JPWO2017029802A1 - Method for producing fermented milk containing protein at high concentration - Google Patents

Method for producing fermented milk containing protein at high concentration Download PDF

Info

Publication number
JPWO2017029802A1
JPWO2017029802A1 JP2017535236A JP2017535236A JPWO2017029802A1 JP WO2017029802 A1 JPWO2017029802 A1 JP WO2017029802A1 JP 2017535236 A JP2017535236 A JP 2017535236A JP 2017535236 A JP2017535236 A JP 2017535236A JP WO2017029802 A1 JPWO2017029802 A1 JP WO2017029802A1
Authority
JP
Japan
Prior art keywords
milk
protein concentrate
protein
fermented milk
raw material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017535236A
Other languages
Japanese (ja)
Inventor
成子 金子
成子 金子
誠二 長岡
誠二 長岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Co Ltd
Original Assignee
Meiji Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Co Ltd filed Critical Meiji Co Ltd
Publication of JPWO2017029802A1 publication Critical patent/JPWO2017029802A1/en
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23CDAIRY PRODUCTS, e.g. MILK, BUTTER OR CHEESE; MILK OR CHEESE SUBSTITUTES; MAKING THEREOF
    • A23C9/00Milk preparations; Milk powder or milk powder preparations
    • A23C9/12Fermented milk preparations; Treatment using microorganisms or enzymes

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Microbiology (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Dairy Products (AREA)

Abstract

風味および食感に優れた高濃度の発酵乳を安価に製造できる、発酵乳の製造方法を提供する。タンパク質を高濃度で含む発酵乳の製造方法であって、脱脂粉乳と、ホエイタンパク質濃縮物と、乳タンパク質濃縮物とを含む原料乳を用いて、脱脂粉乳に含まれるタンパク質と、ホエイタンパク質濃縮物に含まれるタンパク質と、乳タンパク質濃縮物に含まれるタンパク質の合計を100質量%としたときに、脱脂粉乳に含まれるタンパク質が20〜60質量%、ホエイタンパク質濃縮物に含まれるタンパク質が20〜30質量%、乳タンパク質濃縮物に含まれるタンパク質が20〜60質量%となるように、脱脂粉乳と、ホエイタンパク質濃縮物と、乳タンパク質濃縮物とを配合する。Provided is a method for producing fermented milk, which can produce fermented milk with a high concentration and excellent texture and texture at low cost. A method for producing fermented milk containing protein at a high concentration, wherein the raw milk containing skim milk powder, whey protein concentrate, and milk protein concentrate is used, and the protein contained in skim milk powder and whey protein concentrate When the total of the protein contained in the milk protein concentrate and the protein contained in the milk protein concentrate is 100% by mass, the protein contained in the skim milk powder is 20-60% by mass, and the protein contained in the whey protein concentrate is 20-30 The skim milk powder, the whey protein concentrate, and the milk protein concentrate are blended so that the mass% and the protein contained in the milk protein concentrate is 20 to 60 mass%.

Description

本発明は、タンパク質を高濃度で含む発酵乳の製造方法に関する。   The present invention relates to a method for producing fermented milk containing protein at a high concentration.

タンパク質を高濃度で含む発酵乳(高タンパク質含有の発酵乳)として、クワルク、フレッシュチーズ、ギリシャヨーグルト等の名称を付したものが知られている。これらの高タンパク質含有の発酵乳は、通常の製造方法で製造した発酵乳に膜分離処理や遠心分離処理を行い、ホエイを除去する濃縮工程を経て製造されることが一般的である。   As fermented milk containing high concentration of protein (fermented milk containing high protein), those with names such as quark, fresh cheese and Greek yogurt are known. These high protein-containing fermented milks are generally produced through a concentration step in which whey is removed by subjecting fermented milk produced by a normal production method to membrane separation or centrifugation.

また、特許文献1には、発酵乳原料液にホエイタンパク質と乳ペプチドとを添加することによって、優れた保形性を有するとともに脆さが少なく、かつ滑らかな食感を有した発酵乳(高タンパク質含有の発酵乳)を製造できることが記載されている。   Patent Document 1 discloses that fermented milk having high shape retention, low brittleness, and smooth texture by adding whey protein and milk peptide to fermented milk raw material liquid (high It is described that protein-containing fermented milk can be produced.

特開2004−283047号公報Japanese Patent Application Laid-Open No. 2004-283047

上記の従来の高タンパク質含有の発酵乳の製造方法では、膜分離処理装置(精密濾過膜、限外濾過膜等)や遠心分離処理装置等の製造設備が必要となり、製造工程も多くなることから、製造費が高くなり、発酵乳そのものの価格も一般に高価となってしまう。また、高タンパク質含有にするために、発酵乳原料液(原料乳)のタンパク質濃度を単に高くしても、固いだけで、舌触り等の風味や食感が悪くなるという問題がある。   In the conventional method for producing fermented milk containing a high protein, production equipment such as a membrane separation treatment device (microfiltration membrane, ultrafiltration membrane, etc.) or a centrifugal separation treatment device is required, and the number of production processes is increased. Manufacturing costs are high, and the price of fermented milk itself is generally high. Moreover, in order to make it high protein content, even if the protein concentration of fermented milk raw material liquid (raw material milk) is made only high, there exists a problem that the tastes and textures, such as a touch, will deteriorate only by being hard.

また、特許文献1には、発酵乳原料液の1質量%程度のタンパク質を配合することによって、発酵乳の物性を改善することが記載されているものの、例えば、原料乳のタンパク質濃度を高くしてから発酵して得られる、高タンパク質含有の発酵乳の製造に必要な条件や、高タンパク質含有の発酵乳の物性等については何ら検討されていない。   Moreover, although patent document 1 describes improving the physical property of fermented milk by mix | blending the protein of about 1 mass% of fermented milk raw material liquid, for example, the protein density | concentration of raw material milk is made high. The conditions necessary for the production of fermented milk containing high protein obtained by fermentation after that and the physical properties of fermented milk containing high protein have not been studied at all.

それ故に、本発明は、風味と食感に優れた高濃度の発酵乳を安価に製造できる、発酵乳の製造方法を提供することを目的とする。   Therefore, an object of the present invention is to provide a method for producing fermented milk, which can produce fermented milk having a high concentration and excellent texture and texture at low cost.

本発明は、タンパク質を高濃度で含む発酵乳の製造方法に関するものである。本発明に係る発酵乳の製造方法では、脱脂粉乳と、ホエイタンパク質濃縮物(WPC; Whey
Protein Concentrate)および/またはホエイタンパク質単離物(WPI; Whey Protein Isolate)(以下、単に「ホエイタンパク質濃縮物」ということがある)と、乳タンパク質濃縮物(MPC; Milk Protein Concentrate)とを含む原料乳を用い、脱脂粉乳に含まれるタンパク質と、ホエイタンパク質濃縮物に含まれるタンパク質と、乳タンパク質濃縮物に含まれるタンパク質の合計を100質量%としたときに、脱脂粉乳に含まれるタンパク質が20〜60質量%、ホエイタンパク質濃縮物に含まれるタンパク質が20〜30質量%、乳タンパク質濃縮物に含まれるタンパク質が20〜60質量%となるように、脱脂粉乳と、ホエイタンパク質濃縮物と、乳タンパク質濃縮物とを配合する。
The present invention relates to a method for producing fermented milk containing protein at a high concentration. In the method for producing fermented milk according to the present invention, skim milk powder, whey protein concentrate (WPC; Whey)
Ingredients including Protein Concentrate) and / or Whey Protein Isolate (WPI) (hereinafter sometimes simply referred to as “whey protein concentrate”) and Milk Protein Concentrate (MPC) When milk is used, and the total of the protein contained in the skim milk powder, the protein contained in the whey protein concentrate, and the protein contained in the milk protein concentrate is 100% by mass, the protein contained in the skim milk powder is 20 to 20%. Nonfat dry milk, whey protein concentrate, milk protein so that 60% by mass, protein contained in whey protein concentrate is 20-30% by mass, and protein contained in milk protein concentrate is 20-60% by mass concentrated The product is blended.

本発明に係る製造方法によれば、風味と食感に優れた高濃度の発酵乳を安価に製造することが可能となる。   According to the production method of the present invention, it is possible to produce a high-concentration fermented milk excellent in flavor and texture at a low cost.

図1は、実施形態に係る発酵乳の製造工程を示す流れ図である。FIG. 1 is a flowchart showing a process for producing fermented milk according to the embodiment. 図2は、脱脂乳粉とホエイタンパク質濃縮物と乳タンパク質濃縮物とを含む水溶液の熱凝固時間を示す図である。FIG. 2 is a diagram showing the thermal coagulation time of an aqueous solution containing skim milk powder, whey protein concentrate, and milk protein concentrate. 図3は、脱脂乳粉とホエイタンパク質濃縮物と乳タンパク質濃縮物とを含む水溶液の熱凝固時間を示す図である。FIG. 3 is a diagram showing the thermal coagulation time of an aqueous solution containing skim milk powder, whey protein concentrate, and milk protein concentrate. 図4は、脱脂乳粉とホエイタンパク質濃縮物と乳タンパク質濃縮物とを含む水溶液のpHと熱凝固時間との関係を示す図である。FIG. 4 is a diagram showing the relationship between the pH of an aqueous solution containing skim milk powder, whey protein concentrate, and milk protein concentrate and the thermal coagulation time. 図5は、脱脂乳粉とホエイタンパク質濃縮物と乳タンパク質濃縮物とを含む水溶液のpHと熱凝固時間との関係を示す図である。FIG. 5 is a diagram showing the relationship between the pH of an aqueous solution containing skim milk powder, whey protein concentrate, and milk protein concentrate and the thermal coagulation time. 図6は、ホエイタンパク質濃縮物の種類毎の発酵乳の発酵時間を示す図である。FIG. 6 is a diagram showing the fermentation time of fermented milk for each type of whey protein concentrate. 図7は、ホエイタンパク質濃縮物の種類毎の発酵乳のカードの硬度を示す図である。FIG. 7 is a diagram showing the hardness of the curd of fermented milk for each type of whey protein concentrate. 図8は、β−Lgの含有率と発酵乳の硬度とをプロットした図である。FIG. 8 is a graph plotting the content of β-Lg and the hardness of fermented milk. 図9は、乳タンパク質濃縮物の種類毎の発酵乳の発酵時間を示す図である。FIG. 9 is a diagram showing the fermentation time of fermented milk for each type of milk protein concentrate. 図10は、乳タンパク質濃縮物の種類毎の発酵乳のカードの硬度を示す図である。FIG. 10 is a diagram showing the hardness of a card of fermented milk for each type of milk protein concentrate.

本発明の実施形態では、高タンパク質原料を配合した原料乳を発酵させることにより、タンパク質を高濃度(5〜10質量%)で含む発酵乳(高タンパク質含有の発酵乳)を製造する。   In the embodiment of the present invention, fermented milk (fermented milk containing high protein) containing protein at a high concentration (5 to 10% by mass) is produced by fermenting raw milk mixed with a high protein raw material.

図1は、実施形態に係る発酵乳の製造工程を示す流れ図である。   FIG. 1 is a flowchart showing a process for producing fermented milk according to the embodiment.

まず、加温した水に、発酵乳の原料を溶解または分散させて、原料乳(タンパク質原料の水溶液)を調製する(ステップS1)。原料乳は少なくとも、脱脂乳の成分、ホエイタンパク質濃縮物の成分、乳タンパク質濃縮物の成分を含む水溶液である。   First, raw material of fermented milk is dissolved or dispersed in heated water to prepare raw material milk (an aqueous solution of protein raw material) (step S1). The raw milk is an aqueous solution containing at least a component of skim milk, a component of whey protein concentrate, and a component of milk protein concentrate.

脱脂乳の成分とは、通常の脱脂乳、塩類(ナトリウムやカリウム等のミネラル類)を低減した脱脂乳(脱塩脱脂乳)、脱脂粉乳の還元液(還元脱脂乳)、脱脂濃縮乳の希釈液等のいずれの形態も包含する意味として用いられることがある。そして、脱脂乳とは、脱脂粉乳、脱脂濃縮乳等の形態を包含する意味として用いられることがある。   Components of skim milk are normal skim milk, skim milk (desalted skim milk) with reduced salts (minerals such as sodium and potassium), reduced solution of skim milk powder (reduced skim milk), dilution of skim concentrated milk It may be used to include any form such as liquid. And skim milk may be used as the meaning including forms, such as skim milk powder and skim concentrated milk.

乳タンパク質濃縮物は、原料乳の熱安定性を向上させる。また、乳タンパク質濃縮物では、その製造過程において、ナトリウム、カリウム、塩素等が十分に低減(脱塩)されているので、乳タンパク質濃縮物を配合して製造した高濃度の発酵乳では、発酵後に濃縮処理して製造した発酵乳と比べて、塩味を容易に低減することができる。つまり、この塩味の低減によって、実際に得られる発酵乳の風味を、まろやかに調整することが可能となる。ただし、乳タンパク質濃縮物では、ホエイタンパク質濃縮物と比べて、カルシウム含有量が高いため、乳タンパク質濃縮物の配合割合が上記の範囲を超えて高くなりすぎると、カルシウムに起因する苦味が発生しやすくなる。また、乳タンパク質濃縮物の配合割合が上記の範囲を超えて高くなりすぎると、タンパク質に起因する異臭が発生しやすくなる。   Milk protein concentrate improves the heat stability of raw milk. In milk protein concentrates, sodium, potassium, chlorine, etc. are sufficiently reduced (desalted) during the production process. Therefore, in high-concentration fermented milk produced by blending milk protein concentrates, Compared with fermented milk produced by concentration treatment later, saltiness can be easily reduced. That is, by reducing this salty taste, it is possible to adjust the flavor of the actually obtained fermented milk in a mellow manner. However, the milk protein concentrate has a higher calcium content than the whey protein concentrate, so if the blending ratio of the milk protein concentrate exceeds the above range, bitterness caused by calcium occurs. It becomes easy. Moreover, if the blending ratio of the milk protein concentrate exceeds the above range and becomes too high, a bad odor due to the protein tends to be generated.

ホエイタンパク質濃縮物は、発酵乳のカードの硬度を向上させる。原料乳に含まれるβ−ラクトグロブリン(β−Lg)やα−ラクトアルブミン(α−La)の含有量が高くなるにつれて、発酵乳のカードの硬度が高くなる。このとき、ホエイタンパク質濃縮物では、脱脂乳や乳タンパク質濃縮物と比べて、β−Lgの含有量やα−Laの含有量が高いため、ホエイタンパク質濃縮物を高濃度で配合することによって、発酵乳の硬度を向上させ
ることができる。ただし、ホエイタンパク質濃縮物の配合割合が上記の範囲を超えて高くなりすぎると、発酵乳の硬度が高くなりすぎて、食感が悪化したり、原料乳の熱安定性が低下しやすくなったり、発酵乳の粒子の粗さが顕著となって、カードの組織が低下しやすくなって脆くなったりする。また、ホエイタンパク質濃縮物では、乳タンパク質濃縮物と比べて、ナトリウム含有量やカルシウム含有量が低いため、ホエイタンパク質濃縮物を配合して、高濃度の発酵乳を製造すると、ナトリウムやカルシウムに起因する塩味や苦味を低減することができる。ただし、ホエイタンパク質濃縮物の配合割合が上記の範囲を下回ると、これらの塩味や苦みを低減することができなくなる。
Whey protein concentrate improves the hardness of the curd of fermented milk. As the content of β-lactoglobulin (β-Lg) and α-lactalbumin (α-La) contained in the raw material milk increases, the hardness of the curd of fermented milk increases. At this time, in the whey protein concentrate, since the content of β-Lg and the content of α-La is higher than that of skim milk and milk protein concentrate, by blending the whey protein concentrate at a high concentration, The hardness of fermented milk can be improved. However, if the mixing ratio of the whey protein concentrate exceeds the above range and becomes too high, the hardness of the fermented milk becomes too high and the texture becomes worse, and the heat stability of the raw milk tends to decrease. The coarseness of the fermented milk particles becomes prominent, and the card structure tends to deteriorate and become brittle. In addition, whey protein concentrate has lower sodium content and calcium content than milk protein concentrate, so when whey protein concentrate is blended to produce high-concentration fermented milk, it is attributed to sodium and calcium. Salty taste and bitterness can be reduced. However, if the blending ratio of the whey protein concentrate is below the above range, these salty tastes and bitterness cannot be reduced.

脱脂粉乳とホエイタンパク質濃縮物と乳タンパク質濃縮物との配合割合は、脱脂粉乳に含まれるタンパク質と、ホエイタンパク質濃縮物に含まれるタンパク質と、乳タンパク質濃縮物に含まれるタンパク質の合計を100質量%としたときに、脱脂粉乳に含まれるタンパク質を20〜60質量%、ホエイタンパク質濃縮物に含まれるタンパク質を20〜30質量%、乳タンパク質濃縮物に含まれるタンパク質を20〜60質量%とする。このとき、乳タンパク質濃縮物とホエイタンパク質濃縮物との配合割合を上記の範囲とすることによって、原料乳の熱安定性や発酵乳のカードの硬度を向上させつつ、風味や食感を改善することができる。   The blending ratio of skim milk powder, whey protein concentrate, and milk protein concentrate is 100% by mass of the total of protein contained in skim milk powder, protein contained in whey protein concentrate, and protein contained in milk protein concentrate. The protein contained in skim milk powder is 20 to 60% by mass, the protein contained in the whey protein concentrate is 20 to 30% by mass, and the protein contained in the milk protein concentrate is 20 to 60% by mass. At this time, by adjusting the blending ratio of the milk protein concentrate and the whey protein concentrate within the above range, the flavor and texture are improved while improving the heat stability of the raw milk and the hardness of the card of the fermented milk. be able to.

上述した配合割合の範囲内でも、脱脂粉乳に含まれるタンパク質を25〜50質量%、ホエイタンパク質濃縮物に含まれるタンパク質を22〜28質量%、乳タンパク質濃縮物に含まれるタンパク質を25〜50質量%とすることが好ましく、脱脂粉乳に含まれるタンパク質を30〜45質量%、ホエイタンパク質濃縮物に含まれるタンパク質を23〜27質量%、乳タンパク質濃縮物に含まれるタンパク質を30〜45質量%とすることがより好ましく、脱脂粉乳に含まれるタンパク質を35〜40質量%、ホエイタンパク質濃縮物に含まれるタンパク質を24〜26質量%、乳タンパク質濃縮物に含まれるタンパク質を35〜40質量%とすることがさらに好ましい。尚、原料乳に含まれるタンパク質の含有量(濃度)には、5〜10質量%が例示され、6〜10質量%が好ましく、7〜10質量%がより好ましい。また、原料乳に含まれる糖質の含有量には、4〜8質量%が例示され、4〜7質量%が好ましく、4〜6質量%がより好ましい。尚、ホエイタンパク質濃縮物の配合量を好ましい範囲とすることによって、風味と食感とをさらに向上させることができる。また、必要に応じて、原料乳(タンパク質原料の水溶液)に、生クリームを添加(配合)することによって、風味と食感とをさらに向上させることができる。   Even within the range of the above-described blending ratio, the protein contained in the skim milk powder is 25 to 50% by mass, the protein contained in the whey protein concentrate is 22 to 28% by mass, and the protein contained in the milk protein concentrate is 25 to 50% by mass. The protein contained in skim milk powder is preferably 30 to 45% by mass, the protein contained in the whey protein concentrate is 23 to 27% by mass, and the protein contained in the milk protein concentrate is 30 to 45% by mass. More preferably, the protein contained in the skim milk powder is 35 to 40% by mass, the protein contained in the whey protein concentrate is 24 to 26% by mass, and the protein contained in the milk protein concentrate is 35 to 40% by mass. More preferably. In addition, 5-10 mass% is illustrated by content (concentration) of the protein contained in raw material milk, 6-10 mass% is preferable, and 7-10 mass% is more preferable. Moreover, 4-8 mass% is illustrated by content of the saccharide | sugar contained in raw material milk, 4-7 mass% is preferable and 4-6 mass% is more preferable. In addition, a flavor and food texture can further be improved by making the compounding quantity of a whey protein concentrate into a preferable range. In addition, flavor and texture can be further improved by adding (compounding) fresh cream to raw milk (protein raw material aqueous solution) as necessary.

次に、ホモミキサー等を用いて、原料乳を攪拌して均質化させる(ステップS2)。乳タンパク質濃縮物には、溶解性が低いものがあるため、この工程を設けて均質化処理する。また、生クリームの乳脂肪を微粒化や分散するため、この工程を設けて均質化処理する。ただし、溶解性の高いタンパク質濃縮物を原料として用いる場合には、この工程を省略してもよい。   Next, the raw material milk is stirred and homogenized using a homomixer or the like (step S2). Since some milk protein concentrates have low solubility, this step is provided for homogenization. Moreover, in order to atomize and disperse the milk fat of the fresh cream, this process is provided and homogenized. However, this step may be omitted when a highly soluble protein concentrate is used as a raw material.

次に、必要に応じて、均質化処理した後の原料乳のpHを調整してから(ステップS3)、原料乳を加熱して所定の殺菌温度と所定の殺菌時間で殺菌処理した(ステップS4)後、原料乳を発酵温度まで冷却する(ステップS5)。原料乳のpHを6.6〜6.8、より好ましくは6.7に調整することによって、原料乳を加熱して殺菌処理するときのタンパク質の変性を抑制して、原料乳の熱安定性を向上させることができる。   Next, if necessary, after adjusting the pH of the raw material milk after the homogenization treatment (step S3), the raw material milk is heated and sterilized at a predetermined sterilization temperature and a predetermined sterilization time (step S4). After that, the raw material milk is cooled to the fermentation temperature (step S5). By adjusting the pH of the raw milk to 6.6 to 6.8, more preferably 6.7, protein denaturation when the raw milk is heated and sterilized is suppressed, and the thermal stability of the raw milk Can be improved.

次に、冷却した原料乳にスターターを添加(して攪拌)した(ステップS6)後、容器に原料乳を充填し(ステップS7)、所定の発酵温度(と所定の発酵時間)で発酵させる(ステップS8)。そして、原料乳の発酵を終了した後、発酵乳を冷蔵庫で冷却する(ステップS9)。   Next, after adding a starter to the cooled raw milk (step S6), the container is filled with raw milk (step S7) and fermented at a predetermined fermentation temperature (and a predetermined fermentation time) ( Step S8). And after fermenting raw material milk, fermented milk is cooled with a refrigerator (step S9).

本実施形態に係る製造方法では、脱脂乳に高タンパク質原料を配合した原料乳を発酵させるため、従来の高濃度の発酵乳の製造方法のように、通常の発酵乳を膜分離処理や遠心分離処理を施して、ホエイを除去する必要がない。ホエイを除去する濃縮工程が不要となることによって、以下のような利点がある。
(1)膜分離処理装置や遠心分離処理装置等の製造設備やホエイを除去する濃縮工程が不要となるため、発酵乳の製造費を低減することができる。
(2)ホエイを除去する製造方法では、実際に除去したホエイの分だけ発酵乳の質量が少なくなるが、ホエイを除去する濃縮工程を省略する(不要にする)ことによって、発酵乳の損失を削減でき、製品の歩留まりが向上する。
(3)ホエイを除去する濃縮工程を省略することによって、廃棄物となる副産物(ホエイ)が発生しないので、環境への負荷を軽減できる。
(4)発酵工程後に、濃縮工程を行う場合には、濃縮処理装置等の無菌化操作が必要であるが、濃縮工程が不要となることによって、無菌化操作も不要となる。また、発酵工程後に、発酵乳に何の機械的な処理も行わないので、微生物による汚染のリスクを回避できる。
(5)ホエイを除去する濃縮工程を省略することによって、発酵工程後に、カードの攪拌や破砕などが不要となる。したがって、高濃度のソフトタイプ(糊状)の発酵乳だけでなく、高濃度のセットタイプ(固形状)の発酵乳の製造も可能となる。
In the production method according to the present embodiment, raw milk in which high-protein raw material is blended with skim milk is fermented. Therefore, as in the conventional method for producing high-concentration fermented milk, ordinary fermented milk is subjected to membrane separation treatment or centrifugation. There is no need to treat and remove whey. By eliminating the concentration step for removing whey, there are the following advantages.
(1) Manufacturing equipment such as a membrane separation treatment device and a centrifugal separation treatment device and a concentration step for removing whey are not necessary, so that the production cost of fermented milk can be reduced.
(2) In the production method for removing whey, the mass of fermented milk is reduced by the amount of whey that is actually removed, but by omitting (making unnecessary) the concentration step of removing whey, the loss of fermented milk is reduced. This can be reduced and the product yield is improved.
(3) By omitting the concentration step of removing whey, no by-product (whey) that becomes waste is generated, so the burden on the environment can be reduced.
(4) When the concentration step is performed after the fermentation step, a sterilization operation such as a concentration treatment apparatus is required. However, the sterilization operation is also unnecessary because the concentration step is not necessary. In addition, since no fermented milk is subjected to any mechanical treatment after the fermentation process, the risk of contamination by microorganisms can be avoided.
(5) By omitting the concentration step of removing whey, stirring or crushing of the card becomes unnecessary after the fermentation step. Therefore, not only high-concentration soft type (paste-like) fermented milk but also high-concentration set type (solid) fermented milk can be produced.

また、原料乳に乳タンパク質濃縮物を配合することによって、原料乳の熱安定性(耐熱性)が向上する。したがって、本実施形態に係る発酵乳の製造方法では、原料乳の殺菌工程において、殺菌処理装置を長時間で連続運転することが可能となり、原料乳を効率的に殺菌処理することができる。   Moreover, the heat stability (heat resistance) of raw material milk improves by mix | blending a milk protein concentrate with raw material milk. Therefore, in the fermented milk manufacturing method according to the present embodiment, the sterilization apparatus can be continuously operated for a long time in the raw milk sterilization step, and the raw milk can be sterilized efficiently.

また、原料乳にホエイタンパク質濃縮物を配合することによって、濃縮工程を行うことなく、発酵乳のカードを硬くすることが可能となり、発酵乳の塩味や苦味を低減して、食味を向上することができる。   Also, by blending whey protein concentrate with raw milk, it becomes possible to harden the curd of fermented milk without performing a concentration step, and to reduce the salty taste and bitterness of fermented milk and improve the taste Can do.

したがって、本実施形態に係る発酵乳の製造方法によれば、風味に優れた高濃度の発酵乳を安価に製造することができる。また、本実施形態に係る製造方法によれば、栄養的に良質なタンパク質を高濃度で含む発酵乳を提供することができる。ここで得られる発酵乳では、酸味が弱いため、調理素材として、様々な料理や調理に使用することができる。また、ここで得られる発酵乳では、発酵完了の段階で水分の含有量が低く、適度な硬度を有しているため、水切りを行うことなく、様々な料理や調理に使用することができる。   Therefore, according to the method for producing fermented milk according to the present embodiment, highly concentrated fermented milk excellent in flavor can be produced at low cost. Moreover, according to the manufacturing method which concerns on this embodiment, fermented milk which contains nutritionally good protein in high concentration can be provided. Since the fermented milk obtained here has a weak acidity, it can be used as a cooking material for various dishes and cooking. Moreover, since the fermented milk obtained here has a low water content at the stage of completion of fermentation and has an appropriate hardness, it can be used for various dishes and cooking without draining.

本実施形態に係る発酵乳の製造方法では、発酵乳のpHを4.2〜4.7、より好ましくは4.3〜4.7、さらに好ましくは4.3〜4.6、さらに好ましくは4.4〜4.6に調整することによって、発酵乳を製造した直後だけでなく、発酵乳を冷蔵(10℃、1週間)保存した後にも、適度な酸味を維持することができて、風味を特に良好に維持することができる。   In the manufacturing method of fermented milk which concerns on this embodiment, pH of fermented milk is 4.2-4.7, More preferably, it is 4.3-4.7, More preferably, it is 4.3-4.6, More preferably By adjusting to 4.4 to 4.6, not only immediately after producing fermented milk, but also after storing the fermented milk refrigerated (10 ° C., 1 week), it can maintain an appropriate acidity, The flavor can be maintained particularly well.

本実施形態に係る発酵乳の製造方法では、発酵乳の硬度を40〜100、より好ましくは40〜90、さらに好ましくは40〜80、さらに好ましくは40〜70に調整することによって、発酵乳を製造した直後だけでなく、発酵乳を冷蔵(10℃、1週間)保存した後にも、適度な硬度を維持することができて、食感を特に良好に維持することができる。   In the manufacturing method of fermented milk which concerns on this embodiment, fermented milk is adjusted by adjusting the hardness of fermented milk to 40-100, More preferably, it is 40-90, More preferably, it is 40-80, More preferably, it is 40-70. Not only immediately after production, but also after storing the fermented milk refrigerated (10 ° C., 1 week), it is possible to maintain an appropriate hardness and maintain a particularly good texture.

本実施形態に係る発酵乳の製造方法では、ホエイタンパク質濃縮物(WPC)およびホエイタンパク質単離物(WPI)に含まれるβ−ラクトグロブリン(β−Lg)の含有率と発酵乳の硬度との間には、正の相関関係(比例関係、一次式で近似できる関係)が認め
られ、この正の相関関係を利用して、発酵乳の硬度を調整することができる。
In the method for producing fermented milk according to this embodiment, the content of β-lactoglobulin (β-Lg) contained in the whey protein concentrate (WPC) and the whey protein isolate (WPI) and the hardness of the fermented milk A positive correlation (proportional relationship, relation that can be approximated by a linear expression) is recognized between them, and the hardness of the fermented milk can be adjusted using this positive correlation.

以下、本発明を具体的に実施した実施例を説明する。   Examples in which the present invention is specifically implemented will be described below.

[1.原料と熱安定性との関係]
[1−1.各原料を含む水溶液の熱安定性]
まず、原料乳の熱安定性に寄与する要素を検証するため、原料乳に配合するタンパク質含有の原料自体の熱安定性を検討した。表1に示す原料A〜Lのそれぞれを、タンパク質(原料Gの場合は、ペプチド)濃度が8質量%となるように水に溶解させた水溶液を調製した。この水溶液の3mlをガラス製の透明容器に充填して密栓し、130℃のオイルバスに浸漬させて加熱した。そして、加熱の開始から水溶液に凝固物が発生するまでの時間を熱凝固時間として測定し、この測定した熱凝固時間に基づいて熱安定性を評価した。尚、水溶液中の凝固物の発生は目視により確認した。表1に、原料A〜Lの組成、水溶液のpHおよび熱安定性の評価結果を示す。
[1. Relationship between raw materials and thermal stability]
[1-1. Thermal stability of aqueous solution containing each raw material]
First, in order to verify the factors contributing to the thermal stability of raw milk, the thermal stability of the protein-containing raw material itself blended in the raw milk was examined. An aqueous solution was prepared by dissolving each of the raw materials A to L shown in Table 1 in water so that the protein (in the case of raw material G, peptide) concentration was 8% by mass. 3 ml of this aqueous solution was filled in a glass transparent container and sealed, immersed in an oil bath at 130 ° C. and heated. Then, the time from the start of heating to the generation of a solidified product in the aqueous solution was measured as the thermal solidification time, and the thermal stability was evaluated based on the measured thermal solidification time. In addition, the generation | occurrence | production of the solidified substance in aqueous solution was confirmed visually. Table 1 shows the evaluation results of the composition of the raw materials A to L, the pH of the aqueous solution, and the thermal stability.

<脱脂乳>
原料AおよびBを含む水溶液の評価結果より、脱塩脱脂粉乳を含む水溶液では、脱脂粉乳を含む水溶液に比べて、高い熱安定性を示した。
<Skim milk>
From the evaluation results of the aqueous solution containing raw materials A and B, the aqueous solution containing demineralized skim milk showed higher thermal stability than the aqueous solution containing skim milk.

<ホエイタンパク質濃縮物>
原料C〜Eを含む水溶液の評価結果より、ホエイタンパク質濃縮物を含む水溶液では、加熱開始から2分以内に、凝固物が発生した。つまり、ホエイタンパク質濃縮物では、低い熱安定性を示した。
<Whey protein concentrate>
From the evaluation results of the aqueous solutions containing the raw materials C to E, in the aqueous solution containing the whey protein concentrate, a coagulum was generated within 2 minutes from the start of heating. That is, the whey protein concentrate showed low thermal stability.

<ホエイタンパク質単離物、ホエイタンパク質濃縮物の分解物>
原料FおよびGを含む水溶液の評価結果より、ホエイタンパク質単離物またはホエイタンパク質濃縮の分解物を含む水溶液では、加熱開始から30分以上で、凝固物が発生しなかった。つまり、ホエイタンパク質単離物およびホエイタンパク質濃縮物分解物では、高い熱安定性を示した。
<Whey protein isolate, degradation product of whey protein concentrate>
From the evaluation results of the aqueous solutions containing the raw materials F and G, in the aqueous solution containing the whey protein isolate or the whey protein concentrated decomposition product, no coagulum was generated in 30 minutes or more from the start of heating. That is, the whey protein isolate and the whey protein concentrate degradation product showed high thermal stability.

<乳タンパク質濃縮物>
原料H〜Lを含む水溶液の評価結果より、乳タンパク質濃縮物を含む水溶液では、脱脂乳やホエイタンパク質濃縮物を含む水溶液に比べて、高い熱安定性を示した。特に、カルシウムの一部をイオン交換によりナトリウムに置換して得られた原料Kを含む水溶液では、加熱の開始から30分以上で、凝固物が発生しなかった。
<Milk protein concentrate>
From the evaluation results of the aqueous solution containing the raw materials H to L, the aqueous solution containing the milk protein concentrate showed higher thermal stability than the aqueous solution containing skim milk or whey protein concentrate. In particular, in an aqueous solution containing the raw material K obtained by substituting a part of calcium with sodium by ion exchange, a solidified product was not generated in 30 minutes or more from the start of heating.

以上の結果より、脱塩脱脂粉乳では、脱脂粉乳と比べて、高い熱安定性を有し、乳タンパク質濃縮物では、高い熱安定性を有し、ホエイタンパク質濃縮物では、低い熱安定性を有することが確認された。   From the above results, desalted skim milk powder has higher heat stability than skim milk powder, milk protein concentrate has higher heat stability, and whey protein concentrate has lower heat stability. It was confirmed to have.

[1−2.高タンパク質含有水溶液の熱安定性]
次に、脱脂乳と、ホエイタンパク質濃縮物と、乳タンパク質濃縮物を配合した水溶液の熱安定性を調べた。脱脂乳とホエイタンパク質濃縮物と乳タンパク質濃縮物の配合割合が、それぞれに含まれるタンパク質の質量比で、3:2:3となるように調製した水溶液を用いて、上記の[1−1]と同じ方法により、熱凝固時間を測定した。水溶液のタンパク質濃度は、8質量%とした。
[1-2. Thermal stability of aqueous solution containing high protein]
Next, the thermal stability of skim milk, whey protein concentrate, and an aqueous solution containing the milk protein concentrate was examined. Using the aqueous solution prepared such that the blending ratio of skim milk, whey protein concentrate and milk protein concentrate is 3: 2: 3 in terms of the mass ratio of the proteins contained therein, [1-1] above The thermal coagulation time was measured by the same method. The protein concentration of the aqueous solution was 8% by mass.

図2に、脱脂乳と、ホエイタンパク質濃縮物と、乳タンパク質濃縮物を含む水溶液の熱凝固時間を示す。図2には、脱脂乳として、脱脂粉乳を使用した場合と、脱塩脱脂粉乳を使用した場合との比較結果が示されている。脱脂乳として、表1に示した原料A(脱脂粉乳)または原料B(脱塩脱脂粉乳)を使用した。また、ホエイタンパク質濃縮物として、表1に示した原料C〜Fのいずれかを使用した。また、乳タンパク質濃縮物として、表1に示した原料Jを使用した。   FIG. 2 shows the thermal coagulation time of an aqueous solution containing skim milk, whey protein concentrate, and milk protein concentrate. FIG. 2 shows a comparison result between the case where skim milk is used and the case where desalted skim milk is used as skim milk. As skim milk, the raw material A (skimmed milk powder) or the raw material B (desalted skim milk powder) shown in Table 1 was used. Moreover, any of the raw materials C-F shown in Table 1 was used as a whey protein concentrate. Moreover, the raw material J shown in Table 1 was used as a milk protein concentrate.

図2に示すように、脱塩脱脂粉乳(原料B)を使用した水溶液では、脱脂粉乳(原料A)を使用した水溶液と比べて、高い熱安定性を示した。表1に示したように、脱塩脱脂乳(原料B)では、脱脂粉乳(原料A)に比べて、塩類(ナトリウム、カリウム、塩素等の一価イオン)の濃度が低かった。このことから、水溶液に含まれる塩類(ナトリウム、カリウム、塩素等の一価イオン)の含有量が熱安定性に関与している可能性、つまり、水溶液に含まれる塩類濃度が低いほど、水溶液の熱安定性が向上する可能性が考えられた。   As shown in FIG. 2, the aqueous solution using demineralized skim milk powder (raw material B) showed higher thermal stability than the aqueous solution using skim milk powder (raw material A). As shown in Table 1, in the desalted skim milk (raw material B), the concentration of salts (monovalent ions such as sodium, potassium and chlorine) was lower than in skimmed milk powder (raw material A). From this, it is possible that the content of salts (monovalent ions such as sodium, potassium and chlorine) contained in the aqueous solution is involved in the thermal stability, that is, the lower the concentration of the salt contained in the aqueous solution, The possibility of improved thermal stability was considered.

図3に、脱脂乳と、ホエイタンパク質濃縮物と、乳タンパク質濃縮物を含む水溶液の熱凝固時間を示す。図3には、ホエイタンパク質濃縮物および乳タンパク質濃縮物の種類毎の水溶液の熱凝固時間が示されている。脱脂乳として、表1に示した原料A(脱脂粉乳)を使用した。また、ホエイタンパク質濃縮物として、表1に示した原料C〜Fのいずれかを使用した。また、乳タンパク質濃縮物として、表1に示した原料H〜Lのいずれかを使用した。   FIG. 3 shows the heat coagulation time of an aqueous solution containing skim milk, whey protein concentrate, and milk protein concentrate. FIG. 3 shows the thermal coagulation time of the aqueous solution for each type of whey protein concentrate and milk protein concentrate. As skim milk, the raw material A (skim milk powder) shown in Table 1 was used. Moreover, any of the raw materials C-F shown in Table 1 was used as a whey protein concentrate. Moreover, any of the raw materials HL shown in Table 1 was used as a milk protein concentrate.

図3に示すように、ホエイタンパク質濃縮物として、表1に示した原料DまたはEを用
いた水溶液では、相対的に高い熱安定性を示した。一方、表1に示した原料Cを用いた水溶液では、低い熱安定性を示した。また、ホエイタンパク質濃縮物の原料Fでは、単独水溶液で調製した場合には、高い熱安定性を示したが、脱脂乳および乳タンパク質濃縮物を組み合わせた混合水溶液で調製した場合には、原料Kと組み合わせた場合を除いて、低い熱安定性を示した。
As shown in FIG. 3, the aqueous solution using the raw material D or E shown in Table 1 as the whey protein concentrate showed relatively high thermal stability. On the other hand, the aqueous solution using the raw material C shown in Table 1 showed low thermal stability. In addition, the raw material F of whey protein concentrate showed high thermal stability when prepared with a single aqueous solution, but when prepared with a mixed aqueous solution combining skim milk and milk protein concentrate, the raw material K Except in the case of combination with, it showed low thermal stability.

また、乳タンパク質濃縮物の原料H〜Lの中では、原料Kをホエイタンパク質濃縮物と組み合わせた場合に、最も高い熱安定性を示した。   Moreover, in the raw material HL of milk protein concentrate, when the raw material K was combined with the whey protein concentrate, the highest thermal stability was shown.

尚、ホエイタンパク質濃縮物として、表1に示した原料Cを使用した水溶液において、他の原料D〜Fを使用した水溶液に比べて、熱安定性が相対的に低いのは、表2に示すように、原料Cの水溶液において、他の原料D〜Fと比べて、pHを低下させるためと考えられた。したがって、高タンパク質含有水溶液の熱安定性には、pHも影響していると考えられた。   As shown in Table 2, the aqueous stability using the raw material C shown in Table 1 as the whey protein concentrate is relatively low in thermal stability as compared with aqueous solutions using other raw materials D to F. Thus, in the aqueous solution of the raw material C, compared with the other raw materials DF, it was thought that it was because pH was lowered. Therefore, it was considered that the pH also affected the thermal stability of the high protein-containing aqueous solution.

[1−3.脱脂乳、ホエイタンパク質濃縮物、乳タンパク質濃縮物の配合割合およびpHと熱安定性との関係]   [1-3. Relationship between blended ratio of skim milk, whey protein concentrate, milk protein concentrate and pH and heat stability]

次に、図3において相対的に低い熱安定性を示した原料Cと、相対的に高い熱安定性を示した原料Eとを用いて、タンパク質原料の配合割合とpHとが原料乳の熱安定性に及ぼす影響を調べた。具体的には、ホエイタンパク質濃縮物の配合割合を一定とし、脱塩脱脂粉乳と、ホエイタンパク質濃縮物と、乳タンパク質濃縮物とを、それぞれに含まれるタンパク質の質量比で、2:2:4、3:2:3、4:2:2とした水溶液を調製し、上記の[1−1]で説明した方法により、熱凝固時間を測定した。水溶液中のタンパク質濃度は、8質量%とした。   Next, using the raw material C showing relatively low thermal stability in FIG. 3 and the raw material E showing relatively high thermal stability, the blending ratio and pH of the protein raw material are the heat of raw milk. The effect on stability was investigated. Specifically, the mixing ratio of the whey protein concentrate is constant, and the desalted skim milk powder, the whey protein concentrate, and the milk protein concentrate are in a mass ratio of 2: 2: 4 in each protein. An aqueous solution having a ratio of 3: 2: 3 and 4: 2: 2 was prepared, and the thermal coagulation time was measured by the method described in [1-1] above. The protein concentration in the aqueous solution was 8% by mass.

図4および5に、脱脂乳とホエイタンパク質濃縮物と乳タンパク質濃縮物とを含む水溶液のpHと熱凝固時間との関係(熱安定性曲線)を示す。より詳細には、図4では、脱脂乳として、表1に示した原料Bを使用し、ホエイタンパク質濃縮物として、表1に示した原料Cを使用し、乳タンパク質濃縮物として、表1に示した原料Jを使用した場合の熱安定性曲線を示す。また、図5では、脱脂乳として、表1に示した原料Bを使用し、ホエイタンパク質濃縮物として、表1に示した原料Eを使用し、乳タンパク質濃縮物として、表1に示した原料Jを使用した場合の熱安定性曲線を示す。   4 and 5 show the relationship (thermal stability curve) between the pH of an aqueous solution containing skim milk, whey protein concentrate, and milk protein concentrate and the thermal coagulation time. More specifically, in FIG. 4, the raw material B shown in Table 1 is used as skim milk, the raw material C shown in Table 1 is used as the whey protein concentrate, and the milk protein concentrate is shown in Table 1. The thermal stability curve at the time of using the shown raw material J is shown. Moreover, in FIG. 5, the raw material B shown in Table 1 is used as skim milk, the raw material E shown in Table 1 is used as a whey protein concentrate, and the raw material shown in Table 1 is used as a milk protein concentrate. The thermal stability curve at the time of using J is shown.

図4および5に示すように、ホエイタンパク質濃縮物として、原料CおよびEのいずれを使用した場合でも、水溶液のpHが6.7〜6.8の範囲で、最大の熱安定性を示した。また、図4に示すように、ホエイタンパク質濃縮物として、原料Cを使用した場合でも、水溶液のpHを6.7〜6.8の範囲に調整することによって、熱安定性を改善できることがわかった。ここで、原料CおよびEを比較すると、表1に示すように、原料Eでは、原料Cに比べて、カルシウム含有率が高く、表2に示すように、原料Eの単独では、原料Cの単独に比べて、熱安定性(熱変成度)が高かった。したがって、原料CおよびEの比較から、ホエイタンパク質濃縮物自体の熱安定性と、カルシウム濃度とが、タンパク質原料含有水溶液の熱安定性に影響していると考えられた。   As shown in FIGS. 4 and 5, even when any of raw materials C and E was used as the whey protein concentrate, the aqueous solution showed the maximum thermal stability in the range of 6.7 to 6.8. . Moreover, as shown in FIG. 4, even when the raw material C is used as the whey protein concentrate, it is found that the thermal stability can be improved by adjusting the pH of the aqueous solution to the range of 6.7 to 6.8. It was. Here, when the raw materials C and E are compared, as shown in Table 1, the raw material E has a higher calcium content than the raw material C, and as shown in Table 2, the raw material E alone is not the raw material C. Compared to the case alone, the thermal stability (degree of thermal metamorphosis) was high. Therefore, from the comparison of raw materials C and E, it was considered that the thermal stability of the whey protein concentrate itself and the calcium concentration influence the thermal stability of the aqueous solution containing protein raw materials.

また、タンパク質原料の配合割合について検討すると、脱塩脱脂粉乳の配合割合を高くし、乳タンパク質濃縮物の配合割合を低くすると、熱安定性が低下する傾向が見られた。脱塩脱脂粉乳および乳タンパク質濃縮物では、ホエイ含有量は同程度であるが、表1に示すように、乳タンパク質濃縮物では、脱塩脱脂粉乳に比べて、塩類(ミネラル)の含有量が少ない。したがって、原料乳に含まれる塩類(ミネラル)の含有量が多くなると、原料乳の熱安定性を低下させると考えられた。   Moreover, when the blending ratio of the protein raw material was examined, there was a tendency that when the blending ratio of the desalted skim milk powder was increased and the blending ratio of the milk protein concentrate was decreased, the thermal stability decreased. In the desalted skim milk powder and the milk protein concentrate, the whey content is similar, but as shown in Table 1, the milk protein concentrate has a salt (mineral) content as compared with the desalted skim milk powder. Few. Therefore, it was considered that when the content of salts (minerals) contained in the raw material milk is increased, the thermal stability of the raw material milk is lowered.

[2.発酵乳の製造特性および物性]
まず、発酵乳の発酵時間や発酵乳のカードの硬度に対して、ホエイタンパク質原料(ホエイタンパク質濃縮物、ホエイタンパク質単離物、ホエイタンパク質濃縮物の分解物)の種類が及ぼす影響を調べた。脱脂粉乳とホエイタンパク質原料と乳タンパク質濃縮物との配合割合を、それぞれに含まれるタンパク質の質量比で2:3:3に調整した原料乳を用いて、図1に示した製造方法によって、発酵乳を製造し、ホエイタンパク質原料の種類と、発酵時間や実際に得られた発酵乳のカードの硬度(破断強度)との関係を調べた。このとき、脱脂粉乳として、表1に示す原料Aを使用し、乳タンパク質濃縮物として、表1に示す原料Jを使用した。
[2. Production characteristics and physical properties of fermented milk]
First, the effect of the type of whey protein raw material (whey protein concentrate, whey protein isolate, whey protein concentrate degradation product) on the fermentation time of fermented milk and the hardness of the curd of fermented milk was examined. Fermented milk powder, whey protein raw material, and milk protein concentrate were fermented according to the production method shown in FIG. 1 using raw milk prepared by adjusting the mixing ratio of the protein contained therein to 2: 3: 3. Milk was produced, and the relationship between the type of whey protein raw material and the fermentation time and the hardness (breaking strength) of the curd of the actually obtained fermented milk was investigated. At this time, the raw material A shown in Table 1 was used as skim milk powder, and the raw material J shown in Table 1 was used as a milk protein concentrate.

図6に、ホエイタンパク質原料の種類毎の発酵乳の発酵時間を示す。また、図7に、ホエイタンパク質原料の種類毎の発酵乳のカードの硬度を示す。ここで、レオメータ(不動工業株式会社製 NRM−2010J−CW)を用いて、発酵乳のカードの硬度を測定した。具体的には、冷蔵庫から取り出した発酵乳(約5℃)に、直径10mmの平型プランジャーを6cm/minの速度で押し当てて、発酵乳のカードが破断するまでの荷重を測定し、実際に得られた荷重の数値を硬度の指標とした。   In FIG. 6, the fermentation time of fermented milk for every kind of whey protein raw material is shown. Moreover, the hardness of the card | curd of fermented milk for every kind of whey protein raw material is shown in FIG. Here, the hardness of the card | curd of fermented milk was measured using the rheometer (FRM Kogyo Co., Ltd. NRM-2010J-CW). Specifically, a flat plunger having a diameter of 10 mm is pressed against fermented milk taken out from the refrigerator (about 5 ° C.) at a speed of 6 cm / min, and the load until the fermented milk card breaks is measured. The actual load value was used as an index of hardness.

図6に示すように、ホエイタンパク質単離物またはホエイタンパク質濃縮物の分解物(タンパク質の加水分解物)を配合した発酵乳では、ホエイタンパク質濃縮物を配合した発酵乳と比べて、発酵時間が長くなる傾向が見られた。また、図7に示すように、ホエイタンパク質単離物を配合した発酵乳では、「Provon 190」(Glanbia Nutritionals社製)を用いたものを除いて、ホエイタンパク質濃縮物を配合した発酵乳と比べて、発酵乳のカードを硬くする傾向が見られた。また、ホエイタンパク質濃縮物の分解物を配合した発酵乳では、ホエイタンパク質濃縮物を配合した発酵乳に比べて、発酵乳のカードの硬度が低くなった。つまり、ホエイタンパク質濃縮物の分解物を配合することによって、発酵乳のカードを柔らかくする傾向が見られた。   As shown in FIG. 6, the fermented milk blended with a whey protein isolate or whey protein concentrate degradation product (protein hydrolyzate) has a longer fermentation time than fermented milk blended with whey protein concentrate. There was a tendency to become longer. Moreover, as shown in FIG. 7, in the fermented milk which mix | blended the whey protein isolate, except what used "Provon 190" (product made from Granbia Nutritionals), compared with the fermented milk which mix | blended the whey protein concentrate. There was a tendency to harden the curd of fermented milk. Moreover, in the fermented milk containing the decomposition product of the whey protein concentrate, the hardness of the curd of the fermented milk was lower than that of the fermented milk containing the whey protein concentrate. That is, there was a tendency to soften the curd of fermented milk by blending a degradation product of whey protein concentrate.

ここで、図6および7に示したホエイタンパク質濃縮物およびホエイタンパク質単離物に含まれるβ−ラクトグロブリン(β−Lg)の含有率と、発酵乳の硬度との関係を調べた。図8に、β−Lgの含有率と発酵乳の硬度とをプロットした図を示す。   Here, the relationship between the content of β-lactoglobulin (β-Lg) contained in the whey protein concentrate and the whey protein isolate shown in FIGS. 6 and 7 and the hardness of the fermented milk was examined. In FIG. 8, the figure which plotted the content rate of (beta) -Lg, and the hardness of fermented milk is shown.

図8から明らかなように、ホエイタンパク質濃縮物およびホエイタンパク質単離物に含まれるβ−Lgの含有率と発酵乳の硬度との間には、正の相関関係(比例関係、一次式で近似できる関係)が認められた。したがって、発酵乳の硬度には、原料乳のβ−Lgの含有量が影響することがわかった。   As is apparent from FIG. 8, there is a positive correlation between the content of β-Lg contained in the whey protein concentrate and the whey protein isolate and the hardness of the fermented milk (proportional relationship, approximated by a linear expression). Possible relationship). Therefore, it was found that the content of β-Lg in the raw milk affects the hardness of the fermented milk.

次に、発酵乳の発酵時間や発酵乳のカードの硬度に対して、乳タンパク質濃縮物の種類が及ぼす影響を調べた。脱脂粉乳とホエイタンパク質原料と乳タンパク質濃縮物との配合割合を、それぞれに含まれるタンパク質の質量比で2:3:3に調整した原料乳を用いて、図1に示した製造方法によって、発酵乳を製造し、乳タンパク質濃縮物の種類と、発酵時間や実際に得られた発酵乳のカードの硬度(破断強度)との関係を調べた。脱脂粉乳として、表1に示す原料Aを使用し、ホエイタンパク質濃縮物として、表1に示す原料Cを使用した。   Next, the effect of the type of milk protein concentrate on the fermentation time of fermented milk and the hardness of the curd of fermented milk was examined. Fermented milk powder, whey protein raw material, and milk protein concentrate were fermented according to the production method shown in FIG. 1 using raw milk prepared by adjusting the mixing ratio of the protein contained therein to 2: 3: 3. Milk was produced, and the relationship between the type of milk protein concentrate and the hardness (breaking strength) of the fermentation time and the curd of the actually obtained fermented milk was examined. The raw material A shown in Table 1 was used as skim milk powder, and the raw material C shown in Table 1 was used as a whey protein concentrate.

図9に、乳タンパク質濃縮物の種類毎の発酵乳の発酵時間を示す。また、図10に、乳タンパク質濃縮物の種類毎の発酵乳のカードの硬度を示す。   In FIG. 9, the fermentation time of fermented milk for every kind of milk protein concentrate is shown. Moreover, the hardness of the card | curd of fermented milk for every kind of milk protein concentrate is shown in FIG.

図9に示すように、いずれの乳タンパク質濃縮物を用いた場合でも、発酵時間は4時間程度であり、乳タンパク質濃縮物の種類によって、発酵時間に大差は見られなかった。また、図10に示すように、いずれの乳タンパク質濃縮物を用いた場合でも、発酵乳の硬度は50〜60g程度であり、乳タンパク質濃縮物の種類によって、発酵乳の硬度にも大差は見られなかった。   As shown in FIG. 9, even when any milk protein concentrate was used, the fermentation time was about 4 hours, and there was no significant difference in the fermentation time depending on the type of milk protein concentrate. Moreover, as shown in FIG. 10, even if any milk protein concentrate is used, the hardness of fermented milk is about 50-60g, and the hardness of fermented milk shows a big difference according to the kind of milk protein concentrate. I couldn't.

以上の結果より、発酵乳の発酵時間および発酵乳のカードの硬度には、乳タンパク質濃縮物に含まれているカゼインの状態等と比べて、ホエイタンパク質濃縮物やホエイタンパク質分離物に含まれているホエイタンパク質の状態等が大きく影響することがわかった。   From the above results, the fermentation time of fermented milk and the hardness of the curd of fermented milk are not included in the whey protein concentrate or whey protein isolate compared to the casein state contained in the milk protein concentrate. It was found that the condition of the whey protein is greatly affected.

[3.製造例]
上記の知見に基づき、脱脂乳とホエイタンパク質濃縮物と乳タンパク質濃縮物とを配合した原料乳を発酵させて、図1に示した方法により、実施例1〜15に係る発酵乳を製造した。実施例1〜15に係る発酵乳の製造に用いたタンパク質原料、配合割合、組成、実際に得られた発酵乳の特性を表2に示す。尚、表2に示す熱安定性および硬度の評価値として、上述した測定方法により求めた熱凝固時間および荷重を用いた。また、表2に示す風味の評価値として、専門パネルの18人が5段階(1〜5、5が最も風味が良い)で官能評価し、専門パネルの全員の官能評価の結果の平均値を用いた。
[3. Production example]
Based on said knowledge, the raw material milk which mix | blended skim milk, whey protein concentrate, and milk protein concentrate was fermented, and the fermented milk which concerns on Examples 1-15 was manufactured by the method shown in FIG. Table 2 shows the protein raw materials used in the production of fermented milk according to Examples 1 to 15, the blending ratio, the composition, and the characteristics of the actually obtained fermented milk. In addition, the thermal solidification time and the load which were calculated | required by the measuring method mentioned above were used as an evaluation value of the thermal stability and hardness shown in Table 2. Moreover, as an evaluation value of the flavor shown in Table 2, 18 expert panelists performed sensory evaluation in five stages (1 to 5, 5 is the best flavor), and the average value of the sensory evaluation results of all the expert panel Using.

表2に示す結果より、実施例1〜15に係る発酵乳では、脱脂粉乳に含まれるタンパク質が20〜60質量%、ホエイタンパク質濃縮物に含まれるタンパク質が20〜30質量
%、乳タンパク質濃縮物に含まれるタンパク質が20〜60質量%となるようにタンパク質原料を配合することによって、濃縮工程を行うことなく、風味および食感に優れた高濃度の発酵乳を製造できることが確認された。
From the results shown in Table 2, in the fermented milk according to Examples 1 to 15, the protein contained in the skim milk powder is 20 to 60% by mass, the protein contained in the whey protein concentrate is 20 to 30% by mass, and the milk protein concentrate. It was confirmed that a high-concentration fermented milk excellent in flavor and texture could be produced without blending the protein raw material by blending the protein raw material so that the protein contained in the mixture was 20 to 60% by mass.

また、表3に示す配合割合でタンパク質原料を配合し、実施例1〜15と同じ方法により、比較例1〜5に係る発酵乳を製造した。比較例1〜5に係る発酵乳のタンパク質原料、配合割合、組成、実際に得られた発酵乳の特性を表3に示す。尚、表3に示す熱安定性および硬度の評価値として、上述した測定方法により求めた熱凝固時間および荷重を用いた。   Moreover, the protein raw material was mix | blended with the mixture ratio shown in Table 3, and the fermented milk which concerns on Comparative Examples 1-5 was manufactured by the same method as Examples 1-15. Table 3 shows protein raw materials, blending ratios, compositions, and properties of the actually obtained fermented milk according to Comparative Examples 1 to 5. In addition, the thermal solidification time and the load which were calculated | required by the measuring method mentioned above were used as an evaluation value of the thermal stability and hardness shown in Table 3.

表3に示す結果より、比較例1〜5に係る発酵乳では、ホエイタンパク質濃縮物に含まれるタンパク質が全タンパク質の30質量%を超えるように、ホエイタンパク質濃縮物を
配合したが、硬度が高くなり過ぎて、食感が良好とは言えない発酵乳が製造された。
From the results shown in Table 3, in the fermented milk according to Comparative Examples 1 to 5, the whey protein concentrate was blended so that the protein contained in the whey protein concentrate exceeded 30% by mass of the total protein, but the hardness was high. As a result, fermented milk was produced that had a poor texture.

本発明は、栄養的に良質なタンパク質を高濃度で含む発酵乳を提供することができる。   The present invention can provide fermented milk containing nutritionally good protein at a high concentration.

Claims (2)

タンパク質を高濃度で含む発酵乳の製造方法であって、
脱脂粉乳と、ホエイタンパク質濃縮物と、乳タンパク質濃縮物とを含む原料乳を発酵させ、
前記脱脂粉乳に含まれるタンパク質と、前記ホエイタンパク質濃縮物に含まれるタンパク質と、前記乳タンパク質濃縮物に含まれるタンパク質の合計を100質量%としたときに、
前記脱脂粉乳に含まれるタンパク質が20〜60質量%、
前記ホエイタンパク質濃縮物に含まれるタンパク質が20〜30質量%、
前記乳タンパク質濃縮物に含まれるタンパク質が20〜60質量%
となるように、前記脱脂粉乳と、前記ホエイタンパク質濃縮物と、前記乳タンパク質濃縮物を配合することを特徴とする、発酵乳の製造方法。
A method for producing fermented milk containing a high concentration of protein,
Fermenting raw milk containing skim milk powder, whey protein concentrate, and milk protein concentrate,
When the total of the protein contained in the skim milk powder, the protein contained in the whey protein concentrate, and the protein contained in the milk protein concentrate is 100% by mass,
20-60% by mass of protein contained in the skim milk powder,
20-30% by mass of protein contained in the whey protein concentrate,
20-60% by mass of protein in the milk protein concentrate
The method for producing fermented milk, comprising blending the skim milk powder, the whey protein concentrate, and the milk protein concentrate.
前記発酵乳の全質量に占めるタンパク質の割合が5〜10質量%であることを特徴とする、請求項1に記載の発酵乳の製造方法。   The method for producing fermented milk according to claim 1, wherein the ratio of the protein to the total mass of the fermented milk is 5 to 10% by mass.
JP2017535236A 2015-08-14 2016-08-12 Method for producing fermented milk containing protein at high concentration Pending JPWO2017029802A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015160057 2015-08-14
JP2015160057 2015-08-14
PCT/JP2016/003718 WO2017029802A1 (en) 2015-08-14 2016-08-12 Method for producing fermented milk with high protein concentration

Publications (1)

Publication Number Publication Date
JPWO2017029802A1 true JPWO2017029802A1 (en) 2018-05-31

Family

ID=58051286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017535236A Pending JPWO2017029802A1 (en) 2015-08-14 2016-08-12 Method for producing fermented milk containing protein at high concentration

Country Status (2)

Country Link
JP (1) JPWO2017029802A1 (en)
WO (1) WO2017029802A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7398202B2 (en) * 2019-03-29 2023-12-14 株式会社ヤクルト本社 Milk drinks and their bitterness reduction method
CN115720931A (en) * 2021-08-25 2023-03-03 内蒙古伊利实业集团股份有限公司 High-protein dairy product with fine and stable texture and preparation method thereof
WO2024058230A1 (en) * 2022-09-14 2024-03-21 株式会社明治 Sterilized fermented milk and production method for same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104A (en) * 1993-06-14 1995-01-06 Morinaga Milk Ind Co Ltd Fermented milk and its production
JP3755855B2 (en) * 1997-05-13 2006-03-15 日本ミルクコミュニティ株式会社 Fermented milk and its production method
JP3935853B2 (en) * 2003-03-20 2007-06-27 株式会社ヤクルト本社 Fermented milk and method for producing the same

Also Published As

Publication number Publication date
WO2017029802A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
US7192619B2 (en) Modified milk protein concentrates and their use in making gels and dairy products
JP5054176B2 (en) Concentrated milk protein component and method for preparing processed cheese therefrom
JP7417483B2 (en) Whey protein concentrate, acidified dairy products containing the concentrate and methods for producing them
US11707072B2 (en) Food products and systems and methods of making same
CN105454442A (en) UHT single cream and preparation method
WO2017029802A1 (en) Method for producing fermented milk with high protein concentration
JP2007501609A (en) Production of protein compositions from milk streams and use as ingredients in cheese production
JP4580138B2 (en) Sterilized soft natural cheese and method for producing the same
JP6749916B2 (en) Method for producing fermented milk containing high concentration of protein
EP2074887A1 (en) Increasing the firmness of process cheese by utilizing ingredient synergism
JP2018074911A (en) Concentrated fermented milk and method for producing the same
EP3349590B1 (en) Stabiliser-free cottage cheese, a thickened dairy liquid suitable for its production, and related methods
WO2010084541A1 (en) Oil-in-water-type emulsion having milk flavor improved by calcium ion
JP5081883B2 (en) Method for producing calcium-reinforced whey-containing composition
JP3247553B2 (en) Livestock meat production method
JP2010029154A (en) Processed cheese
RU2575096C1 (en) Cheese preparation method
WO2024094780A1 (en) Cheese preparation
RU2575101C1 (en) Soft cheese production method
JP2015053864A (en) Cheese and manufacturing method thereof