KR20020083664A - A composit materials for medical implement reinforced by nano fiber, and a process of preparing for the same - Google Patents
A composit materials for medical implement reinforced by nano fiber, and a process of preparing for the same Download PDFInfo
- Publication number
- KR20020083664A KR20020083664A KR1020010023159A KR20010023159A KR20020083664A KR 20020083664 A KR20020083664 A KR 20020083664A KR 1020010023159 A KR1020010023159 A KR 1020010023159A KR 20010023159 A KR20010023159 A KR 20010023159A KR 20020083664 A KR20020083664 A KR 20020083664A
- Authority
- KR
- South Korea
- Prior art keywords
- lactide
- poly
- nanofibers
- copolymer
- composite material
- Prior art date
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L27/00—Materials for grafts or prostheses or for coating grafts or prostheses
- A61L27/40—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
- A61L27/44—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
- A61L27/48—Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with macromolecular fillers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y5/00—Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01D—MECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
- D01D5/00—Formation of filaments, threads, or the like
- D01D5/0007—Electro-spinning
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Nanotechnology (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Medical Informatics (AREA)
- Biophysics (AREA)
- Molecular Biology (AREA)
- Pharmacology & Pharmacy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Mechanical Engineering (AREA)
- Textile Engineering (AREA)
- Composite Materials (AREA)
- Biotechnology (AREA)
- Dermatology (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Transplantation (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Materials For Medical Uses (AREA)
- Nonwoven Fabrics (AREA)
Abstract
Description
본 발명은 생체분해성을 갖고 나노섬유로 강화된 의료기구용 복합재료 및 그의 제조방법에 관한 것이다. 의료용 임플랜트(implant) 및 기구는 핀, 로드, 네일(nails), 앵커(anchors), 스크루, 플레이트, 스테플러, 크램프(clamps), 훅(hooks), 클립 등의 정형외과용 일회용 기구 및 수술용 기구로 사용되고 있다.The present invention relates to a composite material for medical devices biodegradable and reinforced with nanofibers and a method for producing the same. Medical implants and instruments are orthopedic disposable and surgical instruments such as pins, rods, nails, anchors, screws, plates, staplers, clamps, hooks, clips, etc. Is being used.
종래 티탄늄으로 제조된 의료용 임플랜트 및 기구들이 널리 사용되어 왔으나, 이들은 생체분해성이 없어 뼈가 완전히 접합된 후 이들을 제거하기 위한 별도의 2차 시술이 필요한 단점이 있었다. 이와 같은 문제점을 해결하기 위해서, 생체분해성 고분자로 제조된 다양한 의료용 임플랜트 및 기구들이 제안되어 왔다.Conventional medical implants and instruments made of titanium have been widely used, but they have the disadvantage of requiring a separate secondary procedure for removing them after the bone is completely bonded because they are not biodegradable. In order to solve this problem, various medical implants and instruments made of biodegradable polymers have been proposed.
구체적으로 미국특허 4,279,249에서는 메트릭스로 폴리(락티드 산) 또는 그의 공중합체를 사용하고 강화섬유로 폴리(글리코릭 산) 또는 그의 공중합체를 사용하여 제조된 외과용 의료기구를 제안하고 있다.Specifically, US Pat. No. 4,279,249 proposes a surgical medical device manufactured using poly (lactic acid) or a copolymer thereof as a matrix and poly (glycolic acid) or a copolymer thereof as a reinforcing fiber.
미국특허 4,743,257에서는 강화섬유나 메트릭스를 같은 종류의 생체분해성 고분자를 사용하여 제조한 외과용 복합재료를 제안하고 있다.U.S. Patent 4,743,257 proposes a surgical composite material made of the same type of biodegradable polymer using reinforcing fibers or matrices.
미국특허 4,843,112에서는 가교 결합된 생체분해성 고분자를 메트릭스로 사용하고, 여기에 칼슘 포스페이트 세라믹(calcium phosphate ceramic) 등을 분산시킨 본 세멘트(bone cement)를 제안하고 있다.U.S. Patent 4,843,112 proposes a bone cement in which a cross-linked biodegradable polymer is used as a matrix, and calcium phosphate ceramic and the like are dispersed therein.
미국특허 4,604,097에서는 유리섬유로 강화한 생체분해성 고분자 복합재료로 된 외과 혹은 치과용 임플랜트를 제안하고 있다.U.S. Patent 4,604,097 proposes a surgical or dental implant made of glass fiber reinforced biodegradable polymer composites.
미국특허 5,108,755에서는 두가지 이상의 관능기를 갖는 케텐아세탈(ketene acetal)의 반응에 의하여 제조된 오르소 에스테르(ortho ester)를 메트릭스로 사용하고, 강화재료로는 칼슘-소디움 메타포스페이트(calcium-sodium metaphosphate) 섬유를 사용하여 제조한 생체분해성 복합재료를 제안하고 있다.US Pat. No. 5,108,755 uses ortho esters prepared by the reaction of ketene acetals having two or more functional groups as a matrix, and calcium-sodium metaphosphate fiber as a reinforcing material. It is proposed a biodegradable composite material prepared using.
미국특허 5,468,544에서는 생체적합성 유리 섬유나 세라믹섬유로 강화한 생체분해성 고분자로 제조된 복합재료를 제안하고 있다.U.S. Patent 5,468,544 proposes a composite material made of biodegradable polymer reinforced with biocompatible glass fibers or ceramic fibers.
미국특허 5,338,772에서는 생체분해성 고분자의 메트릭스를 칼슘 포스페이트(calcium phosphate)로 강화한 임플랜트용 다공성 복합재료를 제안하고 있다.U.S. Patent 5,338,772 proposes a porous composite material for implants in which the matrix of the biodegradable polymer is reinforced with calcium phosphate.
미국 특허 5,092,884에서는 메트릭스로는 생체분해성 고분자를 사용하고 비분해성 섬유를 사용하여 제조한 복합재료를 제안하고 있다.U.S. Patent 5,092,884 proposes a composite material prepared using biodegradable polymers as the matrix and non-degradable fibers.
미국특허 5,578,046에서는 코아(core)에 분해속도가 빠른 생체분해성 고분자를 사용하고 쉘(shell) 부분에는 분해속도가 느린 생체분해성 고분자를 사용하여 제조된 생체분해성 복합재료를 제안하고 있다.U.S. Patent 5,578,046 proposes a biodegradable composite material prepared using a biodegradable polymer having a high decomposition rate in a core and a biodegradable polymer having a low decomposition rate in a shell portion.
미국특허 6,171,338에서는 공동(空洞)조직(tissue cavity)을 오픈된 상태로 유지하기 위한 원통형 생체분해성 의료용구에 관한 것으로, 축 방향에 대하여 수직방향으로 힘을 고르게 분배하기 위하여 헤리칼(helical) 구조를 갖고, 강화 요소로는 섬유, 필름, 와이어, 브레이드, 리본, 부직포, 직물, 편물, 스테이플 등을 사용한 의료용구를 제안하고 있다.U. S. Patent 6,171, 338 relates to a cylindrical biodegradable medical device for keeping a tissue cavity open. A helical structure is provided to distribute force evenly in a direction perpendicular to the axial direction. As the reinforcing elements, medical devices using fibers, films, wires, braids, ribbons, nonwoven fabrics, woven fabrics, knitted fabrics, staples, and the like are proposed.
이상에서 설명한 종래의 생체분해성 의료용 기구들은 인체내에서 자연분해하는 성질을 갖고 있으나, 뼈 및 종래 티탄늄 의료용 기구에 비하여 굽힘강력 및 굽힘탄성율이 낮은 문제가 있었다.The conventional biodegradable medical instruments described above have the property of naturally decomposing in the human body, but have a lower bending strength and flexural modulus than those of bone and conventional titanium medical instruments.
본 발명은 이와 같은 종래 문제점들을 해결하기 위하여 생체분해성, 굽힘강력 및 굽힘탄성율 모두가 동시에 우수한 의료기구용 복합재료를 제공하고자 한다.아울러 본 발명은 생체분해성 매트릭스 내에 직경이 나노수준인 초극세 섬유(이하 "나노섬유"라고 한다)를 혼합한 후, 이를 압축성형하여 생체분해성, 굽힘강력 및 굽힘탄성율 모두가 동시에 우수한 의료기구용 복합재료를 제공하고자 한다. 또한 본 발명은 상기 나노섬유를 효율적으로 제조하는 방법도 제공하고자 한다.The present invention seeks to provide a composite material for medical devices that is both excellent in biodegradability, bending strength, and flexural modulus at the same time in order to solve these conventional problems. In addition, the present invention provides an ultra-fine fiber having a diameter of nano-level in the biodegradable matrix (hereinafter " After the nanofibers are mixed with each other, compression molding is performed to provide a composite material for medical devices having excellent biodegradability, bending strength, and flexural modulus at the same time. In another aspect, the present invention is to provide a method for efficiently producing the nanofibers.
도 1은 폴리(L-락티드) 나노섬유로 구성된 부직포의 사진.1 is a photograph of a nonwoven fabric composed of poly (L-lactide) nanofibers.
도 2는 폴리(L-락티드) 나노섬유의 사진(도 1의 확대사진)FIG. 2 is a photograph of poly (L-lactide) nanofibers (enlarged photograph of FIG. 1)
도 3은 L-락티드/글리코라이드 공중합체 나노섬유의 사진Figure 3 is a photograph of L-lactide / glycolide copolymer nanofibers
도 4는 셀룰로오즈 나노섬유로 구성된 부직포의 사진4 is a photograph of a nonwoven fabric composed of cellulose nanofibers
도 5는 셀룰로오즈 나노섬유의 사진(도 4의 확대사진)Figure 5 is a photograph of cellulose nanofibers (enlarged photograph of Figure 4)
이와 같은 기술적 과제를 달성하기 위한 본 발명의 나노섬유로 강화된 의료기구용 복합재료는 생체분해성 고분자인 매트릭스(Matrix) 10∼90체적%와 직경이 10∼500나노미터인 생체분해성 나노섬유(강화재) 90∼10체적%로 구성되며, 굽힘강력이 290MPa 이상이고 굽힘탄성율이 17GPa 이상인 것을 특징으로 한다.The composite material for medical devices reinforced with nanofibers of the present invention for achieving the technical problem is a biodegradable nanofibers (reinforcement) of 10 to 90% by volume of the matrix (biotrix) and 10 to 500 nanometers in diameter It is composed of 90 to 10% by volume, the bending strength is 290MPa or more and the flexural modulus is 17GPa or more.
또한 본 발명은 상기 의료기구용 복합재료를 (ⅰ) 생체분해성 고분자를 전기방사하여 나노섬유로 구성된 부직포를 제조한 후, 이를 분쇄하여 직경이 10∼500나노미터인 생체분해성 나노섬유(강화제)를 제조한 다음, (ⅱ) 생체분해성 고분자인 메트릭스(Matrix) 10∼90체적%와 상기 나노섬유 90∼10체적%를 혼합한 후, 이를 압축성형하여 제조하는 것을 특징으로 한다.In another aspect, the present invention is to produce a biodegradable nanofibers (reinforcement) of 10 to 500 nanometers in diameter by producing a non-woven fabric composed of nanofiber by electrospinning the biodegradable polymer (ⅰ) the composite material for medical devices. Then, (ii) 10 to 90% by volume of the matrix (Matrix) which is a biodegradable polymer and 90 to 10% by volume of the nanofibers, and then characterized in that the compression molding.
이하, 본 발명을 상세하게 설명한다.EMBODIMENT OF THE INVENTION Hereinafter, this invention is demonstrated in detail.
본 발명의 의료기구용 복합재료는 생체분해성 고분자인 매트릭스 내에 직경이 10∼500나노미터이며 생체분해성 고분자로 제조된 나노섬유가 강화재로서 혼합된 조성을 갖는다. 이때, 상기 매트릭스 : 나노섬유의 혼합비는 체적% 기준으로 10∼90% : 90∼10%, 더욱 바람직하기로는 30∼70% : 70∼30% 이다. 나노섬유의 체적비가 상기 범위보다 낮을 경우에는 복합재료의 굽힘강력 및 굽힘탄성율이 저하 될 수 있고, 상기 범위를 초과하는 경우에는 성형성이 나빠질 수 있다.The composite material for a medical device of the present invention has a diameter of 10 to 500 nanometers in a matrix which is a biodegradable polymer and has a composition in which nanofibers made of a biodegradable polymer are mixed as a reinforcing material. At this time, the mixing ratio of the matrix: nanofibers is 10 to 90%: 90 to 10%, more preferably 30 to 70%: 70 to 30% by volume. When the volume ratio of the nanofibers is lower than the above range, the bending strength and the flexural modulus of the composite material may decrease, and when the volume ratio exceeds the above range, the moldability may deteriorate.
복합재료의 물성 및 성형가공성 향상을 위해서는, 상기 나노섬유의 모양변형비(Aspect ratio)는 104∼108수준인 것이 바람직 하다.In order to improve physical properties and molding processability of the composite material, it is preferable that the aspect ratio of the nanofibers is in the range of 10 4 to 10 8 .
상기 매트릭스 및 나노섬유를 구성하는 생체분해성 고분자들은 폴리글리코라이드(Polyglycolide), 글리코라이드 공중합체(Copolymers of glycolide), 글리코라이드-락티드 공중합체(Glycolide-lactide copolymers), 글리코라이드-트리메틸렌 카보네이트 공중합체(Glycolide-trimethylene carbonate copolymers), 폴리락티드(Polylactides), 폴리-L-락티드(Poly-L-lactide), 폴리-D-락티드(Poly-D-lactide), 폴리-DL-락티드(Poly-DL-lactide), L-락티드/DL-락티드 공중합체, L-락티드/D-락티드 공중합체, 폴리락티드 공중합체, 락티드-트리메틸렌 글리코라이드 공중합체, 락티드-트리메틸렌 카보네이트 공중합체, 락티드/δ-바레로락톤(δ-valerolactone) 공중합체, 락티드/ε-카프로락톤 공중합체, 폴리데프시펩티드(글리신-DL-락티드 공중합체)[Polydepsipeptides(glycine-DL-lactide copolymer)], 폴리락티드/에틸렌옥사이드 공중합체, 애시미트리컬리 3,6-서브스티튜티드 폴리-1,4-디옥산-2,5-디온스 (Asymmetrically 3,6-substituted poly-1,4-dioxane-2,5-diones), 폴리-β-하이드록시부틸레이트(Poly-β-hydroxybutyrate), 폴리-β-하이드록시부틸레이트/β-하이드록시바레레이트(β-hydroxyvalerate) 공중합체, 폴리-β-하이드록시프로피오네이트(Poly-β-hydroxypropionate), 폴리-p-디옥산온,폴리-δ-바레로락톤(Poly-δ-valerolactone), 폴리-ε-카프로락톤, 이들의 공중합체 또는 이들의 블랜드물 등 이다.The biodegradable polymers constituting the matrix and the nanofibers are polyglycolide, copolymers of glycolide, glycolide-lactide copolymers, glycolide-trimethylene carbonate aerials. Glycolide-trimethylene carbonate copolymers, Polylactides, Poly-L-lactide, Poly-D-lactide, Poly-DL-lactide (Poly-DL-lactide), L-lactide / DL-lactide copolymer, L-lactide / D-lactide copolymer, polylactide copolymer, lactide-trimethylene glycolide copolymer, lactide -Trimethylene carbonate copolymer, lactide / δ-valerolactone copolymer, lactide / ε-caprolactone copolymer, polydepsipeptide (glycine-DL-lactide copolymer) [Polydepsipeptides ( glycine-DL-lactide copolymer)], polylactide / ethylene oxide copolymer, Asymmetrically 3,6-substituted poly-1,4-dioxane-2,5-diones, poly- β-hydroxybutyrate, poly-β-hydroxybutylate / β-hydroxyvalerate copolymer, poly-β-hydroxypropionate (Poly-β -hydroxypropionate), poly-p-dioxone, poly-δ-valerolactone, poly-ε-caprolactone, copolymers thereof, or blends thereof.
본 발명의 복합재료는 생체분해성 고분자로 제조되기 때문에 생체분해성을 갖게 되며, 초극세 나노섬유가 강화재로 함유되어 있기 때문에 굽힘강력 및 굽힘탄성율이 매우 우수하다.Since the composite material of the present invention is made of a biodegradable polymer, it has biodegradability, and because the ultrafine nanofiber is contained as a reinforcing material, the bending strength and the flexural modulus are very excellent.
구체적으로, 인간뼈의 굽힘강력이 80∼120MPa이고, 스틸의 굽힘강력이 280MPa 수준이나 본 발명 복합재료의 굽힘강력은 290MPa 이상이다. 또한 인간뼈의 굽힘탄성율은 10∼17GPa이나, 본 발명 복합재료의 굽힘탄성율은 17GPa 이상이다.Specifically, the bending strength of the human bone is 80 to 120 MPa, the bending strength of the steel is 280 MPa level, but the bending strength of the composite material of the present invention is 290 MPa or more. In addition, the bending elastic modulus of the human bone is 10-17 GPa, but the bending elastic modulus of the composite material of the present invention is 17 GPa or more.
그 결과, 본 발명의 복합재료는 스테플러, 훅, 클램프, 로드, 핀 등의 다양한 형태로 성형되어 경조직/연조직 결합 보철기구, 수술용 임플랜트 등으로 사용된다.As a result, the composite material of the present invention is molded into various forms such as staplers, hooks, clamps, rods, pins, etc., and is used as hard / soft tissue connective prosthetics, surgical implants, and the like.
다음으로, 본 발명의 복합재료를 제조하는 방법을 구체적으로 살펴본다.Next, a method of manufacturing the composite material of the present invention will be described in detail.
먼저, 상기의 생체분해성 고분자를 용매에 용해시킨 후, 이를 전기방사하여 나노섬유로 구성된 부직포를 제조한 다음, 이를 분쇄하여 직경이 10∼500나노미터이고, 모양변형비가 104∼108수준인 생체분해성 나노섬유(강화재)를 제조한다.First, after dissolving the biodegradable polymer in a solvent, it is electrospun to prepare a non-woven fabric consisting of nanofibers, and then crushed it to a diameter of 10 to 500 nanometers, shape deformation ratio of 10 4 ~ 10 8 level Biodegradable nanofibers (reinforcements) are prepared.
다음으로는 상기와 같이 제조된 나노섬유와 앞에서 설명한 생체분해성 고분자(메트릭스)를 압축성형기에서 혼합, 압축성형하여 본 발명의 복합재료를 제조한다. 이때 나노섬유 : 메트릭스의 혼합비율(체적%)은 10∼90% : 90∼10%, 더욱 바람직 하기로는 30∼70% : 70∼30%로 한다.Next, the composite material of the present invention is manufactured by mixing and compressing the nanofibers prepared as described above and the biodegradable polymer (metrics) described above in a compression molding machine. In this case, the mixing ratio (volume%) of the nanofibers: matrix is 10 to 90%: 90 to 10%, more preferably 30 to 70%: 70 to 30%.
도 1은 폴리(L-락티드)를 메틸렌 클로라이드 용매에 5%로 용해하여 상온에서 10kV의 고압에서 전기방사하여 제조한 부직포의 표면 확대사진이다. 도2는 도 1을 확대한 사진으로 섬유 직경은 약 180나노미터 정도이다. 도3은 메틸렌 클로라이드 용매에 L-락티드/글리코라이드 공중합체를 12%로 용해하여 상온에서 8kV의 고압에서 전기방사하여 제조한 나노 섬유의 사진이다. 도4는 셀룰로오스를 N-메틸 모르포린 N-옥사이드(N-methyl morpholine N-oxide)로 용해하여 전기방사한 부직포의 사진이고, 도 5는 셀룰로오스 나노섬유를 나타내기 위해 도 4를 확대한 사진이다.1 is an enlarged photograph of the surface of a nonwoven fabric prepared by dissolving poly (L-lactide) in methylene chloride solvent at 5% and electrospinning at a high pressure of 10 kV at room temperature. FIG. 2 is an enlarged photograph of FIG. 1 with a fiber diameter of about 180 nanometers. 3 is a photograph of nanofibers prepared by dissolving an L-lactide / glycolide copolymer at 12% in methylene chloride solvent and electrospinning at a high pressure of 8 kV at room temperature. FIG. 4 is a photograph of a nonwoven fabric by dissolving cellulose with N-methyl morpholine N-oxide and electrospinning. FIG. 5 is an enlarged photograph of FIG. 4 to show cellulose nanofibers. .
이하, 실시예를 통하여 본 발명을 더욱 구체적으로 살펴본다. 그러나 본 발명이 하기 실시예에만 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the present invention is not limited only to the following examples.
실시예 1Example 1
클로로포름 용매를 사용하여 25℃에서 모세관 점도계를 이용하여 측정한 결과 고유점도가 3.2인 폴리(L-락티드)[poly(L-lactide)]를 메틸렌 클로라이드(methylene chloride)에 용해하여 4.5% 용액을 제조한다. 그런 다음에 이를 노즐 직경이 1mm인 노즐을 이용하여 고전압 10kV하에서 전기방사하여 평균 직경이 200나노미터인 섬유로 구성된 부직포를 제조하였다. 제조된 부직포를 액체질소하에서 프레즈 밀(freez mill)로 분쇄한 후 진공하 120℃에서 12시간 동안 건조하여 나노섬유를 제조 하였다. 제조된 나노 섬유는 길이/직경의 비가6.5x105이었다. 다음으로 헥사플루오로이소프판올(Hexafluoroisopropanol) 용매로 25℃에서 측정한 고유점도가 2.3인 폴리(p-디옥산온)고분자를 프레즈 밀(Freeze Mill)로 입자크기가 300㎛ 되도록 분쇄하였다. 다음으로 폴리(L-락티드)[poly(L-lactide)] 나노 강화 섬유와 메트릭스인 폴리(p-디옥산온)[poly(p-dioxanaone)] 고분자를 혼합(나노섬유/매트릭스 =30/70 : 체적비율) 한 후, 2.5톤의 압력 및 110℃의 온도 하에서 압축성형한 후 급냉하여 복합재료를 제조 하였다. 제조된 복합재료의 굽힙강력은 320MPa이고, 굽힘탄성율은 18GPa이였다.Using a capillary viscometer at 25 ° C using a chloroform solvent, poly (L-lactide) with an intrinsic viscosity of 3.2 was dissolved in methylene chloride to obtain a 4.5% solution. Manufacture. Then, it was electrospun under a high voltage of 10 kV using a nozzle having a nozzle diameter of 1 mm to prepare a nonwoven fabric composed of fibers having an average diameter of 200 nanometers. The prepared nonwoven fabric was pulverized in a press mill (freez mill) under liquid nitrogen and dried at 120 ° C. under vacuum for 12 hours to prepare nanofibers. The nanofibers produced had a length / diameter ratio of 6.5 × 10 5 . Next, poly (p-dioxone) polymer having an intrinsic viscosity of 2.3 measured at 25 ° C. in a hexafluoroisopropanol solvent was ground to a particle size of 300 μm using a freeze mill. Next, a poly (L-lactide) nano reinforced fiber and a matrix of poly (p-dioxanaone) polymer are mixed (nano fiber / matrix = 30 /). 70: by volume ratio), and compression molding under a pressure of 2.5 tons and a temperature of 110 ℃ and then quenched to prepare a composite material. The flexural strength of the manufactured composite material was 320 MPa, the flexural modulus was 18 GPa.
실시예 2Example 2
클로로포름 용매를 사용하여 25℃에서 모세관 점도계를 이용하여 측정한 결과 고유점도가 4.5인 폴리(L-락티드)[poly(L-lactide)]를 메틸렌 클로라이드(methylene chloride)에 용해하여 3.6% 용액을 제조한다. 그런 다음에 이를 노즐 직경이 0.8mm인 노즐을 이용하여 고전압 8kV하에서 전기방사하여 평균 직경이 160나노미터인 섬유로 구성된 부직포를 제조하였다. 제조된 부직포를 액체질소하에서 프레즈 밀(freez mill)로 분쇄한 후 진공하 120℃에서 12시간 동안 건조하여 나노섬유를 제조 하였다. 제조된 나노 섬유는 길이/직경의 비가 7.5x105이었다. 다음으로 헥사플루오로이소프판올(Hexafluoroisopropanol) 용매로 25℃에서 측정한 고유점도가 2.3인 폴리(p-디옥산온)고분자를 프레즈 밀(Freeze Mill)로 입자크기가 300㎛ 되도록 분쇄하였다. 다음으로 폴리(L-락티드)[poly(L-lactide)] 나노 강화 섬유와 메트릭스인 폴리(p-디옥산온)[poly(p-dioxanaone)] 고분자를 혼합(나노섬유/매트릭스 =30/70 : 체적비율) 한 후, 2.5톤의 압력 및 110℃의 온도 하에서 압축성형한 후 급냉하여 복합재료를 제조 하였다. 제조된 복합재료의 굽힙강력은 340MPa이고, 굽힘탄성율은 19.5GPa이였다.Using a capillary viscometer at 25 ° C. with chloroform solvent, poly (L-lactide) with an intrinsic viscosity of 4.5 was dissolved in methylene chloride to give a 3.6% solution. Manufacture. Then, it was electrospun under a high voltage of 8 kV using a nozzle having a nozzle diameter of 0.8 mm to prepare a nonwoven fabric composed of fibers having an average diameter of 160 nanometers. The prepared nonwoven fabric was pulverized in a press mill (freez mill) under liquid nitrogen and dried at 120 ° C. under vacuum for 12 hours to prepare nanofibers. The prepared nanofibers had a length / diameter ratio of 7.5 × 10 5 . Next, poly (p-dioxone) polymer having an intrinsic viscosity of 2.3 measured at 25 ° C. in a hexafluoroisopropanol solvent was ground to a particle size of 300 μm using a freeze mill. Next, a poly (L-lactide) nano reinforced fiber and a matrix of poly (p-dioxanaone) polymer are mixed (nano fiber / matrix = 30 /). 70: by volume ratio), and compression molding under a pressure of 2.5 tons and a temperature of 110 ℃ and then quenched to prepare a composite material. The flexural strength of the manufactured composite material was 340 MPa and the flexural modulus was 19.5 GPa.
실시예 3Example 3
클로로포름 용매를 사용하여 25℃에서 모세관 점도계를 이용하여 측정한 결과 고유점도가 3.8인 D,L-락티드/글리코라이드 공중합체[poly(D,L-lactide-co- glycolide), 몰비 : 50/50]를 메틸렌 클로라이드(methylene chloride)에 용해하여 1.2% 용액을 제조한다. 그런 다음에 이를 노즐 직경이 1mm인 노즐을 이용하여 고전압 10kV하에서 전기방사하여 평균 직경이 80나노미터인 섬유로 구성된 부직포를 제조하였다. 제조된 부직포를 액체질소하에서 프레즈 밀(freez mill)로 분쇄한 후 진공하 상온에서 24시간 동안 건조하여 나노섬유를 제조 하였다. 제조된 나노 섬유는 길이/직경의 비가 8.0x105이었다. 다음으로 고유점도가 0.7인 D,L-락티드/글리코라이드 공중합체[poly(D,L-lactide-co- glycolide), 몰비 : 50/50]를 프레즈 밀(Freeze Mill)로 입자크기가 350㎛ 되도록 분쇄하였다. 다음으로 폴리(L-락티드)[poly(L-lactide)] 상기 나노 강화 섬유와 상기 메트릭스를 혼합(나노섬유/매트릭스 = 25/75 : 체적비율) 한 후, 2.5톤의 압력 및 50℃의 온도 하에서 압축성형한 후 급냉하여 복합재료를 제조 하였다. 제조된 복합재료의 굽힙강력은 300MPa이고, 굽힘탄성율은 18GPa이였다.D, L-lactide-glycolide copolymer [poly (D, L-lactide-co-glycolide), molar ratio: 50 /, having an intrinsic viscosity of 3.8 as measured by a capillary viscometer at 25 ° C. using a chloroform solvent 50] is dissolved in methylene chloride to prepare a 1.2% solution. Then, it was electrospun under a high voltage of 10 kV using a nozzle having a nozzle diameter of 1 mm to prepare a nonwoven fabric composed of fibers having an average diameter of 80 nanometers. The prepared nonwoven fabric was pulverized in a press mill (freez mill) under liquid nitrogen and dried at room temperature under vacuum for 24 hours to prepare nanofibers. The prepared nanofibers had a length / diameter ratio of 8.0 × 10 5 . Next, the particle size of D, L-lactide / glycolide copolymer [poly (D, L-lactide-co-glycolide), molar ratio: 50/50] with an intrinsic viscosity of 0.7 was obtained from a freeze mill. It was ground to 350 μm. Next, poly (L-lactide) was mixed with the nano-reinforced fiber and the matrix (nano fiber / matrix = 25/75: volume ratio), followed by a pressure of 2.5 tons and a temperature of 50 ° C. After compression molding under the temperature was quenched to prepare a composite material. The flexural strength of the manufactured composite material was 300 MPa and the flexural modulus was 18 GPa.
실시예 4Example 4
클로로포름 용매를 사용하여 25℃에서 모세관 점도계를 이용하여 측정한 결과 고유점도가 3.2인 폴리(DL-락티드)[poly(DL-lactide)]를 메틸렌 클로라이드(methylene chloride)에 용해하여 5% 용액을 제조한다. 그런 다음에 이를 노즐 직경이 0.mm인 노즐을 이용하여 고전압 10kV하에서 전기방사하여 평균 직경이 180나노미터인 섬유로 구성된 부직포를 제조하였다. 제조된 부직포를 액체질소하에서 프레즈 밀(freez mill)로 분쇄한 후 진공하 120℃에서 12시간 동안 건조하여 나노섬유를 제조 하였다. 제조된 나노 섬유는 길이/직경의 비가 7.0x105이었다. 다음으로 헥사플루오로이소프판올(Hexafluoroisopropanol) 용매로 25℃에서 측정한 고유점도가 2.3인 폴리(p-디옥산온)고분자를 프레즈 밀(Freeze Mill)로 입자크기가 200㎛ 되도록 분쇄하였다. 다음으로 폴리(DL-락티드)[poly(DL-lactide)] 나노 강화 섬유와 메트릭스인 폴리(p-디옥산온)[poly(p-dioxanaone)] 고분자를 혼합(나노섬유/매트릭스 = 35/65 : 체적비율) 한 후, 2.5톤의 압력 및 110℃온도 하에서 압축성형한 후 급냉하여 복합재료를 제조 하였다. 제조된 복합재료의 굽힙강력은 325MPa이고, 굽힘탄성율은 19.7GPa이였다.Using a capillary viscometer at 25 ° C using a chloroform solvent, poly (DL-lactide) with an intrinsic viscosity of 3.2 was dissolved in methylene chloride to obtain a 5% solution. Manufacture. Then, it was electrospun under a high voltage of 10 kV using a nozzle having a nozzle diameter of 0. mm to prepare a nonwoven fabric composed of fibers having an average diameter of 180 nanometers. The prepared nonwoven fabric was pulverized in a press mill (freez mill) under liquid nitrogen and dried at 120 ° C. under vacuum for 12 hours to prepare nanofibers. The prepared nanofibers had a length / diameter ratio of 7.0 × 10 5 . Next, poly (p-dioxone) polymer having an intrinsic viscosity of 2.3 measured at 25 ° C. in a hexafluoroisopropanol solvent was pulverized in a freeze mill so as to have a particle size of 200 μm. Next, a poly (DL-lactide) nano reinforced fiber and a matrix of poly (p-dioxanaone) polymer are mixed (nano fiber / matrix = 35 /). 65: volume ratio), and then compression molded under a pressure of 2.5 tons and 110 ℃ temperature to quench the composite material. The flexural strength of the manufactured composite material was 325 MPa and the flexural modulus was 19.7 GPa.
실시예 5Example 5
클로로포름 용매를 사용하여 25℃에서 모세관 점도계를 이용하여 측정한 결과 고유점도가 3.2인 폴리(L-락티드)[poly(L-lactide)]를 메틸렌 클로라이드(methylene chloride)에 용해하여 4.5% 용액을 제조한다. 그런 다음에 이를 노즐 직경이 1mm인 노즐을 이용하여 고전압 10kV하에서 전기방사하여 평균직경이 190나노미터인 섬유로 구성된 부직포를 제조하였다. 제조된 부직포를 액체질소하에서 프레즈 밀(freez mill)로 분쇄한 후 진공하 120℃에서 12시간 동안 건조하여 나노섬유를 제조 하였다. 제조된 나노 섬유는 길이/직경의 비가 6.5x105이었다. 다음으로 헥사플루오로이소프판올(Hexafluoroisopropanol) 용매로 25℃에서 측정한 고유점도가 2.5인 폴리(p-디옥산온)고분자를 프레즈 밀(Freeze Mill)로 입자크기가 200㎛ 되도록 분쇄하였다. 다음으로 폴리(L-락티드)[poly(L-lactide)] 나노 강화 섬유와 P-디옥산온/글리코라이드 공중합체[poly(p-dioxanone/glycolide), 몰비=80/20)]를 혼합(나노섬유/매트릭스 = 40/60 : 체적비율) 한 후, 2.5톤의 압력 및 108℃온도 하에서 압축성형한 후 급냉하여 복합재료를 제조 하였다. 제조된 복합재료의 굽힙강력은 325MPa이고, 굽힘탄성율은 18GPa이였다.Using a capillary viscometer at 25 ° C using a chloroform solvent, poly (L-lactide) with an intrinsic viscosity of 3.2 was dissolved in methylene chloride to obtain a 4.5% solution. Manufacture. Then, it was electrospun under a high voltage of 10 kV using a nozzle having a nozzle diameter of 1 mm to prepare a nonwoven fabric composed of fibers having an average diameter of 190 nanometers. The prepared nonwoven fabric was pulverized in a press mill (freez mill) under liquid nitrogen and dried at 120 ° C. under vacuum for 12 hours to prepare nanofibers. The prepared nanofibers had a length / diameter ratio of 6.5 × 10 5 . Next, poly (p-dioxionone) polymer having an intrinsic viscosity of 2.5 measured at 25 ° C. in a hexafluoroisopropanol solvent was pulverized so as to have a particle size of 200 μm using a freeze mill. Next, a poly (L-lactide) nano reinforced fiber and a P-dioxone / glycolide copolymer [poly (p-dioxanone / glycolide), molar ratio = 80/20)] was mixed. (Nano fiber / matrix = 40/60: volume ratio), and then compression molded under a pressure of 2.5 tons and a temperature of 108 ℃ and quenched to prepare a composite material. The flexural strength of the manufactured composite material was 325 MPa and the flexural modulus was 18 GPa.
본 발명의 의료기구용 복합재료는 생체분해성, 굽힘강력 및 굽힘탄성율이 동시에 우수하다. 아울러, 본 발명의 제조방법은 보다 효율적으로 나노섬유 및 상기 의료기구용 복합재료를 제조 할 수 있다.The composite material for a medical device of the present invention is excellent in biodegradability, bending strength and bending elastic modulus at the same time. In addition, the manufacturing method of the present invention can more efficiently produce nanofibers and the composite material for medical devices.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0023159A KR100439871B1 (en) | 2001-04-28 | 2001-04-28 | A composit materials for medical implement reinforced by nano fiber, and a process of preparing for the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0023159A KR100439871B1 (en) | 2001-04-28 | 2001-04-28 | A composit materials for medical implement reinforced by nano fiber, and a process of preparing for the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020083664A true KR20020083664A (en) | 2002-11-04 |
KR100439871B1 KR100439871B1 (en) | 2004-07-12 |
Family
ID=27702991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2001-0023159A KR100439871B1 (en) | 2001-04-28 | 2001-04-28 | A composit materials for medical implement reinforced by nano fiber, and a process of preparing for the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100439871B1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2018079992A1 (en) * | 2016-10-31 | 2018-05-03 | (주)오스테오닉 | Medical biodegradable composite material including fibrous ceramic reinforcing agent, and method for producing same |
KR20190023079A (en) * | 2016-06-27 | 2019-03-07 | 오씨오 리미티드 | Fiber-reinforced biocomposite medical implants with high mineral content |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100639234B1 (en) | 2005-03-19 | 2006-10-26 | 세원셀론텍(주) | Surface spread method and bio-polymer matrix manufacturing method using electrospinning |
EP2582868B1 (en) | 2010-06-17 | 2018-03-28 | Washington University | Biomedical patches with aligned fibers |
ES2847893T3 (en) | 2012-09-21 | 2021-08-04 | Univ Washington | Biomedical patches with fibers arranged in space |
US10632228B2 (en) | 2016-05-12 | 2020-04-28 | Acera Surgical, Inc. | Tissue substitute materials and methods for tissue repair |
-
2001
- 2001-04-28 KR KR10-2001-0023159A patent/KR100439871B1/en not_active IP Right Cessation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20190023079A (en) * | 2016-06-27 | 2019-03-07 | 오씨오 리미티드 | Fiber-reinforced biocomposite medical implants with high mineral content |
WO2018079992A1 (en) * | 2016-10-31 | 2018-05-03 | (주)오스테오닉 | Medical biodegradable composite material including fibrous ceramic reinforcing agent, and method for producing same |
Also Published As
Publication number | Publication date |
---|---|
KR100439871B1 (en) | 2004-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11844879B2 (en) | Articles of poly(butylene succinate) and copolymers thereof | |
AU2022202609B2 (en) | Medical devices containing poly(butylene succinate) and copolymers thereof | |
CN114630931B (en) | Medical devices comprising poly (butylene succinate) and copolymers thereof | |
US6365172B1 (en) | Device of bioabsorbable triglycolic acid poly(ester-amide)s, and methods of making the same | |
Barrows | Synthetic bioabsorbable polymers | |
EP2968669B1 (en) | Ultrafine electrospun fibers of poly-4-hydroxybutyrate and copolymers thereof | |
US8287909B2 (en) | Medical devices containing melt-blown non-wovens of poly-4-hydroxybutyrate and copolymers thereof | |
CN105999419B (en) | A kind of biomimetic type can absorb dural patch and the preparation method and application thereof | |
CA2958747C (en) | Self-retaining sutures of poly-4-hydroxybutyrate and copolymers thereof | |
JP2909116B2 (en) | Reinforced polymer film for biofunctional materials | |
JP2009511092A (en) | Multimodal high-strength devices and composite materials | |
Del Valle et al. | Biodegradable polyesters reinforced with triclosan loaded polylactide micro/nanofibers: Properties, release and biocompatibility. | |
JPH074418B2 (en) | Medical fibrous material | |
KR100439871B1 (en) | A composit materials for medical implement reinforced by nano fiber, and a process of preparing for the same | |
CN100415305C (en) | Artificial dura mater | |
Athanasiou et al. | Applications of biodegradable lactides and glycolides in podiatry | |
KR101736456B1 (en) | Medical biodegradable composites with fibrous ceramic reinforcements and preparing thereof | |
JP5900909B2 (en) | Three-dimensional structure made from material containing polyhydroxyalkanoate and kit for preparing bone filler | |
Vert et al. | Totally bioresorbable composites systems for internal fixation of bone fractures | |
Krucińska et al. | Fabrication of PLGA/HAP and PLGA/PHB/HAP fibrous nanocomposite materials for osseous tissue regeneration | |
KR101742130B1 (en) | Medical complex film laminated fibrous ceramic reinforcements and preparing thereof | |
Paletta et al. | Influence of Poly‐(L‐Lactic Acid) Nanofiber Functionalization on Maximum Load, Young′ s Modulus, and Strain of Nanofiber Scaffolds Before and After Cultivation of Osteoblasts: An In Vitro Study | |
Wolfe et al. | Characterization of Electrospun Novel Poly (ester-ether) Copolymers: 1, 4-Dioxan-2-one and D, L-3-Methyl-1, 4-dioxan-2-one | |
Mukopadhyay | Biodegradable textile yarns | |
Christel et al. | TOTALLY BIORESORBABLE COMPOSITES SYSTEMS FOR INTERNAL FIXATION OF BONE FRACTURES |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
LAPS | Lapse due to unpaid annual fee | ||
R401 | Registration of restoration | ||
FPAY | Annual fee payment |
Payment date: 20130701 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20140702 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20150702 Year of fee payment: 12 |
|
LAPS | Lapse due to unpaid annual fee |