KR101846707B1 - Anti vibration rubber composition improved vibration isolation and Anti vibration rubber - Google Patents
Anti vibration rubber composition improved vibration isolation and Anti vibration rubber Download PDFInfo
- Publication number
- KR101846707B1 KR101846707B1 KR1020160117871A KR20160117871A KR101846707B1 KR 101846707 B1 KR101846707 B1 KR 101846707B1 KR 1020160117871 A KR1020160117871 A KR 1020160117871A KR 20160117871 A KR20160117871 A KR 20160117871A KR 101846707 B1 KR101846707 B1 KR 101846707B1
- Authority
- KR
- South Korea
- Prior art keywords
- weight
- parts
- rubber
- rubber composition
- vibration
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L7/00—Compositions of natural rubber
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/01—Use of inorganic substances as compounding ingredients characterized by their specific function
- C08K3/011—Crosslinking or vulcanising agents, e.g. accelerators
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
- C08K3/041—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/06—Sulfur
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0025—Crosslinking or vulcanising agents; including accelerators
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/005—Stabilisers against oxidation, heat, light, ozone
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/04—Oxygen-containing compounds
- C08K5/09—Carboxylic acids; Metal salts thereof; Anhydrides thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/17—Amines; Quaternary ammonium compounds
- C08K5/18—Amines; Quaternary ammonium compounds with aromatically bound amino groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3412—Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
- C08K5/3432—Six-membered rings
- C08K5/3437—Six-membered rings condensed with carbocyclic rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3442—Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
- C08K5/3445—Five-membered rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/39—Thiocarbamic acids; Derivatives thereof, e.g. dithiocarbamates
- C08K5/40—Thiurams, i.e. compounds containing groups
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/41—Compounds containing sulfur bound to oxygen
- C08K5/42—Sulfonic acids; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/36—Sulfur-, selenium-, or tellurium-containing compounds
- C08K5/43—Compounds containing sulfur bound to nitrogen
- C08K5/435—Sulfonamides
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/04—Ingredients treated with organic substances
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L9/00—Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
- C08K2003/2296—Oxides; Hydroxides of metals of zinc
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/003—Additives being defined by their diameter
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/004—Additives being defined by their length
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/002—Physical properties
- C08K2201/006—Additives being defined by their surface area
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K2201/00—Specific properties of additives
- C08K2201/011—Nanostructured additives
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
본 발명은 인장강도 및 신율 등의 기계적 강도와 진동절연성능이 향상된 방진고무 조성물에 관한 것으로, 더욱 상세하게는 천연고무와 부타디엔 고무를 최적의 배합으로 사용하여 진동절연성능을 향상시키되, 충진제로서 활성기가 도입된 탄소나노튜브를 소정량 사용함으로써 기계적 물성까지 만족시키는 방진고무 조성물 및 방진고무에 관한 것이다.TECHNICAL FIELD The present invention relates to a vibration damping rubber composition having improved mechanical strength and vibration insulation performance such as tensile strength and elongation, and more particularly, to a vibration damping rubber composition using an optimal combination of natural rubber and butadiene rubber to improve vibration insulation performance, To a vibration-damping rubber composition and a vibration-damping rubber which satisfy the mechanical properties by using a predetermined amount of the carbon nanotubes into which the carbon nanotube is introduced.
Description
본 발명은 카르복실기, 히드록시기, 에테르기, 및 에스테르기로 이루어진 군으로부터 선택된 1종 이상의 활성화기가 도입된 탄소나노튜브를 충진제로 첨가하여 방진고무 재료의 기계적 물성은 물론 진동절연성능을 향상시킨 방진고무 조성물 및 방진고무에 관한 것이다.The present invention relates to a vibration damping rubber composition and a vibration damping rubber composition, which are improved in vibration insulation performance as well as mechanical properties of a vibration damping rubber material by adding carbon nanotubes having at least one activator selected from carboxyl, hydroxyl, The present invention relates to an anti-vibration rubber.
자동차 분야에서의 방진고무는 진동소음(NVH) 방지용으로 사용되는 고무를 일컫는다. 방진고무는 고무가 가지는 운동에너지를 잘 흡수하는 성질을 이용하여 모터나 엔진 등으로부터의 진동이 외부로 전해지는 것을 방지한다. 자동차 분에서의 스테빌라이저 바 부시, 서스펜션 부시 등의 부시류는 외부에서 가해지는 큰 외력에 대해 충분한 내구성능을 가지고 있어야만 자동차의 NVH 성능을 향상시켜 승차감을 향상시킬 수 있다.Dustproof rubber in the automotive field refers to rubber used for preventing vibration noise (NVH). The anti-vibration rubber uses the property of absorbing the kinetic energy of the rubber to prevent the vibration from the motor or the engine from being transmitted to the outside. The bushings such as the stabilizer bar bush and the suspension bush in the vehicle are required to have sufficient durability against the external force externally so that the NVH performance of the automobile can be improved to improve the ride quality.
이에, 승차시의 진동 및 소음을 억제하고 차량의 안락감을 향상시킬 수 있는 방진고무 부품을 개발하고자 하는 연구는 활발하게 진행이 되어 왔다.Accordingly, studies have been actively made to develop a vibration-damping rubber component capable of suppressing vibration and noise at the time of riding and improving the comfort of a vehicle.
예를 들면, 한국 공개특허 제2011-11010호에는 천연고무와 스티렌부타디엔 고무와 같은 합성고무를 함께 사용한 원료 고무에, 황, 가황촉진제, 활성제, 노화방지제, 분산제, 프로세싱 오일 및 카본블랙을 특정 함량비로 포함시켜, 노화 물성, 내피로성, 고댐핑성 등의 물성이 개선된 부시용 고무 조성물이 개시되어 있다.For example, Korean Patent Laid-Open Publication No. 2011-11010 discloses a process for producing a rubber composition containing a sulfur, a vulcanization accelerator, an activator, an antioxidant, a dispersant, a processing oil and a carbon black in a specific amount By weight based on the total weight of the rubber composition for a bush, improved physical properties such as aging properties, fatigue resistance and high damping properties.
그러나 종래 기술은 충진제로서 카본블랙, 또는 카본블랙와 탄소나노튜브를 혼합하여 사용하였는데, 카본블랙만 충진제로 사용하는 경우 방진고무 부품에서 요구하는 기계적 물성을 만족시키기 위해 다양한 첨가제를 넣어야 하는 한계가 있으며, 카본블랙의 다량 사용으로 인해 중량의 증가로 인한 연비 문제의 한계가 제기되어 왔다. 또한 천연 탄소나노튜브의 경우 표면 활성화도가 낮아 진동절연성 향상효과를 구현하는 한계가 있다.However, in the prior art, when carbon black or carbon black and carbon nanotubes are mixed as a filler, carbon black is used as a filler. However, there is a limit to add various additives in order to satisfy the mechanical properties required of the vibration- Due to the heavy use of carbon black, the limitation of fuel economy due to the increase in weight has been raised. In addition, natural carbon nanotubes have a low surface activation degree and thus have a limitation in realizing the effect of improving vibration insulation.
이에 방진고무 부품에 요구되는 기계적 물성의 만족, 부품 중량의 감소를 통한 연비 향상 효과, 진동절연성능의 향상으로 인한 진동/소음 영역의 품질 지수를 개선함으로써 자동차의 승차감을 향상시킬 수 있는 방진고무 조성물이 필요한 실정이다.Accordingly, it is possible to improve the ride quality of a vehicle by improving the quality index of the vibration / noise region due to the satisfaction of the mechanical properties required for the anti-vibration rubber component, the improvement of the fuel consumption by reducing the weight of the component, .
이에 본 발명자들은 카르복실기, 히드록시기, 에테르기, 및 에스테르기로 이루어진 군으로부터 선택된 1종 이상의 활성화기가 도입된 탄소나노튜브를 소정량 방진고무 조성물에 포함하는 경우, 부품의 기계적 물성의 만족과 함께 진동절연성능의 향상과 부품의 경량화를 달성할 수 있는 것을 알게 되어 본 발명을 완성하기에 이르렀다.Accordingly, when carbon nanotubes having at least one activator selected from the group consisting of a carboxyl group, a hydroxyl group, an ether group, and an ester group are incorporated in a predetermined amount of the vibration damper rubber composition, the present inventors have found that, It is possible to achieve the improvement of the weight and the weight of the parts. Thus, the present invention has been completed.
따라서, 본 발명의 목적은 진동절연성 향상이 향상된 방진고무 조성물을 제공하는데 있다. Therefore, an object of the present invention is to provide a vibration-damping rubber composition improved in vibration insulation.
또한 본 발명의 다른 목적은 상기 방진고무 조성물로 제조된 방진고무를제공하는데 있다.Another object of the present invention is to provide an anti-vibration rubber made of the anti-vibration rubber composition.
위와 같은 과제를 해결하기 위해, 본 발명은 원료고무, 충진제, 노화방지제, 활성화제 및 가교제를 포함하는 고무 조성물에 있어서, 상기 원료고무는 천연고무 70 ~ 80 중량부 및 부타디엔 고무 20 ~ 30 중량부를 포함하며, 상기 충진제는 원료고무 100 중량부에 대해 카본블랙 40 ~ 50 중량부; 및 카르복실기, 히드록시기, 에테르기, 및 에스테르기로 이루어진 군으로부터 선택된 1종 이상의 활성화기가 도입된 탄소나노튜브 0.5 ~ 3 중량부를 포함하는 것을 특징으로 하는 방진고무 조성물을 제공한다. In order to solve the above problems, the present invention provides a rubber composition comprising a raw rubber, a filler, an antioxidant, an activator and a crosslinking agent, wherein the raw rubber comprises 70 to 80 parts by weight of natural rubber and 20 to 30 parts by weight of butadiene rubber Wherein the filler comprises 40 to 50 parts by weight of carbon black per 100 parts by weight of the raw rubber; And 0.5 to 3 parts by weight of carbon nanotubes into which at least one activating group selected from the group consisting of a carboxyl group, a hydroxyl group, an ether group, and an ester group is introduced.
또한 본 발명은 상기 방진 고무 조성물로 제조된 것을 특징으로 하는 방진고무를 제공한다.Further, the present invention provides an anti-vibration rubber which is made of the anti-vibration rubber composition.
본 발명에 따른 방진고무 조성물은 충진제로서 카본블랙만 단독으로 사용한 종래의 방진고무 조성물과 대비하여 동등 또는 우수한 수준의 기계적 물성을 만족시키며, 첨가되는 충진제의 총량이 줄어들기에 부품의 중량 감소로 인한 연비 향상 효과를 얻을 수 있다.The vibration damping rubber composition according to the present invention satisfies mechanical properties equivalent to or superior to those of the conventional vibration damping rubber composition using only carbon black as a filler and reduces the total amount of the filler to be added, An improvement effect can be obtained.
또한 진동절연성이 우수하여 자동차 승차감을 향상시키기에 진동 및 소음 영역의 품질 지수 개선을 도모할 수 있어, 품질문제 발생에 따른 소비자 불만을 줄일 수 있다.Further, since the vibration insulation is excellent, it is possible to improve the ride quality of the automobile and to improve the quality index of the vibration and noise region, thereby reducing the consumer complaints caused by quality problems.
도 1은 본 발명에서 사용되는 충진제의 분산된 모습을 나타낸 것이다. 1 shows a dispersed state of the filler used in the present invention.
본 발명은 원료고무, 충진제, 노화방지제, 활성화제 및 가교제를 포함하는 진동절연성 향상이 향상된 방진고무 조성물을 제공한다. 본 발명에 따른 방진고무 조성물을 구성하는 각 사용성분에 대해 좀 더 구체적으로 설명하면 하기와 같다.The present invention provides an anti-vibration rubber composition having improved vibration insulation properties including a raw material rubber, a filler, an anti-aging agent, an activator, and a crosslinking agent. Each component used in the vibration-damping rubber composition according to the present invention will be described in more detail as follows.
먼저 본 발명에서의 원료고무는 천연고무와 합성고무를 함께 사용하며, 합성고무로는 유연성이 우수하여 반발탄성이 높고 동배율이 낮은 시스 함량이 높은 부타디엔 고무를 혼합하여 사용한다.First, natural rubber and synthetic rubber are used together in the present invention. Synthetic rubber is a mixture of butadiene rubber having high flexibility and high rebound resilience and high content of cis butyadiene rubber.
이에 천연고무와 부타디엔 고무의 배합비율을 최적화함으로써 고무재료의 동배율을 개선하는 효과를 얻고 있다. 본 발명이 제안하는 원료고무는 천연고무 70 ~ 80 중량부와 합성고무 20 ~ 30 중량부를 함께 사용하는 것이며, 상기한 천연고무와 합성고무의 배합비를 최적화하여 재료의 물성 손실 없이 재료의 동배율을 개선하는 효과를 극대화 할 수 있다.Accordingly, the mixing ratio of the natural rubber and the butadiene rubber is optimized to improve the dynamic magnification of the rubber material. The raw material rubber proposed by the present invention is a mixture of 70 to 80 parts by weight of natural rubber and 20 to 30 parts by weight of synthetic rubber, and the mixing ratios of the natural rubber and synthetic rubber are optimized, The effect of improvement can be maximized.
본 발명이 원료고무로서 천연고무와 부타디엔 고무의 혼합 사용으로 진동 및 소음을 억제하는 효과를 얻고 있지만, 부타디엔 고무와의 혼합 사용으로 인한 인장강도 감소, 내열노화성 저하 등의 현상은 충진제와, 다른 첨가제의 선택 및 함량 조절을 통하여 해결한다.The present invention has obtained the effect of suppressing vibration and noise by using natural rubber and butadiene rubber as a raw material rubber. However, phenomena such as reduction of tensile strength and deterioration of thermal aging due to mixing with butadiene rubber, It is solved through selection of additives and content control.
본 발명에서 사용되는 충진제는 평균입경이 39 내지 55 nm인 카본블랙을 사용하며, 이는 원료고무 100 중량부에 대해 40 ~ 50 중량부를 사용하는 것이 바람직하다. 카본블랙이 39nm 미만인 경우 진동절연성능에 한계가 있으며, 55 nm 초과인 경우 기계적 물성 향상에 한계가 있기에 상기 범위 내에서 사용한다. 또한 카본블랙을 40 중량부 미만인 경우 경도 증가에 한계가 있으며, 50 중량부 초과인 경우 카본블랙 분산에 한계가 있기에 상기 범위 내에서 사용하는 것이 좋다.Carbon black having an average particle diameter of 39 to 55 nm is used as the filler used in the present invention, and it is preferable to use 40 to 50 parts by weight with respect to 100 parts by weight of the raw rubber. When the carbon black is less than 39 nm, the vibration insulating performance is limited. When the carbon black is more than 55 nm, there is a limit to improvement in mechanical properties. When the amount of carbon black is less than 40 parts by weight, there is a limit in increasing hardness. When the amount of carbon black is more than 50 parts by weight, dispersion of carbon black is limited.
아울러, 본 발명에서는 카르복실기, 히드록시기, 에테르기, 및 에스테르기로 이루어진 군으로부터 선택된 1종 이상의 활성화기가 도입된 탄소나노튜브(a-CNT)를 사용한다. 이때 탄소나노튜브(a-CNT)는 직경은 10 ~ 25 nm이고, 길이는 10 ~ 50 nm이며, 표면적은 150 ~ 250 m2/g 인 것으로, 산소 원소가 3 ~ 7 중량%를 포함하는 것을 사용하는 것이 바람직하다. 더욱 바람직하게는 탄소나노튜브(a-CNT)는 카르복실기(-COOH)와 하이드록시기(-OH)는 1:3~4 중량 비율인 것을 사용한다. In the present invention, a carbon nanotube (a-CNT) into which at least one activator selected from the group consisting of a carboxyl group, a hydroxyl group, an ether group and an ester group is introduced is used. The carbon nanotubes (a-CNT) have a diameter of 10 to 25 nm, a length of 10 to 50 nm, a surface area of 150 to 250 m 2 / g and an oxygen content of 3 to 7 wt% Is preferably used. More preferably, the carbon nanotube (a-CNT) has a carboxyl group (-COOH) and a hydroxyl group (-OH) in a weight ratio of 1: 3 to 4.
본 발명과 같이 산소 5 ~ 7 중량%를 포함하는 활성화기가 도입된 탄소나노튜브를 충진제로 사용하는 경우, 방진고무 재료의 진동절연성능의 향상은 물론, 인장강도 및 신율 등의 기계적 물성도 만족하는 효과를 갖고 있기에, 이를 원료고무 100 중량부에 대해 0.5 ~ 3 중량부를 사용하는 것이 효과적이다. 탄소나노튜브를 0.5 중량부 미만으로 사용하는 경우 기계적 물성 향상에 한계가 있으며, 3 중량부 초과인 경우 탄소나노튜브 분산에 한계가 있기에 상기 범위 내에서 사용하는 것이 좋다.When carbon nanotubes having an activator containing 5 to 7% by weight of oxygen are used as a filler as in the present invention, not only the vibration insulation performance of the vibration proof rubber material is improved but also the mechanical properties such as tensile strength and elongation are satisfied It is effective to use 0.5 to 3 parts by weight based on 100 parts by weight of the starting rubber. When the carbon nanotubes are used in an amount less than 0.5 parts by weight, there is a limit to improvement in mechanical properties. When the carbon nanotubes are more than 3 parts by weight, dispersion of carbon nanotubes is limited.
아울러, 상기 노화방지제는 내열성능 또는 피로성능 향상시키기 위해, 2 -머캅토벤즈이미다졸(2-mercaptobenzimidazole), 2,2,4-트리메틸-1,2-다이하이드로퀴놀린(2,2,4-trimethyl-1,2-dihydroquinoline), N-페닐-N'-이소프로필-p-페닐렌디아민(N-phenyl-N’-isopropyl-p-phenylenediamine), 및 N,N'치환된 p-페닐렌디아민(N,N'substituted p-phenylenediamine)로 이루어진 군으로부터 선택된 1종 이상을 사용한다. 노화방지제는 원료고무 100 중량부에 대해 5 ~ 8 중량부로 사용하는 것이 바람직한데, 5 중량부 미만인 경우 내열성과 내오존성에 한계가 있으며, 8 중량부 초과인 경우 내열성과 내오존성 향상 효과가 미비하기 때문에 상기 범위 내에서 사용하는 것이 좋다.In order to improve the heat resistance or fatigue performance of the antioxidant, 2-mercaptobenzimidazole, 2,2,4-trimethyl-1,2-dihydroquinoline (2,2,4- trimethyl-1,2-dihydroquinoline, N-phenyl-N'-isopropyl-p-phenylenediamine, and N, N 'substituted p-phenylene Diamine (N, N'-substituted phenylenediamine). The antioxidant is preferably used in an amount of 5 to 8 parts by weight based on 100 parts by weight of the starting rubber. When the amount is less than 5 parts by weight, heat resistance and ozone resistance are limited. When the amount is more than 8 parts by weight, Therefore, it is preferable to use it within the above range.
상기 활성화제는 가교촉진제를 활성화하는 역할을 하며, 본 발명에서는 산화아연(ZnO), 및 스테아린산(staric acid)로 이루어진 군으로부터 선택된 1종 이상을 사용한다. 아울러 활성제는 원료고무 100 중량부에 대해 1 ~ 3 중량부 범위로 사용하는 것이 좋다. 활성제가 1 중량부 미만인 경우 황 가교반응이 느려지는 문제가 있고, 3 중량부 초과인 경우 가교반응 속도가 지나치게 빨라서 생산성이 문제가 있을 수 있다.The activating agent activates the crosslinking accelerator. In the present invention, at least one selected from the group consisting of zinc oxide (ZnO) and stearic acid is used. The activator is preferably used in the range of 1 to 3 parts by weight based on 100 parts by weight of the raw rubber. If the amount of the activator is less than 1 part by weight, the sulfur crosslinking reaction is slowed down. If the amount is more than 3 parts by weight, the crosslinking reaction speed is too fast, and the productivity may be a problem.
상기 가교제는 황을 사용한다. 황 가교제로는 황 함량이 많은 일반 가황 (conventional vulcanizates)을 사용할 수도 있겠으나, 황 가교를 촉진하는 반유효 가황 (semi efficient vulcanizates)을 사용하여 고무 분자 사슬 간의 간격을 줄여 내열성 및 가교 밀도를 향상시키는 효과를 얻을 수도 있다. 황 가교제는 원료 고무 100 중량부에 대해 1 ~ 3 중량부 범위로 사용하는 것이 좋다. 황 가교제가 1 중량부 미만인 경우 내구력이 저하되어 부시류에 적용하기에 부적합한 내구물성을 가지게 되고, 3 중량부 초과인 경우 사용 한계 온도 조건에서의 내열성이 저하되는 문제가 있을 수 있다.The crosslinking agent uses sulfur. As sulfur vulcanizing agents, conventional vulcanizates with a high sulfur content may be used, but semi-efficient vulcanizates promoting sulfur bridging may be used to reduce the spacing between rubber molecular chains to improve heat resistance and crosslinking density Effect can be obtained. The sulfur crosslinking agent is preferably used in the range of 1 to 3 parts by weight based on 100 parts by weight of the raw rubber. When the amount of the sulfur crosslinking agent is less than 1 part by weight, the durability is lowered and the durability is unsuitable for application to the bush flow. If the amount is more than 3 parts by weight, the heat resistance at the use limit temperature condition may be deteriorated.
이외에 본 발명에서는 가교촉진제, 지효성 촉진제, 및 초촉진제를 더 포함할 수 있다.In addition, the present invention may further comprise a crosslinking accelerator, a delayed accelerator, and a super accelerator.
상기 가교촉진제는 가역 (reversion) 방지제 역할을 하는 것으로, 헥사메틸렌-1,6-비스(티올설페이트)(hexamethylene-1,6-bis(thiosulfate)), 디소듐염(disodium salt), 및 다이하이드레이트(dehydrate)로 이루어진 군으로부터 선택된 1종 이상을 사용할 수 있다. 아울러, 가교촉진제는 원료고무 100 중량부에 대해 1 ~ 3 중량부를 사용하는 것이 바람직하다. 가교촉진제 1 중량부 미만인 경우 내열성 및 가교안정성에 한계가 있으며, 3 중량부 초과인 경우 가교속도가 느려져 생산성에 한계가 있기에 상기 범위 내에서 사용하는 것이 좋다. The crosslinking accelerator serves as an anti-reversion inhibitor, and includes hexamethylene-1,6-bis (thiosulfate), disodium salt, and dihydrate (dehydrate) may be used. The crosslinking accelerator is preferably used in an amount of 1 to 3 parts by weight based on 100 parts by weight of the raw rubber. When the amount of the crosslinking accelerator is less than 1 part by weight, the heat resistance and the crosslinking stability are limited. When the amount is more than 3 parts by weight, the crosslinking speed is slowed and the productivity is limited.
상기 지효성 촉진제는 스코치 현상을 방지하는 역할을 하는 것으로, N-사이클로헥실-2-벤조싸이아졸 설퍼아미드(N-cyclohexyl-2-benzothiazole sulfonamide)를 사용할 수 있다. 이때 지효성 촉진제는 원료고무 100 중량부에 대해 1 ~ 3 중량부를 사용하는 것이 바람직한데, 1 중량부 미만인 경우 인장강도 향상에 한계가 있으며, 3 중량부 초과인 경우 가교속도와 효율에 한계가 있기에 상기 범위 내에서 사용하는 것이 좋다.The sustained-release promoter serves to prevent the scorch phenomenon, and N-cyclohexyl-2-benzothiazole sulfonamide can be used. In this case, it is preferable to use 1 to 3 parts by weight of the perspiration promoter with respect to 100 parts by weight of the raw rubber. When the amount is less than 1 part by weight, improvement in tensile strength is limited. When the amount is more than 3 parts by weight, It is recommended to use it within the range.
상기 초촉진제는 활성화제의 역할을 하는 것으로, 테트라메틸 티우람 디설파이드(Tetramethyl thiuram disulfide)를 사용할 수 있다. 초촉진제는 원료고무 100 중량부에 대해 1 ~ 3 중량부를 사용하는 것이 바람직한데, 1 중량부 미만인 경우 기계적 물성 향상에 한계가 있으며, 3 중량부 초과인 경우 가교속도와 효율에 한계가 있기에 상기 범위 내에서 사용하는 것이 좋다.The super-promoter serves as an activator, and tetramethyl thiuram disulfide may be used. It is preferable to use 1 to 3 parts by weight based on 100 parts by weight of the starting rubber. When the amount is less than 1 part by weight, improvement in mechanical properties is limited. When the amount is more than 3 parts by weight, It is good to use within.
이상에서 설명한 바와 같이 본 발명의 방진고무 조성물은 원료고무의 조성, 충진제로서 사용되는 카본블랙과 탄소나노튜브의 조성, 노화방지제, 활성화제, 가교제, 가교촉진제, 지효성 촉진제, 초촉진제의 적절한 배합비 조절에 의해, 인장강도, 신율 등의 기계적 물성의 만족과 함께, 재료 동배율의 감소로 인한 진동절연성을 향상시킬 수 있었다. 따라서 본 발명에 따른 방진고무 조성물은 기존의 방진고무에 대비하여 연비 향상 및 승차감 개선이 가능하게 되었다.INDUSTRIAL APPLICABILITY As described above, the vibration damping rubber composition of the present invention can be suitably used in various applications such as the composition of raw rubber, the composition of carbon black and carbon nanotubes used as fillers, the aging inhibitor, activator, crosslinking agent, crosslinking accelerator, delayed accelerator, , The mechanical properties such as tensile strength and elongation were satisfied, and the vibration insulating property due to the reduction of the material magnification was improved. Therefore, the anti-vibration rubber composition according to the present invention can improve the fuel economy and ride comfort in comparison with the conventional anti-vibration rubber.
이하, 본 발명을 실시예를 통하여 더욱 상세히 설명한다. 그러나 이들 실시예는 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to examples. However, these examples are for illustrating the present invention, and the scope of the present invention is not limited thereto.
제조예Manufacturing example 1: 최적의 원료고무의 배합 비율 1: Ratio of optimum raw material rubber
하기 표 1의 조성과 함량에 따라 고무 조성물을 브라밴더(Brabender)를 이용하여 혼합하고 고무배합롤, 프레스 방법을 통해 제조예 1-1 ~ 1-5의 방진고무를 제조하였다(별도로 가공유는 사용하지 않았음).The rubber compositions were mixed using a Brabender according to the composition and contents in Table 1 below, and the vibration proof rubbers of Production Examples 1-1 to 1-5 were prepared by a rubber compounding roll and a pressing method Not).
실험예Experimental Example 1: 물성측정 1: Measurement of physical properties
상기 제조예 1-1 ~ 1-5의 방진고무에서 제조된 시편을 하기 시험방법을 이용하여 물성 측정하여 측정 결과를 하기 표 3에 나타내었다.The specimens prepared from the vibration-proofing rubbers of Production Examples 1-1 to 1-5 were measured for physical properties using the following test methods, and the measurement results are shown in Table 3 below.
(1) 경도 측정: KS M 6784에 준하여 수행하였다.(1) Hardness measurement: Performed according to KS M 6784.
(2) 인장강도 및 신율 측정: KS M 6782에 따라 아령형 3호로 수행하였다.(2) Measurement of tensile strength and elongation: Dumbbell type 3 was performed according to KS M 6782.
(3) 재료동배율 측정: 재료동특성시험기를 활용하여 정신장 20%에서 동적으로 2% 신율을 주어 주파수 가진 하에서 수행하였다.(3) Measurement of material dynamic magnification: Material dynamic tester was used to perform dynamically at 2% elongation at a frequency of 20%.
상기 표 3의 결과를 보면, 원료고무로서 천연고무 70 ~ 80 중량부 및 부타디엔 고무 20 ~ 30 중량부를 사용하였을 때, 가장 진동절연향상(재료동배율 감소)에 효과적임을 알 수 있다. 그러나, 인장강도 및 신율 등의 기계적 물성에 있어서 취약함을 확인할 수 있었다. It can be seen from the results of Table 3 that 70 to 80 parts by weight of the natural rubber and 20 to 30 parts by weight of the butadiene rubber are effective as the raw rubber to improve the vibration insulation (reduce the dynamic magnification). However, it was confirmed that it is weak in terms of mechanical properties such as tensile strength and elongation.
따라서 진동절연 향상에 가장 효과적인 배합은 천연고무 70 ~ 80 중량부 및 부타디엔 고무 20 ~ 30 중량부임을 알 수 있다.Therefore, it is understood that the most effective compounding for improving vibration insulation is 70 to 80 parts by weight of natural rubber and 20 to 30 parts by weight of butadiene rubber.
제조예Manufacturing example 2: 탄소나노튜브의 최적의 사용 비율 2: Optimum use ratio of carbon nanotubes
하기 표 4의 조성과 함량에 따라 고무 조성물을 브라밴더(Brabender)를 이용하여 혼합하고 고무배합롤, 프레스 방법을 통해 제조예 2-1 ~ 2-5의 방진고무를 제조하였다(별도로 가공유는 사용하지 않았음). 이때 각 성분은 상기 표 2에서 개시한 표 1의 성분과 동일한 것을 사용하였다.Rubber compositions were mixed in accordance with the composition and contents in Table 4 using a Brabender, and the vibration proof rubbers of Production Examples 2-1 to 2-5 were prepared by a rubber compounding roll and a pressing method Not). At this time, the same components as those shown in Table 2 were used.
Filler
실험예Experimental Example 2: 물성측정 2: Measurement of physical properties
상기 제조예 2-1 ~ 2-6의 방진고무에서 제조된 시편을 상기 실험예 1과 동일한 방법으로 물성을 측정하여 측정 결과를 하기 표 5에 나타내었다.The properties of the specimens produced in the vibration-proof rubbers of Production Examples 2-1 to 2-6 were measured in the same manner as in Experimental Example 1, and the measurement results are shown in Table 5 below.
상기 표 5의 결과를 보면, 일반 탄소나노튜브 0.5 ~ 1.5 중량부를 첨가하였을 때 인장강도 및 신율 등의 기계적 물성 향상에 효과가 있음을 확인할 수 있었다. 이로서 기계적 물성 향상에 가장 효과적인 탄소나노튜브의 사용량은 0.5 ~ 1.5 중량부임을 알 수 있었다.The results of Table 5 show that when 0.5 to 1.5 parts by weight of general carbon nanotubes are added, the mechanical properties such as tensile strength and elongation are improved. As a result, it was found that the amount of carbon nanotubes most effective for improving mechanical properties was 0.5 to 1.5 parts by weight.
상기 제조예 1 및 제조예 2와, 실험예 1 및 2을 통해, 원료고무와 탄소나노튜브의 최적의 사용량을 정립할 수 있다.Through the above-described Production Examples 1 and 2 and Experimental Examples 1 and 2, it is possible to determine the optimum amount of the raw rubber and the carbon nanotube to be used.
비교예Comparative Example 1 ~ 5 및 1 to 5 and 실시예Example 1 ~ 4 1-4
하기 표 6의 조성과 함량에 따라 고무 조성물을 브라밴더(Brabender)를 이용하여 혼합하고 고무배합롤, 프레스 방법을 통해 비교예 1 ~ 5 및 실시예 1 ~ 4의 방진고무를 제조하였다(별도로 가공유는 사용하지 않았음). 이때 각 성분은 탄소나노튜브만 제외하고, 상기 표 2에서 개시한 표 1의 성분과 동일한 것을 사용하였다. The rubber compositions were mixed using a Brabender according to the composition and contents in Table 6 below, and the vibration-damping rubbers of Comparative Examples 1 to 5 and Examples 1 to 4 were prepared through a rubber compounding roll and a pressing method (separately, Not used). At this time, the same components as those of Table 1 described in Table 2 were used except for carbon nanotubes.
실시예 및 비교예에서 사용한 탄소나노튜브(a-CNT)는 염산/황산 용액 200 ml (염산: 150ml, 황산: 50ml)에 탄소나노튜브(CM-95, 한화케미칼) 500mg을 넣고 80℃온도에서 6시간 동안 산처리를 하고, 800℃ 퍼니스에서 6 ~ 24시간 열처리를 통하여 제조하였다. 이때 탄소나노뷰트의 직경은 10 ~ 25 nm 이며, 길이는 5 ~ 30nm 이고, 표면적은 200 ~ 500 m2/g이다.Carbon nanotubes (CM-95, Hanwha Chemical), 500 mg, were added to 200 ml of a hydrochloric acid / sulfuric acid solution (150 ml of hydrochloric acid, 50 ml of sulfuric acid) Acid treatment for 6 hours, and heat treatment in a 800 ° C furnace for 6 to 24 hours. At this time, the diameter of the carbon nanobut is 10 to 25 nm, the length is 5 to 30 nm, and the surface area is 200 to 500 m 2 / g.
참고로, 활성화기가 도입된 탄소나노튜브(a-CNT)에 포함된 산소 원소의 함량(wt%)은 X선 광전자 분광법(X-ray Photoelectron Spectroscopy) 방법으로 측정된 값을 의미한다.For reference, the content (wt%) of the oxygen element contained in the carbon nanotube (a-CNT) into which the activator is introduced means a value measured by an X-ray photoelectron spectroscopy method.
2) 3wt% 산소 도입되며, 카르복실기(-COOH)와 하이드록시기(-OH)는 1:4 중량 비율인a-CNT을 사용함(온도: 800 ℃, 시간: 360분).
3) 5wt% 산소 도입되며, 카르복실기(-COOH)와 하이드록시기(-OH)는 1:4 중량 비율인a-CNT을 사용함(온도: 700 ℃, 시간: 360분).
4) 7wt% 산소 도입되며, 카르복실기(-COOH)와 하이드록시기(-OH)는 1:4 중량 비율인a-CNT을 사용함(온도: 600 ℃, 시간: 360분).
5) 9wt% 산소 도입되며, 카르복실기(-COOH)와 하이드록시기(-OH)는 1:4 중량 비율인a-CNT을 사용함(온도: 500 ℃, 시간: 360분).
6) 5wt% 산소 도입되며, 카르복실기(-COOH)와 하이드록시기(-OH)는 1:3 중량 비율인a-CNT을 사용함(온도: 700 ℃, 시간: 420분).
7) 5wt% 산소 도입되며, 카르복실기(-COOH)와 하이드록시기(-OH)는 1:2 중량 비율인a-CNT을 사용함(온도: 700 ℃, 시간: 480분).
8) 5wt% 산소 도입되며, 카르복실기(-COOH)와 하이드록시기(-OH)는 1:5 중량 비율인a-CNT을 사용함(온도: 700 ℃, 시간: 300분).1) 1 wt% of oxygen, and a-CNT having a 1: 4 weight ratio of a carboxyl group (-COOH) and a hydroxyl group (-OH) is used (temperature: 900 ° C, time: 360 minutes).
2) 3 wt% of oxygen, and a carboxyl group (-COOH) and a hydroxyl group (-OH) are used in a 1: 4 weight ratio of a-CNT (temperature: 800 ° C., time: 360 min).
3) 5 wt% of oxygen and a-CNT of 1: 4 weight ratio of carboxyl group (-COOH) and hydroxyl group (-OH) was used (temperature: 700 ° C., time: 360 minutes).
4) a-CNT having a weight ratio of 1: 4 of carboxyl group (-COOH) and hydroxyl group (-OH) was used (temperature: 600 ° C, time: 360 minutes).
5) 9 wt% of oxygen, and a carboxylate (-COOH) and hydroxyl group (-OH) were used in a 1: 4 weight ratio of a-CNT (temperature: 500 ° C, time: 360 min).
6) a-CNT having a weight ratio of 1: 3 of carboxyl group (-COOH) and hydroxyl group (-OH) was used (temperature: 700 ° C, time: 420 minutes).
(Temperature: 700 ° C, time: 480 minutes) in which 1: 2 weight ratio of carboxyl group (-COOH) and hydroxyl group (-OH) is used.
8) 5 wt% of oxygen, and a-CNT having a carboxyl group (-COOH) and a hydroxyl group (-OH) in a weight ratio of 1: 5 was used (temperature: 700 ° C., time: 300 min).
실험예Experimental Example 3: 물성 측정 3: Measurement of physical properties
상기 비교예 1 ~ 5 및 실시예 1 ~ 4의 방진고무에서 제조된 시편을 상기 실험예 1과 동일한 방법으로 물성을 측정하여 측정 결과를 하기 표 7에 나타내었다.The specimens produced from the vibration-proof rubbers of Comparative Examples 1 to 5 and Examples 1 to 4 were measured for physical properties in the same manner as in Experimental Example 1, and the measurement results are shown in Table 7 below.
상기 표 7의 결과를 보면, 활성화기가 도입된 탄소나노튜브를 사용하는 경우, 표 6의 결과(제조예 2)와 비교하여 볼 때 재료동배율 뿐만 아니라 인장강도 및 신율 등의 기계적 물성도 향상됨을 확인할 수 있었다. 또한 활성화기가 도입된 탄소나노튜브를 사용하는 경우, 카본블랙만 사용한 경우(제조예 1)와 대비하여 카본블랙의 사용량이 상대적으로 적음에도 기계적 물성 측면에서 동등 이상의 효과를 구현할 수 있기에, 부품의 경량화도 실현할 수 있음을 알 수 있다.The results of Table 7 show that when the activated carbon nanotubes are used, the mechanical properties such as tensile strength and elongation as well as material co-efficient are improved as compared with the results of Table 6 (Production Example 2) I could confirm. In addition, in the case of using the carbon nanotubes into which the activator is introduced, compared with the case of using only carbon black (Production Example 1), since the use of carbon black is relatively small, the same or equivalent effect can be realized in terms of mechanical properties, Can also be realized.
특히 산소 원소가 3 ~ 7 중량%로 포함된 활성화기가 도입된 탄소나노튜브(a-CNT)를 사용한 실시예 1 ~ 3의 경우, 그렇지 않은 비교예 1 ~ 2와 대비하여 재료동배율과 기계적 물성 값이 더욱 우수함을 알 수 있다. Particularly, in Examples 1 to 3 using carbon nanotubes (a-CNT) having an activator containing an oxygen element in an amount of 3 to 7% by weight, compared with Comparative Examples 1 and 2, Value is more excellent.
또한 카르복실기(-COOH)와 하이드록시기(-OH)는 1:4 중량 비율인 탄소나노튜브를 사용한 실시예 2와 1:2 중량 비율의 비교예 4와 1:5 중량 비율의 비교예 5의 경우를 비교하여 보면, 동일 중량의 산소 원소를 가지고 있더라도 1:3~4 중량 비율로 카르복실기와 하이드록시기를 가진 탄소나노튜브를 사용한 경우가 진동절연성 측면에서 더욱 우수함을 확인할 수 있었다.In addition, Example 2 using a carbon nanotube having a 1: 4 weight ratio of a carboxyl group (-COOH) and a hydroxyl group (-OH), Comparative Example 4 having a weight ratio of 1: 2 and Comparative Example 5 having a weight ratio of 1: The carbon nanotubes having a carboxyl group and a hydroxy group at a weight ratio of 1: 3 to 4, even if they have oxygen elements of the same weight, are more excellent in terms of vibration insulation.
따라서 본 발명에 따른 방진고무 조성물은 충진제로서 카본블랙 이외, 산소 원소가 3 ~ 7 중량% 포함된 것으로서, 카르복실기, 히드록시기, 에테르기, 및 에스테르기로 이루어진 군으로부터 선택된 1종 이상의 활성화기가 도입된 탄소나노튜브를 소정량 첨가함으로써, 기계적 물성의 만족과 함께 진동절연성을 개선하는 효과가 있다.Therefore, the vibration damping rubber composition according to the present invention is characterized in that the filler contains carbon atom other than carbon black and oxygen element is contained in an amount of 3 to 7 wt%, and carbon nanomaterials containing at least one activator selected from the group consisting of carboxyl group, hydroxyl group, ether group, By adding a predetermined amount of the tube, there is an effect of improving the vibration insulation as well as satisfying the mechanical properties.
Claims (10)
상기 원료고무는 천연고무 70 ~ 80 중량부 및 부타디엔 고무 20 ~ 30 중량부를 포함하며,
상기 충진제는 원료고무 100 중량부에 대해 카본블랙 40 ~ 50 중량부; 및 카르복실기(-COOH)와 하이드록시기(-OH)가 1:3~4 중량 비율로 도입된 탄소나노튜브 0.5 ~ 3 중량부;
를 포함하는 것을 특징으로 하는 방진고무 조성물.
A rubber composition comprising a raw rubber, a filler, an antioxidant, an activator and a crosslinking agent,
Wherein the raw material rubber comprises 70 to 80 parts by weight of natural rubber and 20 to 30 parts by weight of butadiene rubber,
Wherein the filler comprises 40 to 50 parts by weight of carbon black per 100 parts by weight of the raw rubber; 0.5 to 3 parts by weight of carbon nanotubes in which carboxyl groups (-COOH) and hydroxyl groups (-OH) are introduced at a weight ratio of 1: 3 to 4;
Wherein the rubber composition is a rubber composition.
The carbon nanotube according to claim 1, wherein the carbon nanotubes have a diameter of 10 to 25 nm, a length of 10 to 50 nm, a surface area of 150 to 250 m 2 / g, an oxygen content of 3 to 7 wt% Wherein the rubber composition is a rubber composition.
The antioxidant according to claim 1, wherein the antioxidant is 2-mercaptobenzimidazole, 2,2,4-trimethyl-1,2-dihydroquinoline dihydroquinoline, N-phenyl-N'-isopropyl-p-phenylenediamine and N, N 'substituted p-phenylenediamine substituted p-phenylenediamine), and is contained in an amount of 5 to 8 parts by weight based on 100 parts by weight of the raw rubber.
[2] The method according to claim 1, wherein the activator is at least one selected from the group consisting of zinc oxide (ZnO) and stearic acid, and 1 to 3 parts by weight based on 100 parts by weight of the raw rubber (1).
The anti-vibration rubber composition according to claim 1, wherein the crosslinking agent is sulfur, and the crosslinking agent is included in an amount of 1 to 3 parts by weight based on 100 parts by weight of the raw rubber.
The composition of claim 1, wherein the rubber composition is selected from the group consisting of hexamethylene-1,6-bis (thiosulfate), disodium salt, and dihydrate. And 1 to 3 parts by weight of at least one crosslinking accelerator selected from the group consisting of 100 parts by weight of the raw rubber.
The rubber composition according to claim 1, wherein the rubber composition further comprises 1 to 3 parts by weight of a sustained-release promoter, which is N-cyclohexyl-2-benzothiazole sulfonamide, based on 100 parts by weight of the raw rubber Wherein the rubber composition is a rubber composition.
The anti-vibration rubber composition according to claim 1, wherein the rubber composition further comprises 1 to 3 parts by weight of a super accelerator which is tetramethyl thiuram disulfide based on 100 parts by weight of the raw rubber.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160117871A KR101846707B1 (en) | 2016-09-13 | 2016-09-13 | Anti vibration rubber composition improved vibration isolation and Anti vibration rubber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020160117871A KR101846707B1 (en) | 2016-09-13 | 2016-09-13 | Anti vibration rubber composition improved vibration isolation and Anti vibration rubber |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20180029598A KR20180029598A (en) | 2018-03-21 |
KR101846707B1 true KR101846707B1 (en) | 2018-04-06 |
Family
ID=61900897
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020160117871A KR101846707B1 (en) | 2016-09-13 | 2016-09-13 | Anti vibration rubber composition improved vibration isolation and Anti vibration rubber |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101846707B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220073875A (en) | 2020-11-26 | 2022-06-03 | (주)금강알텍 | Composite rubber compositon having excellent dissipation factor |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014501290A (en) * | 2010-12-14 | 2014-01-20 | スティロン ヨーロッパ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Improved elastomer formulation |
-
2016
- 2016-09-13 KR KR1020160117871A patent/KR101846707B1/en active IP Right Grant
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014501290A (en) * | 2010-12-14 | 2014-01-20 | スティロン ヨーロッパ ゲゼルシャフト ミット ベシュレンクテル ハフツング | Improved elastomer formulation |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220073875A (en) | 2020-11-26 | 2022-06-03 | (주)금강알텍 | Composite rubber compositon having excellent dissipation factor |
Also Published As
Publication number | Publication date |
---|---|
KR20180029598A (en) | 2018-03-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101000593B1 (en) | Vibration-proof rubber composition of engine mount | |
KR20130027938A (en) | Vibration-proof rubber composition for automobile | |
JP2006193621A (en) | Vibration-proof rubber composition and vibration-proof rubber | |
KR20220095276A (en) | Damping rubber composition | |
KR101338005B1 (en) | Rubber compound for car engine mount enhanced vds by mixing epdm with hybrid vulcanization system | |
KR102427656B1 (en) | Busy rubber composition for vehicle suspension device having excellent ozone resistance and carbon steel-rubber adhesion property | |
KR101846707B1 (en) | Anti vibration rubber composition improved vibration isolation and Anti vibration rubber | |
KR101745213B1 (en) | Anti-vibration rubber composition for absorbing vibration of engine | |
KR20110011010A (en) | Bush rubber composition having high damping | |
KR101499214B1 (en) | Rubber composition improving heat-resisting and vibration-proof | |
JP6248777B2 (en) | Rubber composition for anti-vibration rubber and anti-vibration rubber | |
KR20170125234A (en) | Vibration-Proof Rubber Composition Applied to the Dynamic Damper | |
KR102451974B1 (en) | Composition for bush rubber having simultaneously advanced vibration isolation and fatigue endurance | |
JP2006131819A (en) | Rubber composition for vibration proofing rubber, and vibration proofing rubber | |
JP2006143860A (en) | Rubber vibration insulator | |
KR102417538B1 (en) | Rubber composition having high stiffness for absorbing vibration of engine | |
KR20120041069A (en) | Rubber composition and dynamic damper comprising the same | |
JP5110765B2 (en) | Anti-vibration rubber | |
KR102522064B1 (en) | Vibration Proof Rubber Composition | |
KR101280838B1 (en) | Rubber compound for car engine mount enhanced dynamic characteristics by mixing epdm with silica | |
CN107636057B (en) | Rubber composition, vibration-proof rubber composition, and vibration-proof rubber | |
KR102634353B1 (en) | Vibration proof rubber for vehicle | |
JP2979700B2 (en) | Rubber composition for anti-vibration rubber | |
JP2001181458A (en) | Epdm-based rubber composition and epdm-based vulcanized rubber | |
CN115521511B (en) | Rubber composition and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant |