 전체에서 균일한 크기의 레지스트 패턴을 수득할 수 있어야 한다. 최근 저가격화때문에 유리기판 1장으로부터 가능한 한 많은 액정표시 디바이스를 수득할 필요성이 높아지고, 따라서 급속하게 유리기판의 대형화가 진행되어, 이와 같은 레지스트 패턴 크기의 균일성이 요구되게 되었다. 그러나 종래의 레지스트에서는, 프리베이크 온도에 의해 쉽게 영향을 받으므로, 수득되는 레지스트 패턴 크기에 편차가 있었다.In the resist for manufacturing a liquid crystal device, a resist pattern having a uniform size should be obtained in the entire large substrate as described above. Due to the recent low cost, the necessity of obtaining as many liquid crystal display devices as possible from one glass substrate becomes high. Therefore, the glass substrate is rapidly enlarged, so that the uniformity of the resist pattern size is required. However, in the conventional resist, since it is easily influenced by the prebaking temperature, there is a variation in the obtained resist pattern size.

(현상 마진의 향상)(Improved development margin)

기판의 대형화가 진행됨에 따라, 커튼플로 타입의 현상방식이 채용되고 있다. 이 현상방식은, 기판의 한 말단부터 다른 말단까지, 슬릿으로부터 현상액을 적하하는 것이다. 이와 같은 현상방식에서는, 현상개시시와 현상종료시까지 약 5초 동안의 시차가 발생한다. 이 시차에 의해 현상개시시의 레지스트 패턴크기와 현상종료시의 레지스트 패턴 크기에 편차가 생기는 문제가 발생하고 있다. 따라서 이 시차에 의한 영향을 가능한 한 적게하고, 레지스트 패턴 크기를 균일하게 하는 것이 요구되고 있다.As the substrate is enlarged in size, a curtain flow type developing method is adopted. This developing method is to drop the developing solution from the slit from one end to the other end of the substrate. In such a developing method, a time difference of about 5 seconds occurs between the start of development and the end of development. This parallax causes a problem that variations occur in the resist pattern size at the start of development and the size of the resist pattern at the end of development. Therefore, it is desired to minimize the influence of this parallax as much as possible and to make the resist pattern size uniform.

(박리성의 향상)(Improvement of peeling)

액정소자 제조공정에서는, 레지스트 패턴을 형성한 후, 이 레지스트 패턴을 마스크로 하고, 웨트 에칭, 드라이 에칭 또는 이온플랜테이션 등의 각종 처리가 각 사용자마다의 제조 프로세스에 따라 다른 조건에서 실시된다. 이와 같은 각종 처리가 실시되면 레지스트 패턴은 변질되어, 레지스트 박리액으로 박리되기 어려운 것으로 변화한다. 따라서 박리되기 어려운 것으로 변화하였다고 해도, 박리성을 향상시킬 필요가 있다.In the liquid crystal device manufacturing step, after forming a resist pattern, the resist pattern is used as a mask, and various processes such as wet etching, dry etching, or ion plantation are performed under different conditions depending on the manufacturing process for each user. When such various treatments are performed, the resist pattern is deteriorated, so that the resist pattern is difficult to be peeled off with the resist stripping solution. Therefore, even if it changes with what is difficult to peel, it is necessary to improve peelability.

그러나 종래의 나프토퀴논디아지드계 비(非)화학증폭형 포지티브형 레지스트에서는, 고감도화되면 막축소가 커진다는 트레이드오프의 관계가 있어, 양자를 만족시키는 것은 곤란하였다. 또 상기와 같이 기판의 대형화에 대한 과제는 인식되었지만, 이들을 해결하기 위한 수단은 발견되어 있지 않았다.However, in the conventional naphthoquinone diazide nonchemically amplified positive resist, there is a trade-off relationship that the film shrinks when the sensitivity is high, and it is difficult to satisfy both. Moreover, although the problem about the enlargement of a board | substrate was recognized as mentioned above, the means for solving these were not found.

또 종래의 액정소자 제조용 레지스트는, 반도체소자 제조용의 g선이나 i선 포지티브형 레지스트로서 오래 실용에 사용되어 높은 신뢰성을 갖는 점, 저가격화라는 관점에서 나프토퀴논디아지드계의 비화학증폭형 레지스트가 사용되어 왔다.Conventional liquid crystal device manufacturing resists are g- and i-ray positive resists for semiconductor device manufacturing, which have been used for a long time in practical use and have high reliability, and are naphthoquinone diazide non-chemically amplified resists from the viewpoint of low cost. Has been used.

한편, 반도체소자 제조용 레지스트에서는, 최근의 반도체소자의 초미세화 및 고감도화의 요망이 있어, 0.35㎛ 이하의 일부 프로세스에서는, 화학증폭형 레지스트가 채용되고, 앞으로의 더욱 미세한 프로세스에서는, 화학증폭형 레지스트가 주류가 되고 있다. 이와 같은 반도체소자 제조용 레지스트의 흐름에서 보면, 액정소자 제조용 레지스트에서도 화학증폭형 레지스트를 채용하는 것을 생각할 수 있다.On the other hand, in the semiconductor device manufacturing resist, there is a demand for ultra miniaturization and high sensitivity of recent semiconductor devices. In some processes of 0.35 µm or less, chemically amplified resists are employed, and in the future, finer resists are used. Is becoming mainstream. In view of the flow of the resist for manufacturing a semiconductor element, it is conceivable to employ a chemically amplified resist in the liquid crystal element manufacturing resist.

그러나 고해상성 및 고감도화를 달성할 수 있다고 해도, 그것만으로는 액정소자 제조용 레지스트로서 충분하다고는 할 수 없는데다, 종래의 화학증폭형 레지스트는 매우 고가라는 결정적 문제를 갖기 때문에 별로 검토되지 않았었다.However, although high resolution and high sensitivity can be achieved, it cannot be said that it is sufficient as a resist for manufacturing a liquid crystal element alone, and conventional chemically amplified resists have not been examined much because they have a critical problem of being very expensive.

본 발명은 종래의 화학증폭형 레지스트를 액정소자 제조용 레지스트에 적용하려고 해도 달성되지 않았던 상기 문제점, 즉, 저가격으로, 해상성 및 감도가 우수하고, 막축소가 작은 것 등의 우수한 특성을 갖는 액정소자용 화학증폭형 포지티브형 레지스트 조성물 및 이를 사용한 레지스트 패턴을 제공하는 것을 목적으로 한다.The present invention is a liquid crystal device having the above-described problems which have not been achieved even when the conventional chemically amplified resist is applied to a resist for producing a liquid crystal device, that is, low cost, excellent resolution and sensitivity, and small film shrinkage. An object of the present invention is to provide a chemically amplified positive resist composition and a resist pattern using the same.

본 발명자들은 상기 목적을 달성하기 위해 예의연구한 결과, 특정의 알칼리 용해성을 갖는 노볼락수지, 방사선 조사에 의해 산을 생성시키는 화합물 및 가교성 폴리비닐에테르를 유기용제에 용해하여 이루어지는 액정소자용 화학증폭형 포지티브형 레지스트 조성물이, 저가격으로, 해상성 및 감도가 우수하고, 막축소가 작은 것 등의 우수한 특성을 갖는 것을 발견하고, 본 발명을 완성하였다.MEANS TO SOLVE THE PROBLEM As a result of earnestly researching in order to achieve the said objective, the liquid crystal element chemistry formed by dissolving the novolak resin which has a specific alkali solubility, the compound which produces | generates an acid by irradiation, and crosslinkable polyvinyl ether in the organic solvent. The amplified positive resist composition was found to have excellent properties such as low resolution, excellent resolution and sensitivity, small film shrinkage, and completed the present invention.

즉 본 발명은 하기의 성분 (A) 내지 (C) :That is, the present invention is the following components (A) to (C):

(A) 2.38 질량% 테트라메틸암모늄히드록시드 (TMAH) 수용액에 대한 알칼리용해성이 3.75 내지 100 ㎚/초 범위인 노볼락수지로 이루어지는 알칼리 가용성 수지,(A) Alkali-soluble resin which consists of a novolak resin whose alkali solubility with respect to 2.38 mass% tetramethylammonium hydroxide (TMAH) aqueous solution is 3.75-100 nm / sec.,

(B) 방사선의 조사에 의해 산을 생성시키는 화합물 및,(B) a compound which generates an acid by irradiation of radiation, and

(C) 가교성 폴리비닐에테르 화합물,(C) crosslinkable polyvinyl ether compound,

을 유기용제에 용해하여 이루어지는 액정소자용 화학증폭형 포지티브형 레지스트 조성물을 제공하는 것이다.It is to provide a chemically amplified positive resist composition for a liquid crystal device formed by dissolving the above in an organic solvent.

본 발명은 또 유리기판 상에 청구항 1 내지 5 중 어느 한 항에 기재된 액정소자용 화학증폭형 포지티브형 레지스트 조성물을 사용하여 도포막을 형성하고, 건조후, 마스크 패턴을 통하여 노광하고, 노광후 가열처리하고, 이어서 알칼리현상하는 공정에 의해 수득되는 액정소자용 레지스트 패턴을 제공하는 것이다.The present invention also forms a coating film on the glass substrate using the chemically amplified positive resist composition for a liquid crystal device according to any one of claims 1 to 5, and after drying, is exposed through a mask pattern, heat treatment after exposure Then, the resist pattern for liquid crystal elements obtained by the process of alkali development is provided.

발명의 실시형태Embodiment of the invention

액정소자 제조용 레지스트는, 대형화의 경향에 있고, 기판이 클수록 노광량을 크게 할 필요가 있는 점에서, 높은 스루풋을 달성하기 위해 고감도화에 대한 요구는 높았다. 그러나 고감도화와 막축소는 트레이드오프의 관계에 있는 점에서, 이들 양 특성 및 고해상성의 3가지 특성이 우수한 레지스트 조성물은 지금까지 알려져 있지 않았다.Since the resist for liquid crystal element manufacturing has a tendency of enlargement, and the board | substrate is large, it is necessary to enlarge exposure amount, and the demand for high sensitivity was high in order to achieve high throughput. However, since a high sensitivity and a film reduction have a trade-off relationship, the resist composition which is excellent in both these characteristics and the high resolution three characteristics is unknown until now.

종래 화학증폭형 레지스트에서 사용되지 않았던 특정의 노볼락 수지를 사용한 본 발명에 의해, 처음으로 상기 3가지 특성이 우수한 액정소자용 레지스트 조성물이 수득된 것이다.By the present invention using a specific novolak resin that has not been used in conventional chemically amplified resists, a resist composition for a liquid crystal device excellent in the above three characteristics is obtained for the first time.

(A) 성분에 대하여 :About the component (A):

(A) 성분은 23℃ 에서의 2.38 질량% 테트라메틸암모늄히드록시드 (TMAH) 수용액에 대한 알칼리 용해성이, 37.5 내지 100 ㎚/초 범위인 노볼락수지로 이루어지는 알칼리 가용성 수지를 사용할 필요가 있다. 이의 바람직한 범위는 50 내지 75 ㎚/초 이다. 100㎚을 초과하면, 현상후 미노광부의 막축소가 커지고, 37.5㎚ 보다 낮으면, 스캄이 발생하기 쉽고, 또 이미지 형성이 곤란해진다.As the component (A), it is necessary to use an alkali-soluble resin composed of a novolak resin having an alkali solubility in a 2.38 mass% tetramethylammonium hydroxide (TMAH) aqueous solution at 23 ° C in the range of 37.5 to 100 nm / sec. Its preferred range is 50 to 75 nm / second. When it exceeds 100 nm, the film shrinkage of the unexposed part after development becomes large, and when it is lower than 37.5 nm, scram is easy to generate | occur | produce, and image formation becomes difficult.

또한 이 수치는, 알칼리 가용성 수지를 소정 막두께로 기판 상에 형성하고, 이것을 2.38 질량% TMAH 수용액에 침지하고, 이 막두께가 0 이 되는 데에 필요한 시간으로 상기 알칼리 가용성 수지의 당초의 막두께를 나누어 수득되는 값으로, 알칼리 가용성 수지의 단위시간당 알칼리 용해성이다.In addition, this numerical value forms the alkali-soluble resin on a board | substrate with a predetermined | prescribed film thickness, it is immersed in 2.38 mass% TMAH aqueous solution, and this film thickness is the original film thickness of the said alkali-soluble resin in the time required for it to become zero. Value obtained by dividing is alkali solubility per unit time of alkali-soluble resin.

이와 같은 알칼리 가용성 수지는, 상기 정의된 알칼리 가용성을 갖는 것이라면 특별히 한정되지 않는다. 예컨대 종래 포지티브형 포토레지스트 조성물에 있어서 피막형성용 물질로서 관용되고 있는 것, 예컨대 페놀, 크레졸, 크실레놀, 트리메틸페놀 등의 방향족 히드록시 화합물과 포름알데히드 등의 알데히드류를 산성촉매의 존재하에 축합시킨 것 등이 사용된다. 구체적으로는, ㆍ중량평균분자량 5000 내지 14000의 m-크레졸 100% 를 산촉매하 포름알데히드류와 축합하여 수득되는 m-크레졸포름노볼락수지, ㆍm-크레졸 30 내지 80몰%, 바람직하게는 30 내지 50몰%와 p-크레졸 70 내지 20몰%, 바람직하게는 70 내지 50몰%의 혼합 크레졸을 산촉매하 포름알데히드류와 축합하여 수득되는, 중량평균분자량 2500 내지 10000의 크레졸포름노볼락수지 등을 들 수 있다.Such alkali-soluble resin will not be specifically limited if it has alkali solubility defined above. For example, in the conventional positive type photoresist composition, those commonly used as a film-forming substance, such as aromatic hydroxy compounds such as phenol, cresol, xylenol, trimethylphenol, and aldehydes such as formaldehyde are condensed in the presence of an acidic catalyst. And the like. Specifically, m-cresol form novolac resin obtained by condensing 100% of m-cresol having a weight average molecular weight of 5000 to 14000 with formaldehyde under acid catalysis, ㆍ m-cresol 30 to 80 mol%, preferably 30 Cresol form novolac resin having a weight average molecular weight of 2500 to 10000 obtained by condensation of a mixed cresol in an amount of from 50 to 50 mol% and 70 to 20 mol%, preferably 70 to 50 mol%, of p-cresol with an acid catalyst. Can be mentioned.

산촉매로는 옥살산, p-톨루엔술폰산, 아세트산 등을 들 수 있는데, 옥살산을사용하는 것이 저가이고 용이하게 입수할 수 있어 바람직하다.Examples of the acid catalyst include oxalic acid, p-toluenesulfonic acid, acetic acid, and the like. The use of oxalic acid is preferable because it is inexpensive and readily available.

포름알데히드류로는, 포름알데히드, 포름알데히드를 물에 용해한 포르말린 또는 트리옥산 등을 들 수 있으나, 통상 포르말린이 사용된다.As formaldehyde, formalin, trioxane, etc. which melt | dissolved formaldehyde and formaldehyde in water are mentioned, Formalin is used normally.

(B) 성분에 대하여 :About the component (B):

(A) 성분과 (C) 성분은 프리베이크시에 열에 의해 가교되어 기판 전체면에 알칼리 불용화 레지스트층을 형성하므로, (B) 성분은, 노광부에서 노광에 의해 산을 발생시키고, 이 산에 의해 이 가교를 분해하여, 이 불용화된 레지스트층을 알칼리 가용으로 변화시키는 기능을 갖는 것이면 된다.The component (A) and the component (C) are crosslinked by heat during prebaking to form an alkali insoluble resist layer on the entire surface of the substrate, so that the component (B) generates an acid by exposure in the exposed portion. What is necessary is just to have a function which decompose | disassembles this bridge | crosslinking and changes this insoluble resist layer to alkali solubility.

이와 같은 기능을 갖는 방사선의 조사에 의해 산을 생성시키는 화합물은, 화학증폭형 레지스트에 사용되는 소위 산발생제로, 지금까지 다수의 것이 제안되어 있고, 이들 중에서 임의로 선택하여 사용하면 된다.The compound which produces | generates an acid by irradiation of the radiation which has such a function is what is called the acid generator used for a chemically amplified resist, and many things are proposed until now, and what is necessary is just to select arbitrarily from these.

액정소자 제조용 레지스트에서는, g선, h선 및 i선 중 어느 하나를 포함하는 자외선이 사용되고 있으므로, 이들 중, 이와 같은 자외선의 조사를 받아 산을 생성시키는 화합물, 특히 산발생효율이 높은 화합물이 바람직하다.In the resist for producing liquid crystal elements, ultraviolet rays containing any one of g-rays, h-rays, and i-rays are used. Among these, compounds that generate acid upon irradiation with such ultraviolet rays, particularly compounds having high acid generation efficiency, are preferable. Do.

이와 같은 화합물로서는 예컨대 하기와 같은 화합물을 들 수 있다.As such a compound, the following compounds are mentioned, for example.

[식 중, m 은 0 또는 1 이고, x 는 1 또는 2 이며, R1은 페닐기, 1 또는 그 이상의 C1∼C12알킬기가 치환된 페닐기, 1 또는 그 이상의 C1∼C12알콕시기로 치환된 페닐기, 또는 할로겐원자로 치환된 페닐기로, R1' 는 C2∼C12알킬렌기, 페닐렌기, 나프틸렌기이고, R2는 CN기이고, R3과 R3' 은 독립하여 C1∼C18알킬기, 또는 할로겐치환된 C1∼C18알킬기이고, R4, R5는 독립하여 수소원자, 할로겐원자, C1∼C6알킬기 또는 C1∼C6알콕시기이고, A 는 S 또는 O 를 나타낸다] 으로 표시되는 화합물 (미국특허 제 6004724). 구체적으로는 예컨대[A, m is 0 or 1 in the formula, and x is 1 or 2, R 1 is substituted with a phenyl group, one or more C 1 ~C 12 alkyl group is a substituted phenyl group, one or more C 1 ~C 12 alkoxy R 1 'is a C 2 to C 12 alkylene group, a phenylene group, a naphthylene group, R 2 is a CN group, R 3 and R 3 ' are independently C 1 ~ A C 18 alkyl group or a halogen-substituted C 1 -C 18 alkyl group, R 4 , R 5 are independently a hydrogen atom, a halogen atom, a C 1 -C 6 alkyl group or a C 1 -C 6 alkoxy group, A is S or Represents O] (US Patent No. 6004724). Specifically, for example

과 같은 티오렌 함유 옥심술포네이트를 들 수 있다. 또,The same thioene containing oxime sulfonate is mentioned. In addition,

[식 중, R6, R7은 각각 탄소수 1 내지 3의 알킬기를 나타낸다] 으로 표시되는 비스(트리클로로메틸)트리아진화합물, 또는 이 화합물 (4) 와In the formula, R 6 and R 7 each represent an alkyl group having 1 to 3 carbon atoms, or a bis (trichloromethyl) triazine compound represented by this compound (4) and

[식 중, Z 는 4-알콕시페닐기 등을 나타낸다] 으로 표시되는 비스(트리클로로메틸)트리아진화합물을 조합한 것을 들 수 있다 (일본 공개특허공보 평6-289614호, 일본 공개특허공보 평7-134412호).And a combination of bis (trichloromethyl) triazine compounds represented by [wherein Z represents a 4-alkoxyphenyl group or the like] (Japanese Patent Laid-Open No. 6-289614, Japanese Patent Laid-Open No. 7). -134412).

구체적으로는, 예컨대 2-[2-(3,4-디메톡시페닐)에테닐]-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-[2-(3-메톡시-4-에톡시페닐)에테닐]-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-[2-(3-메톡시-4-프로폭시페닐)에테닐]-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-[2-(3-에톡시-4-메톡시페닐)에테닐]-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-[2-(3,4-디에톡시페닐)에테닐]-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-[2-(3-에톡시-4-프로폭시페닐)에테닐]-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-[2-(3-프로폭시-4-메톡시페닐)에테닐]-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-[2-(3-프로폭시-4-에톡시페닐)에테닐]-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-[2-(3,4-디프로폭시페닐)에테닐]-4,6-비스(트리클로로메틸)-1,3,5-트리아진 등을 들 수 있다. 이들 트리아진 화합물은 단독으로 사용하여도 되고, 또 2종 이상을 조합하여 사용하여도 된다.Specifically, for example, 2- [2- (3,4-dimethoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3 -Methoxy-4-ethoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3-methoxy-4-propoxyphenyl ) Ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3-ethoxy-4-methoxyphenyl) ethenyl] -4,6- Bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3,4-diethoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5 -Triazine, 2- [2- (3-ethoxy-4-propoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3-propoxy-4-methoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3-propoxy-4- Methoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3,4-dipropoxyphenyl) ethenyl] -4,6- Bis (trichloromethyl) -1,3,5-triazine and the like. These triazine compounds may be used independently and may be used in combination of 2 or more type.

한편 상기 트리아진 화합물 (4) 과, 희망에 따라 조합하여 사용되는 상기 트리아진 화합물 (5) 로서는, 예컨대 2-(4-메톡시페닐)-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-(4-에톡시페닐)-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-(4-프로폭시페닐)-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-(4-부톡시페닐)-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-(4-메톡시나프틸)-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-(4-에톡시나프틸)-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-(4-프로폭시나프틸)-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-(4-부톡시나프틸)-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-(4-메톡시-6-카르복시나프틸)-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-(4-메톡시-6-히드록시나프틸)-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-[2-(2-푸릴)에테닐]-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-[2-(5-메틸-2-푸릴)에테닐]-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-[2-(5-에틸-2-푸릴)에테닐]-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-[2-(5-프로필-2-푸릴)에테닐]-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-[2-(3,5-디메톡시페닐)에테닐]-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-[2-(3-메톡시-5-에톡시페닐)에테닐]-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-[2-(3-메톡시-5-프로폭시페닐)에테닐]-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-[2-(3-에톡시-5-메톡시페닐)에테닐]-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-[2-(3,5-디에톡시페닐)에테닐]-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-[2-(3-에톡시-5-프로폭시페닐)에테닐]-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-[2-(3-프로폭시-5-메톡시페닐)에테닐]-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-[2-(3-프로폭시-5-에톡시페닐)에테닐-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-[2-(3,5-디프로폭시페닐)에테닐]-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-(3,4-메틸렌디옥시페닐)-4,6-비스(트리클로로메틸)-1,3,5-트리아진, 2-[2-(3,4-메틸렌디옥시페닐)에테닐]-4,6-비스(트리클로로메틸)-1,3,5-트리아진 등을 들 수 있다. 이들 트리아진화합물은 1종 사용하여도 되고, 2종 이상을 조합하여 사용하여도 된다.On the other hand, examples of the triazine compound (4) and the triazine compound (5) used in combination as desired include, for example, 2- (4-methoxyphenyl) -4,6-bis (trichloromethyl) -1, 3,5-triazine, 2- (4-ethoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-propoxyphenyl) -4,6 -Bis (trichloromethyl) -1,3,5-triazine, 2- (4-butoxyphenyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- ( 4-methoxynaphthyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-ethoxynaphthyl) -4,6-bis (trichloromethyl)- 1,3,5-triazine, 2- (4-propoxynaphthyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-butoxynaphthyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (4-methoxy-6-carboxynaphthyl) -4,6-bis (trichloromethyl) -1,3 , 5-triazine, 2- (4-methoxy-6-hydroxynaphthyl) -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (2- Furyl) ethenyl] -4,6-bis (trit) Chloromethyl) -1,3,5-triazine, 2- [2- (5-methyl-2-furyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine , 2- [2- (5-ethyl-2-furyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (5-propyl-2 -Furyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3,5-dimethoxyphenyl) ethenyl] -4,6-bis (Trichloromethyl) -1,3,5-triazine, 2- [2- (3-methoxy-5-ethoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3 , 5-triazine, 2- [2- (3-methoxy-5-propoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [ 2- (3-ethoxy-5-methoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3,5-diethoxy Phenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3-ethoxy-5-propoxyphenyl) ethenyl] -4,6 -Bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3-propoxy-5-methoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1 , 3,5-t Azine, 2- [2- (3-propoxy-5-ethoxyphenyl) ethenyl-4,6-bis (trichloromethyl) -1,3,5-triazine, 2- [2- (3, 5-dipropoxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5-triazine, 2- (3,4-methylenedioxyphenyl) -4,6-bis ( Trichloromethyl) -1,3,5-triazine, 2- [2- (3,4-methylenedioxyphenyl) ethenyl] -4,6-bis (trichloromethyl) -1,3,5- Triazine etc. are mentioned. One type of these triazine compounds may be used, or two or more types thereof may be used in combination.

(C) 성분에 대하여(C) Component

(C) 성분의 가교성 폴리비닐에테르 화합물은, (A) 성분과 함께, 프리베이크시의 가열에 의해 가교되어 기판 전체면에 알칼리 불용화 레지스트층을 형성한다. 그리고 (B) 성분에서 발생된 산의 작용에 의해, 이 가교가 분해되어, 노광부는 알칼리 가용성으로 변화하고, 미노광부는 알칼리 불용인 채로 변화되지 않는다. 따라서 (A) 성분과 함께, 프리베이크시의 가열에 의해 가교되어 기판 전체면에 알칼리 불용화 레지스트층을 형성하는 기능을 갖는 (C) 성분이라면, 그 종류에 특별히 제한은 없다.The crosslinkable polyvinyl ether compound of the component (C) is crosslinked by heating at the time of prebaking with the component (A) to form an alkali insoluble resist layer on the entire surface of the substrate. And by the action of the acid generated in the component (B), this crosslinking is decomposed, and the exposed portion is changed to alkali solubility, and the unexposed portion is not changed while being insoluble in alkali. Therefore, as long as it is (C) component which has the function of crosslinking with the component (A) by heating at the time of prebaking, and forming an alkali insoluble resist layer in the whole board | substrate surface, there is no restriction | limiting in particular in the kind.

이와 같은 폴리비닐에테르 화합물은, 일본 공개특허공보 평6-148889호, 일본 공개특허공보 평6-230574호에 다수 열거되어 있고, 이들 중에서 임의로 선택하여 사용할 수 있지만, 특히 열가교성과 산에 의한 분해성에서 기인하는 레지스트 프로파일 형상, 및 노광부와 미노광부의 콘트라스트의 특성을 고려하면, 하기의 화학식으로 표시되는 알코올:Although such polyvinyl ether compounds are enumerated in Unexamined-Japanese-Patent No. 6-148889 and Unexamined-Japanese-Patent No. 6-230574, many can be selected arbitrarily from these, but it is especially thermally crosslinkable and degradable by an acid. Taking into account the resist profile shape and the characteristics of the contrast between the exposed and unexposed portions, the alcohol represented by the following formula:

Rn-(OH)n R n- (OH) n

[식 중, Rn은 직쇄기, 분지쇄기 또는 고리기의 알칸으로부터 n개의 수소원자가 제외된 기이고, n 은 2, 3 또는 4 의 정수를 나타낸다] 의 히드록시기의 일부 또는 전부를 비닐기로 에테르화한 화합물이 바람직하다. 구체적으로는, 에틸렌글리콜디비닐에테르, 트리에틸렌글리콜디비닐에테르, 1,3-부탄디올디비닐에테르, 테트라메틸렌글리콜디비닐에테르, 네오펜틸글리콜디비닐에테르, 트리메틸롤프로판트리비닐에테르, 트리메틸롤에탄트리비닐에테르, 헥산디올디비닐에테르, 1,4-시클로헥산디올디비닐에테르, 테트라에틸렌글리콜디비닐에테르, 펜타에리트리톨디비닐에테르, 펜타에리트리톨트리비닐에테르, 시클로헥산디메탄올디비닐에테르 등을 들 수 있다. 이들 중에서는, 가교성 디비닐에테르 화합물이 더욱 바람직하고, 시클로헥산디메탄올디비닐에테르가 특히 바람직하다.[Wherein, R n is a straight-wedge, branched shredder or a group with the exception of n hydrogen atoms from an alkane of a ring group, n is 2, 3 or 4 represents an integer of] the group vinyl some or all ether of the hydroxy group Chemistry One compound is preferred. Specifically, ethylene glycol divinyl ether, triethylene glycol divinyl ether, 1,3-butanediol divinyl ether, tetramethylene glycol divinyl ether, neopentyl glycol divinyl ether, trimethylolpropane trivinyl ether, trimethylol ethane Trivinyl ether, hexanediol divinyl ether, 1, 4- cyclohexanediol divinyl ether, tetraethylene glycol divinyl ether, pentaerythritol divinyl ether, pentaerythritol trivinyl ether, cyclohexane dimethanol divinyl ether, etc. Can be mentioned. In these, a crosslinkable divinyl ether compound is more preferable, and cyclohexane dimethanol divinyl ether is especially preferable.

(B) 성분, (C) 성분의 배합량은, (A) 성분 100질량부에 대하여, (B) 성분은1 내지 30질량부, 특히 1 내지 20질량부가 바람직하고, (C) 성분은 0.1 내지 25질량부, 특히 1 내지 15질량부가 바람직하다.As for the compounding quantity of (B) component and (C) component, 1-30 mass parts is preferable for (B) component with respect to 100 mass parts of (A) component, Especially 1-20 mass parts, (C) component is 0.1- 25 mass parts, especially 1-15 mass parts are preferable.

(D) 성분에 대하여(D) Component

노광부로부터의 산의 과잉확산방지 및 레지스트 패턴의 시간 경과에 따른 안정성의 관점에서, 본 발명의 액정소자용 화학증폭형 포지티브형 레지스트 조성물에는, 아민류를 배합하는 것이 바람직하다. 아민류로서는, 예컨대 프리베이크시의 가열에 의해 레지스트막 중에서 휘산되기 어려운 디에탄올아민, 트리에탄올아민, 트리부탄올아민, 트리이소프로판올아민 등의 제 2 급 또는 제 3 급 알칸올아민이나, 디에틸아민, 트리에틸아민, 디부틸아민, 트리부틸아민 등의 제 2 급 또는 제 3 급 알킬아민을 들 수 있다. 아민류의 배합량은 (A) 성분 100질량부에 대하여 0.01 내지 5질량부가 바람직하고, 0.1 내지 1질량부가 특히 바람직하다.It is preferable to mix | blend amines with the chemically amplified positive resist composition for liquid crystal elements of this invention from a viewpoint of the prevention of the overdiffusion of the acid from an exposure part, and stability with time-lapse of a resist pattern. Examples of the amines include secondary or tertiary alkanolamines, such as diethanolamine, triethanolamine, tributanolamine, and triisopropanolamine, which are difficult to volatilize in the resist film by heating during prebaking. Secondary or tertiary alkylamines, such as ethylamine, dibutylamine, and tributylamine, are mentioned. 0.01-5 mass parts is preferable with respect to 100 mass parts of (A) component, and, as for the compounding quantity of amines, 0.1-1 mass part is especially preferable.

본 발명에 사용하는 유기용제로서는, 예컨대 아세톤, 메틸에틸케톤, 시클로헥사논, 이소부틸메틸케톤, 이소아밀메틸케톤, 1,1,1-트리메틸아세톤 등의 케톤류 ; 에틸렌글리콜, 프로필렌글리콜, 디에틸렌글리콜, 에틸렌글리콜모노아세테이트 또는 디에틸렌글리콜모노아세테이트의 모노메틸에테르, 모노에틸에테르, 모노프로필에테르, 모노이소프로필에테르, 모노부틸에테르 또는 모노페닐에테르 등의 다가 알코올류 및 이의 유도체 ; 디옥산과 같은 환식 에테르류 ; 및 아세트산메틸, 아세트산에틸, 아세트산부틸, 락트산메틸, 락트산에틸, 피루브산메틸, 피루브산에틸, 3-에톡시프로피온산에틸 등의 에스테르류를 들 수 있다. 이들은 단독으로도 또 2종 이상을 혼합하여 사용하여도 된다.As an organic solvent used for this invention, For example, ketones, such as acetone, methyl ethyl ketone, cyclohexanone, isobutyl methyl ketone, isoamyl methyl ketone, 1,1,1-trimethyl acetone; Polyhydric alcohols such as ethylene glycol, propylene glycol, diethylene glycol, ethylene glycol monoacetate or dimethyl glycol monoacetate monomethyl ether, monoethyl ether, monopropyl ether, monoisopropyl ether, monobutyl ether or monophenyl ether And derivatives thereof; Cyclic ethers such as dioxane; And esters such as methyl acetate, ethyl acetate, butyl acetate, methyl lactate, ethyl lactate, methyl pyruvate, ethyl pyruvate and ethyl 3-ethoxypropionate. You may use these individually or in mixture of 2 or more types.

본 발명의 액정소자용 화학증폭형 포지티브형 레지스트 조성물에는, 본 발명의 목적을 손상시키지 않는 범위에서, 필요에 따라 상용성이 있는 첨가물, 예컨대 레지스트막의 성능 등을 개량하기 위한 부가적 수지, 가소제, 안정제, 계면활성제, 현상한 이미지를 더 한층 가시적으로 하기 위한 착색료, 더욱 증감효과를 향상시키기 위한 증감제나 헐레이션 방지용 염료, 밀착성 향상제 등의 관용의 첨가물을 함유시킬 수 있다.In the chemically amplified positive resist composition for a liquid crystal device of the present invention, additives, plasticizers, etc. for improving the performance of a compatible additive, such as a resist film, as necessary, within a range that does not impair the object of the present invention. Stabilizers, surfactants, coloring additives for making the developed image more visible, conventional additives such as sensitizers, anti-halation dyes, and adhesion promoters for improving the sensitizing effect can be contained.

본 발명의 액정소자용 화학증폭형 포지티브형 레지스트 조성물은, (A) 성분, (B) 성분, (C) 성분 및 필요에 따라 그 외의 성분을, 유기용제에 용해함으로써 조제할 수 있다.The chemically amplified positive resist composition for a liquid crystal element of the present invention can be prepared by dissolving the component (A), the component (B), the component (C) and, if necessary, other components in an organic solvent.

본 발명의 액정소자용 레지스트 패턴은, 이와 같은 액정소자용 화학증폭형 포지티브형 레지스트 조성물을 사용하여 유리기판 상에 도포막을 형성하고, 건조 후, 마스크패턴을 통하여 노광하고, 노광후 가열처리하고, 이어서 알칼리현상하는 공정에 의해 수득되는 것이다. 즉, 먼저 유리기판 상에, 상기 액정소자용 화학증폭형 포지티브형 레지스트 조성물을 스피너 등을 사용하여 도포하고, 도포막을 형성한다. 이것을 예컨대 핫플레이트 등으로 프리베이크하여 건조시킨 후, 마스크 패턴을 통하여 노광한다. 이것을 가열처리 (PEB) 한 후, TMAH 등의 알칼리현상액을 커튼플로 방식 등으로 도포하거나, 또는 알칼리현상액에 침지 등을 하여 알칼리현상하고, 세정, 건조시킴으로써 레지스트 패턴이 형성된다.The resist pattern for a liquid crystal device of the present invention is formed using a chemically amplified positive resist composition for a liquid crystal device to form a coating film on a glass substrate, and after drying, is exposed through a mask pattern, heat treatment after exposure, It is then obtained by a process for alkali development. That is, first, the chemically amplified positive resist composition for a liquid crystal element is coated on a glass substrate by using a spinner or the like to form a coating film. This is prebaked by, for example, a hot plate or the like, and then exposed through a mask pattern. After heat treatment (PEB), an alkali developer such as TMAH is applied by a curtain flow method or the like, or an alkali is developed by immersing the alkali developer in such a way that the resist pattern is formed.

실시예Example

하기에 실시예를 나타내어 본 발명을 더욱 상세하게 설명하는데, 본 발명은하기의 실시예에 한정되는 것은 아니다.Although an Example is shown to the following and this invention is demonstrated in more detail, this invention is not limited to the following Example.

실시예 1Example 1

(A) 성분으로서 m-크레졸 100몰% 에 옥살산과 포르말린을 첨가하고, 축합반응하여 수득된 중량평균분자량 10000의 m-크레졸포름노볼락 수지를 사용하였다. 이 수지의 2.38 질량% TMAH 수용액에 대한 알칼리 용해성은 75 ㎚/초였다. (B) 성분으로서,Oxalic acid and formalin were added to 100 mol% of m-cresol as (A) component, and the m-cresol form novolak resin of the weight average molecular weight 10000 obtained by condensation reaction was used. The alkali solubility of this resin in the 2.38% by mass TMAH aqueous solution was 75 nm / second. As the component (B),

을 사용하였다.Was used.

(A) 성분 100질량부, (B)성분 6질량부, (C) 성분으로 시클로헥산디메탄올디비닐에테르 8질량부, (D)성분으로 트리이소프로판올아민 0.2질량부 및 비이온성 불소ㆍ실리콘계 계면활성제 (상품명 메가파크R-08 (다이닛뽕잉크화학공업사 제조)) 0.04질량부를, 프로필렌글리콜모노메틸에테르아세테이트 395질량부에 용해하여, 액정소자용 화학증폭형 포지티브형 레지스트 조성물을 조제하였다.100 parts by mass of component (A), 6 parts by mass of component (B), 8 parts by mass of cyclohexanedimethanol divinyl ether as component (C), 0.2 parts by mass of triisopropanolamine as component (D) and a nonionic fluorine-silicon interface 0.04 parts by mass of the activator (trade name Mega Park R-08 (manufactured by Dainippon Ink and Chemicals, Inc.)) was dissolved in 395 parts by mass of propylene glycol monomethyl ether acetate to prepare a chemically amplified positive resist composition for a liquid crystal device.

이어서 크롬막이 부착된 유리기판 (150㎜×150㎜) 상에, 조제한 액정소자용 화학증폭형 포지티브형 레지스트 조성물을, 막두께 1.5㎛ 가 되도록 스피너 도포한후, 핫플레이트의 온도를 130℃ (프리베이크) 로 하여, 90초 동안 건조시키고, 건조도막을 수득했다. 이어서 테스트 차트 마스크를 통하여 미러 프로젝션ㆍ얼라이너 MPA-600FA (캐논사 제조) 를 사용하여 노광하였다. 이어서 핫플레이트의 온도를 120℃로 하여 90초 동안 노광한 후 가열처리 (PEB) 하였다. 이어서 23℃ 에서 2.38 질량% TMAH 수용액중에 60초 동안 침지하고, 순수로 30초 동안 세정하고, 건조시킴으로써, 노광부분을 제거하고, 기판 상에 레지스트 패턴을 형성하였다.Subsequently, the chemically amplified positive resist composition for liquid crystal elements prepared on the glass substrate (150 mm x 150 mm) with a chromium film was spinner coated so as to have a thickness of 1.5 µm, and then the temperature of the hot plate was 130 ° C (free). Baking), and it dried for 90 second, and obtained the dry coating film. Subsequently, it exposed using the mirror projection aligner MPA-600FA (made by Canon Corporation) through the test chart mask. Subsequently, the temperature of the hot plate was exposed to 120 ° C. for 90 seconds, followed by heat treatment (PEB). Subsequently, the exposed portion was removed by immersion for 60 seconds in a 2.38% by mass TMAH aqueous solution at 23 ° C., washed with pure water for 30 seconds, and dried to form a resist pattern on the substrate.

이와 같이 하여 수득된 레지스트 패턴을 주사형 전자현미경으로 관찰하였다. 한계해상도와 그 때의 노광량을 감도로 하여 표 1 에 나타낸다. 또 동일하게 레지스트 패턴의 단면형상이 직사각형이 되는 레지스트 패턴 사이즈를 표 1 에 나타낸다.The resist pattern thus obtained was observed with a scanning electron microscope. Table 1 shows the limit resolution and the exposure dose at that time as the sensitivity. Similarly, the resist pattern size whose cross-sectional shape of a resist pattern becomes a rectangle is shown in Table 1. FIG.

또 상기 패턴형성 프로세스에 있어서, 현상시간을 120초로 한 경우의 미노광부의 현상전부터 현상후의 막두께의 변화를 막축소량으로 표 1 에 나타낸다.In the above pattern forming process, the change in the film thickness before and after the development of the unexposed portion when the development time is 120 seconds is shown in Table 1 as the amount of film reduction.

또 상기 패턴형성 프로세스에 있어서, 프리베이크 온도만을 10℃의 범위에서 변화시키고, 각 온도에서 수득되는 레지스트 패턴 크기로부터, 단위온도당 레지스트 패턴의 치수변화량을 프리베이크 마진으로 구하였다. 그 결과를 표 1 에 나타낸다.In the above pattern forming process, only the prebaking temperature was changed in the range of 10 ° C., and the amount of dimensional change of the resist pattern per unit temperature was determined as the prebaking margin from the resist pattern size obtained at each temperature. The results are shown in Table 1.

또 상기 패턴 형성 프로세스에 있어서, 현상처리만을 침지에서 커튼플로식으로 변경하고, 현상개시시의 레지스트 패턴 크기와 현상종료시의 레지스트 패턴 사이즈로부터 그 차이를 현상 마진으로 구하였다. 그 결과를 표 1 에 나타낸다.In the above pattern formation process, only the development process was changed from immersion to curtain flow, and the difference was determined as the development margin from the resist pattern size at the start of development and the resist pattern size at the end of development. The results are shown in Table 1.

또 상기 패턴 형성 프로세스 후 200℃ 의 포스트베이크를 실행하여 레지스트 변질막을 형성하고, 이 변질막을 대표적 레지스트 박리액인 ST-106 (상품명, 도꾜오우까공업주식회사 제조) 로 박리에 필요한 시간을 박리성으로 평가하였다. 그 결과를 표 1 에 나타낸다.After the above pattern formation process, a resist deterioration film was formed by post-baking at 200 ° C., and the time required for peeling off the deformable film with ST-106 (trade name, manufactured by Tokyo Chemical Industries, Ltd.), which is a typical resist stripping solution, was released. Evaluated. The results are shown in Table 1.

실시예 2Example 2

실시예 1 의 액정소자용 화학증폭형 포지티브형 레지스트 조성물의 조성을 하기와 같이 변경한 것 이외에는, 실시예 1 과 동일하게 하여 각 특성을 평가하였다.Each characteristic was evaluated like Example 1 except having changed the composition of the chemically amplified positive resist composition for liquid crystal elements of Example 1 as follows.

(A) 성분으로서 m-크레졸 35몰%와 p-크레졸 65몰%에 옥살산과 포르말린을 첨가하고, 축합반응하여 수득된 중량평균분자량 4000의 크레졸포름노볼락수지를 사용하였다. 또한 이 수지의 2.38 질량% TMAH 수용액에 대한 알칼리 용해성은 50 ㎚/초였다. (B) 성분, (C) 성분, (D) 성분은 실시예 1 과 동일하다.As the component (A), oxalic acid and formalin were added to 35 mol% of m-cresol and 65 mol% of p-cresol, and a cresolform novolac resin having a weight average molecular weight of 4000 obtained by condensation reaction was used. Moreover, alkali solubility of this resin in the 2.38 mass% TMAH aqueous solution was 50 nm / sec. (B) component, (C) component, and (D) component are the same as that of Example 1.

(A) 성분 100질량부, (B) 성분 3질량부, (C) 성분 4질량부, (D) 성분 0.1질량부 및 비이온성 불소ㆍ실리콘계 계면활성제 (상품명 메가파크R-08 (다이닛뽕잉크화학공업사 제조)) 0.04질량부를, 프로필렌글리콜모노메틸에테르아세테이트 395질량부에 용해하여, 액정소자용 화학증폭형 포지티브형 레지스트 조성물을 조제하였다.100 parts by mass of component (A), 3 parts by mass of component (B), 4 parts by mass of component (C), 0.1 parts by mass of component (D) and a nonionic fluorine-silicone surfactant (trade name Mega Park R-08 (Dinippon Ink) 0.04 parts by mass of propylene glycol monomethyl ether acetate was dissolved to prepare a chemically amplified positive resist composition for a liquid crystal device.

결과를 표 1 에 나타낸다.The results are shown in Table 1.

비교예 1(나프토퀴논디아지드계 레지스트) Comparative Example 1 (naphthoquinone diazide resist)

실시예 1 의 액정소자용 화학증폭형 포지티브형 레지스트 조성물의 조성을하기와 같이 변경한 것 이외에는, 실시예 1 과 동일하게 하여 각 특성을 평가하였다.Each characteristic was evaluated like Example 1 except having changed the composition of the chemically amplified positive resist composition for liquid crystal elements of Example 1 as follows.

m-크레졸 35몰% 와 p-크레졸 65몰%에 옥살산과 포르말린을 첨가하고, 축합반응하여 수득된 중량평균분자량 4000의 크레졸포름노볼락 수지를, 알칼리 가용성 수지성분으로 하였다. 또한 이 수지의 2.38 질량% TMAH 수용액에 대한 알칼리 용해성은 50 ㎚/초였다. 감광성성분으로서 2,3,4,4'-테트라히드록시벤조페논 1몰에 대하여 나프토퀴논-1,2-디아지드-5-술폰산클로라이드 2.4몰을 반응시킨 에스테르화물을 사용하였다.Oxalic acid and formalin were added to 35 mol% of m-cresol and 65 mol% of p-cresol, and the cresol form novolak resin of the weight average molecular weight 4000 obtained by condensation reaction was made into the alkali-soluble resin component. Moreover, alkali solubility of this resin in the 2.38 mass% TMAH aqueous solution was 50 nm / sec. As the photosensitive component, an esterified product in which 2.4 moles of naphthoquinone-1,2-diazide-5-sulfonic acid chloride was reacted with 1 mole of 2,3,4,4'-tetrahydroxybenzophenone was used.

이 수지 100질량부, 이 감광성성분 25질량부, 증감제로서 비스(4-히드록시-2,3,5-트리메틸페닐)-2-히드록시페닐메탄 10질량부, 비이온성 불소ㆍ실리콘계 계면활성제 (상품명 메가파크R-08 (다이닛뽕잉크화학공업사 제조)) 0.04질량부를, 프로필렌글리콜모노메틸에테르아세테이트 395질량부에 용해하여, 액정소자용 증폭형 포지티브형 레지스트 조성물을 조제하였다. 결과를 표 1 에 나타낸다.100 parts by mass of the resin, 25 parts by mass of the photosensitive component, 10 parts by mass of bis (4-hydroxy-2,3,5-trimethylphenyl) -2-hydroxyphenylmethane as a sensitizer, and a nonionic fluorine-silicone surfactant (Product name Mega Park R-08 (manufactured by Dainippon Ink and Chemicals, Inc.)) 0.04 parts by mass was dissolved in 395 parts by mass of propylene glycol monomethyl ether acetate to prepare an amplifying positive resist composition for a liquid crystal device. The results are shown in Table 1.

비교예 2(3성분계 화학증폭형 포지티브형 레지스트) Comparative Example 2 (3-component chemically amplified positive resist)

실시예 1 의 액정소자용 화학증폭형 포지티브형 레지스트 조성물의 조성을 하기와 같이 변경한 것 이외에는, 실시예 1 과 동일하게 하여 각 특성을 평가하였다.Each characteristic was evaluated like Example 1 except having changed the composition of the chemically amplified positive resist composition for liquid crystal elements of Example 1 as follows.

m-크레졸 100몰%에 옥살산과 포르말린을 첨가하고, 축합반응하여 수득된 중량평균분자량 10000의 크레졸노볼락 수지를 알칼리 가용성 수지성분으로 하였다. 또한 이 수지의 2.38 질량% TMAH 수용액에 대한 알칼리 용해성은 75 ㎚/초였다.산발생제 성분은 실시예 1 과 동일하다. 용해억제제성분 1 은, 하기 화학식:Oxalic acid and formalin were added to 100 mol% of m-cresol, and the cresol novolak resin of the weight average molecular weight 10000 obtained by condensation reaction was used as alkali-soluble resin component. Moreover, alkali solubility of this resin in 2.38 mass% TMAH aqueous solution was 75 nm / sec. The acid generator component is the same as that of Example 1. The dissolution inhibitor component 1 is represented by the following formula:

의 히드록시기의 수소원자의 일부 또는 전부가 tert-부톡시카르보닐메틸기로 치환된 화합물을 사용하였다. 용해억제제성분 2 는, 데옥시콜산의 카르복실기 및 히드록시기의 수소원자의 일부 또는 전부가 1-에톡시-1-에틸기로 치환된 화합물을 사용하였다. 아민 성분은 실시예 1 과 동일하다.A compound in which part or all of the hydrogen atoms of the hydroxyl group of was substituted with tert-butoxycarbonylmethyl group was used. As the dissolution inhibitor component 2, a compound in which part or all of the hydrogen atoms of the carboxyl group and the hydroxy group of the deoxycholic acid were substituted with the 1-ethoxy-1-ethyl group was used. The amine component is the same as in Example 1.

알칼리 가용성 수지성분 100질량부, 산발생성분 5질량부, 용해억제제성분 18질량부, 용해억제제성분 28질량부, 트리이소프로판올아민 0.1질량부, 비이온성 불소ㆍ실리콘계 계면활성제 (상품명 메가파크R-08 (다이닛뽕잉크화학공업사 제조)) 0.04질량부를, 프로필렌글리콜모노메틸에테르아세테이트 395질량부에 용해하여, 액정소자용 증폭형 포지티브형 레지스트 조성물을 조제하였다. 결과를 표 1 에 나타낸다.100 parts by mass of an alkali-soluble resin component, 5 parts by mass of an acid generating component, 18 parts by mass of a dissolution inhibitor component, 28 parts by mass of a dissolution inhibitor component, 0.1 parts by mass of triisopropanolamine, and a nonionic fluorine / silicone surfactant (trade name Mega Park R-08 0.04 mass part was dissolved in 395 mass parts of propylene glycol monomethyl ether acetates, and the amplification type positive resist composition for liquid crystal elements was prepared. The results are shown in Table 1.

한계해상도(㎛)Limit resolution (㎛) 감도(mJ/cm2)Sensitivity (mJ / cm 2 ) 막축소량(㎛)Membrane shrinkage (㎛) 레지스트 패턴사이즈 (㎛)Resist Pattern Size (㎛) 프리베이크마진(㎛/℃)Prebaking Margin (㎛ / ℃) 현상마진(㎛/20초)Development margin (μm / 20 seconds) 박리성(분)Peelability (min) 실시예 1Example 1 1.31.3 1010 0.0640.064 2.02.0 0.120.12 0.040.04 22 실시예 2Example 2 1.31.3 3030 0.0600.060 2.02.0 0.080.08 0.030.03 22 비교예 1Comparative Example 1 1.51.5 1818 0.1620.162 3.03.0 0.410.41 0.750.75 1010 비교예 2Comparative Example 2 2.52.5 1212 0.070.07 3.53.5 1.141.14 0.700.70 22

표 1 로부터 명확한 바와 같이 어느 항목에 대해서도, 실시예 1, 2 는 비교예 1, 2 보다도 우수하였다.As apparent from Table 1, Examples 1 and 2 were superior to Comparative Examples 1 and 2 in any of the items.

본 발명의 액정소자용 화학증폭형 포지티브형 레지스트 조성물을 사용한 액정소자용 레지스트 패턴은, 하기의 효과를 나타낸다.The resist pattern for liquid crystal elements using the chemically amplified positive resist composition for liquid crystal elements of the present invention exhibits the following effects.

(1) 고해상성, 고감도 및 막축소 저축소의 3가지 특성을 갖는다. 종래의 나프토퀴논디아지드계 비화학증폭형 포지티브형 레지스트에서는, 고감도화되면 막축소가 커진다는 트레이드오프의 관계가 있어, 양자를 만족시키는 것은 곤란하였지만, 본 발명 조성물에 의해, 양자를 만족시키는 것이 가능해졌다. 또 본 발명 조성물에 의해, 높은 한계해상도를 달성할 수 있다. 실시예 1, 2 모두 약 1.3㎛의 한계해상도이다. 또한 종래의 액정소자 제조용 나프토퀴논디아지드계 비화학증폭형 포지티브형 레지스트의 한계해상도는 약 1.4㎛ 이었다. 또 3성분계 화학증폭형 포지티브형 레지스트의 한계해상도는 약 2.5㎛ 이었다.(1) It has three characteristics: high resolution, high sensitivity and low film reduction. In the conventional naphthoquinone diazide non-chemically amplified positive resist, there is a trade-off in that the film shrinks when the sensitivity is increased, and it is difficult to satisfy both, but it is difficult to satisfy both by the composition of the present invention. It became possible. Moreover, the high limit resolution can be achieved by the composition of this invention. Examples 1 and 2 both have a marginal resolution of about 1.3 mu m. In addition, the limit resolution of the conventional naphthoquinone diazide non-chemically amplified positive resist for liquid crystal device manufacturing was about 1.4 mu m. The limit resolution of the three-component chemically amplified positive resist was about 2.5 µm.

(2) 레지스트 패턴 형상의 직사각형성을 향상시킨다.(2) The rectangular shape of the resist pattern shape is improved.

(3) 프리베이크 마진의 향상 : 레지스트 패턴 사이즈 변화량을, 종래에 비하여 1/3 이하로 할 수 있었다. 종래 레지스트의 온도당 레지스트 패턴크기 변화량은 0.41㎛/℃이었다. 이에 대하여 실시예 1, 2 에서는 0.08 내지 0.12㎛/℃를 달성할 수 있었다.(3) Improvement of prebaking margin: The amount of change in the resist pattern size could be set to 1/3 or less as compared with the prior art. The resist pattern size change amount per temperature of the conventional resist was 0.41 mu m / 占 폚. In contrast, in Examples 1 and 2, 0.08 to 0.12 µm / ° C could be achieved.

(4) 현상 마진의 향상 : 레지스트 패턴 크기 편차를 대폭 감소시킬 수 있다. 종래의 레지스트 패턴 크기 편차는 0.75㎛이었다. 이에 대하여 실시예 1, 2 에서는 0.03 내지 0.04㎛까지 억제할 수 있었다.(4) Improvement of development margin: It is possible to greatly reduce the variation of the resist pattern size. The conventional resist pattern size deviation was 0.75 mu m. On the other hand, in Example 1, 2, it could suppress to 0.03-0.04 micrometer.

(5) 박리성의 향상 : 레지스트 패턴의 변질을 대폭 억제할 수 있다. 종래의 레지스트에서는, 포스트 베이크 160℃ 에서 형성한 변질막을 박리액온도 60℃ 에서 박리에 필요한 시간이 10분이었던 것에 대하여, 본 발명 조성물에서는 포스트 베이크 200℃에서 형성한 변질막을 박리액온도 23℃에서 박리에 필요한 시간이 2분 이내였다.(5) Improvement of peelability: The alteration of a resist pattern can be suppressed significantly. In the conventional resist, the time required for peeling off the deformed film formed at the post-baking 160 ° C was 60 minutes at the peeling liquid temperature, whereas in the composition of the present invention, the deformed film formed at the post-baking 200 ° C. was used at the peeling liquid temperature 23 ° C. The time required for peeling was within 2 minutes.

(6) 저비용화 : 액정소자용 레지스트는, 퍼스널 컴퓨터 등의 액정 디바이스를 탑재한 전자기기의 가격인하의 영향을 받아, 강한 저비용화의 요구가 있다. 본 발명의 액정소자용 화학증폭형 포지티브형 레지스트 조성물은, 상기 (1) 내지 (5) 의 특성을 가지면서, 또한 저비용화에 대응할 수 있어, 화학증폭형 액정소자용 레지스트 조성물의 상업화가 용이해졌다.(6) Cost Reduction: The resist for liquid crystal elements is strongly affected by the cost reduction of electronic equipment on which liquid crystal devices such as personal computers are mounted. The chemically amplified positive resist composition for a liquid crystal device of the present invention has the characteristics of (1) to (5) above, and can cope with lowering of costs, thereby facilitating commercialization of the chemically amplified liquid crystal device resist composition. .

Claims (6)

하기 성분 (A) 내지 (C) 를 유기용제에 용해시키는 것으로 이루어진 액정소자용 화학증폭형 포지티브형 레지스트 조성물:A chemically amplified positive resist composition for a liquid crystal device comprising the following components (A) to (C) dissolved in an organic solvent: (A) 2.38 질량% 테트라메틸암모늄히드록시드 수용액에 대한 알칼리 용해성이 37.5 내지 100 ㎚/초 범위인 노볼락수지로 이루어진 알칼리 가용성 수지,(A) an alkali-soluble resin consisting of a novolak resin having an alkali solubility in an aqueous solution of 2.38 mass% tetramethylammonium hydroxide in the range of 37.5 to 100 nm / sec, (B) 방사선의 조사에 의해 산을 생성시키는 화합물, 및(B) a compound which generates an acid by irradiation of radiation, and (C) 가교성 폴리비닐에테르 화합물.(C) Crosslinkable polyvinyl ether compound. 제 1 항에 있어서, 상기 (A) 성분은 2.38 질량% 테트라메틸암모늄히드록시드 수용액에 대한 알칼리 용해성이 50 내지 75 ㎚/초 범위인 m-크레졸노볼락수지인 것을 특징으로 하는 액정소자용 화학증폭형 포지티브형 레지스트 조성물.The chemistry for liquid crystal device according to claim 1, wherein the component (A) is m-cresol novolac resin having an alkali solubility in a 2.38 mass% tetramethylammonium hydroxide aqueous solution in a range of 50 to 75 nm / sec. Amplified Positive Resist Composition. 제 1 항에 있어서, 상기 (B) 성분은 g(436㎚)선, h(405nm)선 및 i(365㎚)선 중 어느 하나의 조사에 의해 산을 생성시키는 화합물인 것을 특징으로 하는 액정소자용 화학증폭형 포지티브형 레지스트 조성물.The liquid crystal element according to claim 1, wherein the component (B) is a compound which generates an acid by irradiation of any one of g (436 nm) line, h (405 nm) line, and i (365 nm) line. Chemically amplified positive resist composition. 제 1 항에 있어서, 상기 (C) 성분은 하기 화학식 1 로 표시되는 알코올의 히드록시기의 일부 또는 전부를 비닐기로써 에테르화한 화합물인 것을 특징으로 하는 액정소자용 화학증폭형 포지티브형 레지스트 조성물:The chemically amplified positive resist composition for a liquid crystal device according to claim 1, wherein the component (C) is a compound obtained by etherifying a part or all of the hydroxy group of the alcohol represented by the following formula (1) with a vinyl group: [화학식 1][Formula 1] Rn-(OH)n R n- (OH) n [식 중, Rn은 직쇄기, 분지쇄기 또는 고리기를 함유하는 알칸으로부터 n개의 수소원자가 제외된 기이고, n은 2, 3 또는 4의 정수를 나타낸다].[Wherein, R n is a group in which n hydrogen atoms are removed from an alkane containing a straight chain, branched chain or ring group, and n represents an integer of 2, 3 or 4]. 제 1 항에 있어서, 추가로 (D) 성분으로서 아민류를 (A) 성분 100 질량부에 대하여 0.01 내지 5 질량부 배합하여 이루어지는 것을 특징으로 하는 액정소자용 화학증폭형 포지티브형 레지스트 조성물.The chemically amplified positive resist composition according to claim 1, further comprising 0.01 to 5 parts by mass of amines as component (D) based on 100 parts by mass of component (A). 유리기판 상에 제 1 항 내지 제 5 항 중 어느 한 항에 기재된 액정소자용 화학증폭형 포지티브형 레지스트 조성물을 사용하여 도포막을 형성하고, 건조후, 마스크패턴을 통하여 노광하고, 노광후 가열처리하고, 이어서 알칼리현상하는 공정에 의해 수득되는 액정소자용 레지스트 패턴.A coating film is formed on the glass substrate using the chemically amplified positive resist composition for liquid crystal elements according to any one of claims 1 to 5, dried, exposed through a mask pattern, and subjected to post-exposure heat treatment. And the resist pattern for liquid crystal elements obtained by the process of alkali developing next.
KR1020020046088A 2001-08-06 2002-08-05 Chemical amplified type positive resist composition for liquid crystal element KR100585301B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPJP-P-2001-00238039 2001-08-06
JP2001238039A JP4554122B2 (en) 2001-08-06 2001-08-06 Resist composition for chemically amplified positive type liquid crystal device

Publications (2)

Publication Number Publication Date
KR20030035831A true KR20030035831A (en) 2003-05-09
KR100585301B1 KR100585301B1 (en) 2006-06-01

Family

ID=19069026

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020020046088A KR100585301B1 (en) 2001-08-06 2002-08-05 Chemical amplified type positive resist composition for liquid crystal element

Country Status (3)

Country Link
JP (1) JP4554122B2 (en)
KR (1) KR100585301B1 (en)
TW (1) TW594391B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100626581B1 (en) * 2003-06-16 2006-09-25 도오꾜오까고오교 가부시끼가이샤 Chemically amplified positive photoresist composition and method for forming resist pattern
KR100813458B1 (en) * 2003-05-20 2008-03-13 도오꾜오까고오교 가부시끼가이샤 Chemically amplified positive photo resist composition and method for forming resist pattern
KR100865063B1 (en) * 2003-05-22 2008-10-23 도오꾜오까고오교 가부시끼가이샤 Chemically amplified positive photo resist composition and method for forming resist pattern

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4759895B2 (en) * 2001-09-20 2011-08-31 住友ベークライト株式会社 Resin for photoresist and photoresist composition
JP4355591B2 (en) * 2004-02-23 2009-11-04 富士フイルム株式会社 Positive resist composition and pattern forming method using the same
JP4924813B2 (en) * 2004-10-29 2012-04-25 日産化学工業株式会社 Dye-containing resist composition containing photoacid generator and color filter using the same
US8420520B2 (en) 2006-05-18 2013-04-16 Megica Corporation Non-cyanide gold electroplating for fine-line gold traces and gold pads
KR101385946B1 (en) * 2007-04-02 2014-04-16 주식회사 동진쎄미켐 Photoresist composition and method of forming photoresist pattern using the same
US8715918B2 (en) 2007-09-25 2014-05-06 Az Electronic Materials Usa Corp. Thick film resists
PT3497519T (en) 2016-08-09 2021-02-09 Merck Patent Gmbh Enviromentally stable, thick film, chemically amplified resist

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5364738A (en) * 1991-10-07 1994-11-15 Fuji Photo Film Co., Ltd. Light-sensitive composition
JPH07140661A (en) * 1993-06-18 1995-06-02 Hitachi Chem Co Ltd Photosensitive resin composition and production of resist image
JPH0894829A (en) * 1994-09-28 1996-04-12 Kansai Paint Co Ltd Production of color filter
JP3518158B2 (en) * 1996-04-02 2004-04-12 信越化学工業株式会社 Chemically amplified positive resist material
JPH10133379A (en) * 1996-08-27 1998-05-22 Hitachi Chem Co Ltd Positive chemically amplifying photosensitive resin composition and production of resist image
WO1999015935A1 (en) * 1997-09-22 1999-04-01 Clariant International Ltd. Novel process for preparing resists
JP4068260B2 (en) * 1999-04-02 2008-03-26 Azエレクトロニックマテリアルズ株式会社 Radiation sensitive resin composition
JP3903638B2 (en) * 1999-04-12 2007-04-11 株式会社日立製作所 Pattern formation method
KR100421034B1 (en) * 1999-04-21 2004-03-04 삼성전자주식회사 Resist composition and fine pattern forming method using the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100813458B1 (en) * 2003-05-20 2008-03-13 도오꾜오까고오교 가부시끼가이샤 Chemically amplified positive photo resist composition and method for forming resist pattern
KR100865063B1 (en) * 2003-05-22 2008-10-23 도오꾜오까고오교 가부시끼가이샤 Chemically amplified positive photo resist composition and method for forming resist pattern
KR100626581B1 (en) * 2003-06-16 2006-09-25 도오꾜오까고오교 가부시끼가이샤 Chemically amplified positive photoresist composition and method for forming resist pattern

Also Published As

Publication number Publication date
JP2003050460A (en) 2003-02-21
KR100585301B1 (en) 2006-06-01
TW594391B (en) 2004-06-21
JP4554122B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
JP2010102348A (en) Photoresist composition for thick film
KR100585301B1 (en) Chemical amplified type positive resist composition for liquid crystal element
KR101363738B1 (en) Photoresist composition and patterning method thereof
JP4476680B2 (en) Chemically amplified positive photoresist composition for implantation process
US20040197696A1 (en) Photoresist compositions
KR100621394B1 (en) Method for removing chemically amplified positive photoresist composition
JP2005522533A (en) NOVOLAC RESIN MIXTURE AND PHOTOSENSITIVE COMPOSITION CONTAINING THE SAME
JP4053402B2 (en) Positive photoresist composition for LCD production and method for forming resist pattern
JP3135585B2 (en) Positive photoresist composition containing 2,4-dinitro-1-naphthol
KR19990006795A (en) Radiation-sensitive resin composition
KR100531593B1 (en) Positive photoresist composition
KR20040103320A (en) Chemical amplification type positive photoresist composition and resist pattern forming method using the same
JPH03107160A (en) Resist composition
JP4707987B2 (en) Chemically amplified positive photoresist composition
JP2005010213A (en) Chemically amplified positive photoresist composition and resist pattern forming method
KR20120068463A (en) Positive photoresist composition
JP3636503B2 (en) Radiation sensitive resin composition
KR20040104380A (en) Chemical amplification type positive photoresist composition and resist pattern forming method using the same
KR101316192B1 (en) Photoresist composition
JPH06118649A (en) Resist composition
KR100987784B1 (en) Composition for positive type photoresist
WO1993018438A1 (en) Positive photoresist composition
JPH10115915A (en) Radiation-sensitive resin composition
JPH08328244A (en) Positive photoresit composition
KR20110035528A (en) A positive photoresist composition

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130503

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140502

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150416

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160419

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170420

Year of fee payment: 12

FPAY Annual fee payment

Payment date: 20180427

Year of fee payment: 13

FPAY Annual fee payment

Payment date: 20190429

Year of fee payment: 14