JPS6356712B2 - - Google Patents

Info

Publication number
JPS6356712B2
JPS6356712B2 JP56126420A JP12642081A JPS6356712B2 JP S6356712 B2 JPS6356712 B2 JP S6356712B2 JP 56126420 A JP56126420 A JP 56126420A JP 12642081 A JP12642081 A JP 12642081A JP S6356712 B2 JPS6356712 B2 JP S6356712B2
Authority
JP
Japan
Prior art keywords
semiconductor
transparent electrode
solar cell
substrate
cell element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56126420A
Other languages
Japanese (ja)
Other versions
JPS5827377A (en
Inventor
Hajime Ichanagi
Tadashi Igarashi
Nobuhiko Fujita
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP56126420A priority Critical patent/JPS5827377A/en
Publication of JPS5827377A publication Critical patent/JPS5827377A/en
Publication of JPS6356712B2 publication Critical patent/JPS6356712B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing Of Electric Cables (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Photovoltaic Devices (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は太陽電池素子の製造方法に関する。 従来より各種半導体および酸化物系透明電極を
使用した光起電力素子は存在する。近年モノシラ
ン(SiH4)ガスをグロー放電分解することなど
により得られるアモルフアスシリコン(以下a−
Siと称する)はそれまで不可能とされていた価電
子制御が可能であることが明らかにされた。それ
以来薄膜で光起電力素子が構成でき、大面積化が
容易であるなどの特徴が考えられ、太陽電池など
への応用が考えられている。 太陽電池などに使用される、つまり価電子制御
が可能なa−Si膜には多量の水素やフツ素が含ま
れている。また、a−Si作成時の基板温度の最適
値は約250℃である。このa−Si膜上に酸化物系
透明電極を形成し、光起電力素子とするが、透明
電極の特性としては光の透過率が高いこと、およ
び面抵抗が小さいことがその必要条件とされる。 透過率は85%以上、面抵抗は100Ω/□以下で
あることが望ましい。酸化インジウム、酸化錫な
どの酸化物系透明導電膜に於いては、85%以上の
透過率を得るためには1μm以下の厚みが好まし
く、また100Ω/□以下の面抵抗を得るためには
1000Å以上の厚みが好ましいため透明導電膜の厚
みは3000Å程度のものがよく使用される。酸化物
系透明電極を真空蒸着等の手段で作成するときの
基板温度が300℃以上でなければ光透過率の良い
抵抗の小さい透明電極は得られない。ところがa
−Si膜を形成后、a−Siをその形成時の温度
(250℃)以上に加熱すると、a−Si中に含まれて
いた水素やフツ素が離脱することなどによりa−
Siの特性、つまり太陽電池の特性が悪くなる欠点
を有していた。 一方、反応性イオンプレーテイング法、反応性
スパツタ法などの方法でプラズマ状態を経て酸化
物系透明電極を作成する場合、比較的低温で、光
の透過率の良い導電膜が得られる。しかし、半導
体表面が活性化された酸素のため酸化等により犯
され、半導体と透明電極の界面状態が悪くなり、
太陽電池特性が悪くなる欠点を有していた。 本発明は透明電極を半導体上にプラズマ状態を
経て形成するとき、半導体基板表面とプラズマと
を分離することにより上記欠点を解消し、特性の
良い、つまり光電変換効率の高い太陽電池素子を
提供するものである。以下実施例について詳細に
説明する。 第1図はa−Si半導体を使用した光起電力素子
の構造を示す断面図であり、1はステンレス鋼基
板、2はa−Si半導体層、3は酸化インジウム・
錫(酸化錫が5〜10wt%)の透明電極、4は太
陽光線を示す。a−Si半導体層2はホウ素Bをド
ープしたp形のa−Si層、不純物をドープしない
i形のa−Si層、および燐Pをドープしたn形の
a−Si層から成立つており、プラズマCVD法
(グロー放電分解法)で作成される。ステンレス
鋼基板1上にa−Si層2を形成したものの上に酸
化インジウム・錫透明導電膜3を従来法および本
発明の方法で形成した。 従来法 酸化インジウム・錫透明導電膜を基板温度150
℃で真空蒸着法で形成した。真空度は10-6Torr
台、膜成長速度は約1Å/secである。 従来法 透明導電膜を基板温度150℃で10-4Torrの酸素
雰囲気で真空蒸着法で形成した。膜成長速度は約
1Å/secである。 従来法 透明導電膜を基板温度350℃で10-4Torrの酸素
雰囲気で真空蒸着法で形成した。膜成長速度は約
1Å/secである。 従来法 酸化インジウム・錫透明導電膜を下に述べるイ
オンプレーテイング法で、基板温度150℃で形成
した。第2図はこの従来法であるイオンプレーテ
イング法を説明する図であつて、11は真空容
器、12は基板ホルダー、13はa−Si層2を形
成した基板、14は酸化インジウム・錫の蒸発
源、15は基板13を加熱するヒータ、16は必
要により基板13あるいは/および基板ホルダー
12を負電圧にバイアスする直流電源、17は蒸
発源14と基板13との間に設けられたイオン化
電極であり、電源18により高周波または直流電
圧を印加し、蒸発粒子あるいは/およびガス供給
口10から供給された雰囲気ガスをイオン化し、
成膜する方法である。本方法では蒸発物と雰囲気
ガスがイオン化し活性化しているので、蒸発物質
と雰囲気ガスとの反応性蒸着が可能である。 本従来法においては、基板温度を150℃とし蒸
発源は酸化インジウム・錫(酸化錫が5〜10wt
%)とし、イオン電極には10kHzの高周波電力を
200Wかけ、10-4Torrの酸素雰囲気とした。 第3図は本発明の一具体例であつて、第2図に
示した従来法のイオンプレーテイング法に加うる
にグリツド状電極20を基板13の表面に設けて
あり、さらにスイツチ21により、このグリツド
状電極と半導体基板13および基板ホルダー12
とを直流的に絶縁、あるいは電気的に短絡状態に
することが可能である。 実施例 酸化インジウム・錫透明電極膜を前述のイオン
プレーテイング法で形成するとき、グリツド状電
極を蒸発源と半導体基板の間に設置する場合につ
き述べる。半導体基板と蒸発源との間で基板表面
から15mm離れた所に直径0.2mmのワイヤーを5mm
の間隔で網目状に編んだグリツド状電極を設置
し、従来法と同じ条件で透明電極膜を形成し
た。グリツド状電極と半導体基板および基板支持
台とは直流的に絶縁されている。 実施例 グリツド状電極と半導体基板支持台とを電気的
に短絡接続し、それ以外は前述の実施例と同じ
条件で透明電極膜を形成した。 実施例 前述の実施例に於いてグリツド状電極に直流
負電圧500Vを印加すること以外同じ条件で透明
電極膜を形成した。 実施例 第4図は本発明の他の具体例であつて、酸化イ
ンジウム・錫透明電極膜を前述のイオンプレーテ
イング法で形成するとき、磁石23によりプラズ
マ中に半導体基板と平行な方向に磁界をかけるこ
とによりプラズマはとじ込められ半導体基板とプ
ラズマとを分離することが出来る。このとき磁界
強度は104ガウスである。磁界をかけること以外
従来法と同じ条件で透明電極膜を形成した。 以上説明した従来法および本発明の実施例にお
いて透明導電膜の厚みは3000Åとし、面積は9mm2
とした。また透明導電膜以外の製法および構造は
全て同一とした。 以上説明した従来法、および本発明の実施例で
試作した光起電力素子の太陽光(AM−1100m
W/cm2)照射時の出力特性を表1に示す。Jscは
短絡光電流、Vocは開放端電圧、FFはカーブフ
イルフアクタ、Effは光電変換効率である。
The present invention relates to a method for manufacturing a solar cell element. Photovoltaic elements using various semiconductor and oxide-based transparent electrodes have conventionally existed. In recent years, amorphous silicon ( hereinafter referred to as a-
It was revealed that valence electrons (referred to as Si) can be controlled, which was previously thought to be impossible. Since then, it has been considered that photovoltaic elements can be constructed from thin films and that it is easy to increase the area, and applications such as solar cells have been considered. A-Si films used in solar cells and the like, which are capable of controlling valence electrons, contain large amounts of hydrogen and fluorine. Further, the optimum value of the substrate temperature during a-Si production is about 250°C. An oxide-based transparent electrode is formed on this a-Si film to produce a photovoltaic device, but the necessary characteristics of the transparent electrode are high light transmittance and low sheet resistance. Ru. It is desirable that the transmittance is 85% or more and the sheet resistance is 100Ω/□ or less. For oxide-based transparent conductive films such as indium oxide and tin oxide, the thickness is preferably 1 μm or less in order to obtain a transmittance of 85% or more, and the thickness is preferably 1 μm or less in order to obtain a sheet resistance of 100 Ω/□ or less.
Since a thickness of 1000 Å or more is preferable, a transparent conductive film with a thickness of about 3000 Å is often used. When producing an oxide-based transparent electrode by means such as vacuum evaporation, a transparent electrode with good light transmittance and low resistance cannot be obtained unless the substrate temperature is 300° C. or higher. However, a
After forming the -Si film, if the a-Si is heated above the temperature at which it was formed (250°C), hydrogen and fluorine contained in the a-Si will be released, etc.
It had the disadvantage that the characteristics of Si, that is, the characteristics of solar cells, deteriorated. On the other hand, when creating an oxide-based transparent electrode through a plasma state using a method such as a reactive ion plating method or a reactive sputtering method, a conductive film with good light transmittance can be obtained at a relatively low temperature. However, the surface of the semiconductor is damaged by oxidation due to activated oxygen, and the interface between the semiconductor and the transparent electrode deteriorates.
This had the disadvantage that solar cell characteristics deteriorated. The present invention eliminates the above drawbacks by separating the semiconductor substrate surface and plasma when forming a transparent electrode on a semiconductor through a plasma state, and provides a solar cell element with good characteristics, that is, high photoelectric conversion efficiency. It is something. Examples will be described in detail below. FIG. 1 is a cross-sectional view showing the structure of a photovoltaic device using an a-Si semiconductor, in which 1 is a stainless steel substrate, 2 is an a-Si semiconductor layer, and 3 is an indium oxide substrate.
A transparent electrode made of tin (5 to 10 wt% tin oxide), 4 represents sunlight. The a-Si semiconductor layer 2 is composed of a p-type a-Si layer doped with boron B, an i-type a-Si layer not doped with impurities, and an n-type a-Si layer doped with phosphorus P. Created using the plasma CVD method (glow discharge decomposition method). An indium oxide/tin transparent conductive film 3 was formed on a stainless steel substrate 1 with an a-Si layer 2 formed thereon by the conventional method and the method of the present invention. Conventional method Indium oxide/tin transparent conductive film is deposited at a substrate temperature of 150
It was formed by vacuum evaporation method at ℃. Vacuum level is 10 -6 Torr
The film growth rate was approximately 1 Å/sec. Conventional method A transparent conductive film was formed by vacuum evaporation in an oxygen atmosphere of 10 -4 Torr at a substrate temperature of 150°C. The film growth rate is approximately 1 Å/sec. Conventional method A transparent conductive film was formed by vacuum evaporation in an oxygen atmosphere of 10 -4 Torr at a substrate temperature of 350°C. The film growth rate is approximately 1 Å/sec. Conventional method An indium oxide/tin transparent conductive film was formed using the ion plating method described below at a substrate temperature of 150°C. FIG. 2 is a diagram explaining this conventional ion plating method, in which 11 is a vacuum container, 12 is a substrate holder, 13 is a substrate on which an a-Si layer 2 is formed, and 14 is an indium tin oxide layer. An evaporation source; 15 is a heater that heats the substrate 13; 16 is a DC power source that biases the substrate 13 or/and the substrate holder 12 to a negative voltage if necessary; 17 is an ionization electrode provided between the evaporation source 14 and the substrate 13; A high frequency or DC voltage is applied by a power source 18 to ionize the evaporated particles and/or the atmospheric gas supplied from the gas supply port 10,
This is a method of forming a film. In this method, since the evaporated substance and the atmospheric gas are ionized and activated, reactive deposition of the evaporated substance and the atmospheric gas is possible. In this conventional method, the substrate temperature is 150°C and the evaporation source is indium oxide/tin (tin oxide is 5 to 10wt).
%), and 10kHz high frequency power is applied to the ion electrode.
200W was applied and an oxygen atmosphere of 10 -4 Torr was created. FIG. 3 shows a specific example of the present invention, in which, in addition to the conventional ion plating method shown in FIG. This grid-like electrode, semiconductor substrate 13 and substrate holder 12
It is possible to electrically insulate or electrically short-circuit the two. EXAMPLE A case will be described in which a grid-like electrode is installed between an evaporation source and a semiconductor substrate when an indium oxide/tin transparent electrode film is formed by the above-mentioned ion plating method. A wire with a diameter of 0.2 mm is connected 5 mm between the semiconductor substrate and the evaporation source at a distance of 15 mm from the substrate surface.
Grid-like electrodes woven in a mesh pattern were installed at intervals of , and a transparent electrode film was formed under the same conditions as the conventional method. The grid electrode, the semiconductor substrate, and the substrate support are galvanically insulated. Example A transparent electrode film was formed under the same conditions as in the previous example except that the grid electrode and the semiconductor substrate support were electrically short-circuited. Example A transparent electrode film was formed under the same conditions as in the previous example except that a negative DC voltage of 500 V was applied to the grid electrode. Embodiment FIG. 4 shows another specific example of the present invention, in which when an indium oxide/tin transparent electrode film is formed by the above-mentioned ion plating method, a magnetic field is applied to the plasma in a direction parallel to the semiconductor substrate by a magnet 23. By applying a pressure, the plasma is confined and the semiconductor substrate and the plasma can be separated. At this time, the magnetic field strength is 10 4 Gauss. A transparent electrode film was formed under the same conditions as the conventional method except for applying a magnetic field. In the conventional method and the embodiment of the present invention described above, the thickness of the transparent conductive film is 3000 Å, and the area is 9 mm 2
And so. In addition, all manufacturing methods and structures other than the transparent conductive film were the same. The sunlight (AM-1100 m
Table 1 shows the output characteristics during irradiation (W/cm 2 ). Jsc is the short-circuit photocurrent, Voc is the open circuit voltage, FF is the curve foil factor, and Eff is the photoelectric conversion efficiency.

【表】 表1に示すごとく、従来法に於いては透明電
極膜の光の透過率が悪いため短絡光電流の値が悪
い。従来法に於いては、従来法に比べて透明
電極膜の光の透過率は若干改善されて短絡光電流
は増加しているものの充分ではない。従来法に
於いては透明電極膜の光の透過率は良くなつては
いるが、透明電極膜形成時にa−Si膜の形成され
た基板温度を350℃にも上げるためa−Si膜の特
性が劣化し、従つて短絡光電流も伸びなやみ他の
特性も悪く従つて光電変換効率も悪い。また、従
来法に於いては透明電極膜の透光性は改善され
てはいるが、透明電極膜形成時の酸素イオンによ
り半導体表面が犯され、半導体と透明電極膜との
界面状態が悪くなり、太陽電池特性は余り良くな
い。 一方、本発明の実施例に於いては、透明電極膜
形成時の基板温度が低く、透明電極膜の透光性が
良く面抵抗が低く、しかも半導体表面が犯される
ことがないため、太陽電池特性は非常に優れてい
る。 以上の説明は、プラズマ状態を作る方法として
高周波電界を利用したイオンプレーテイング法に
ついて述べたが、直流電界を利用したイオンプレ
ーテイング法、スパツタ法、プラズマCVD法な
どでも同様の効果が得られる。 実施例に於いてプラズマをとじ込めるために
かける磁場強度は100ガウス以上が望ましい。 実施例、およびに於いてプラズマを安定
させるために酸素分圧は10-2〜10-5Torrが好ま
しい。 また、本実施例においては蒸発源として酸化イ
ンジウム・錫を利用した場合について述べたが、
蒸発源を金属インジウム・錫を使用し、反応性蒸
着を行つても同様の効果が得られる。 透明導電膜として酸化インジウム・錫などの酸
化インジウム系の場合について述べたが、酸化
錫、酸化錫に酸化アンチモンを添加したものなど
の酸化錫系あるいは他の透明導電性を得ることの
できる酸化物であつても同様の効果が得られる。 また、半導体としてa−Siの場合について述べ
たが、250℃以上の高温にさらすと特性の悪くな
る半導体の場合も同様の効果が得られる。 以上詳細に説明したごとく本発明によれば光電
変換効率の高い太陽電池素子を得ることができ
る。
[Table] As shown in Table 1, in the conventional method, the short-circuit photocurrent value is low because the light transmittance of the transparent electrode film is low. In the conventional method, the light transmittance of the transparent electrode film is slightly improved and the short-circuit photocurrent is increased compared to the conventional method, but this is not sufficient. In the conventional method, the light transmittance of the transparent electrode film has improved, but the characteristics of the a-Si film have to be changed because the temperature of the substrate on which the a-Si film is formed is raised to 350°C during the formation of the transparent electrode film. As a result, the short-circuit photocurrent is sluggish, other characteristics are poor, and the photoelectric conversion efficiency is also poor. In addition, although the light transmittance of the transparent electrode film is improved in the conventional method, the semiconductor surface is damaged by oxygen ions during the formation of the transparent electrode film, resulting in poor interface conditions between the semiconductor and the transparent electrode film. The solar cell characteristics are not very good. On the other hand, in the embodiments of the present invention, the substrate temperature during formation of the transparent electrode film is low, the transparent electrode film has good light transmittance and low sheet resistance, and the semiconductor surface is not damaged, so it is suitable for solar cells. The characteristics are very good. The above explanation has been about the ion plating method that uses a high frequency electric field as a method of creating a plasma state, but similar effects can be obtained by the ion plating method that uses a DC electric field, the sputtering method, the plasma CVD method, etc. In the embodiment, the strength of the magnetic field applied to confine the plasma is preferably 100 Gauss or more. In the embodiments and in order to stabilize the plasma, the oxygen partial pressure is preferably 10 -2 to 10 -5 Torr. Also, in this example, the case where indium tin oxide was used as the evaporation source was described;
A similar effect can be obtained by using metal indium or tin as the evaporation source and performing reactive evaporation. Although we have described the case of indium oxide based films such as indium oxide and tin as transparent conductive films, tin oxide based films such as tin oxide, antimony oxide added to tin oxide, or other oxides that can obtain transparent conductivity may also be used. The same effect can be obtained even if Further, although the case of a-Si as the semiconductor has been described, the same effect can be obtained in the case of a semiconductor whose characteristics deteriorate when exposed to high temperatures of 250° C. or higher. As described above in detail, according to the present invention, a solar cell element with high photoelectric conversion efficiency can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は光起電力素子の構造を示す断面図であ
る。第2図は従来法のイオンプレーテイング装置
を示す断面図であり、第3図および第4図は本発
明の具体例を示すイオンプレーテイング装置の断
面図であり、同一番号は同じものを示す。 1:ステンレス鋼基板、2:a−Si半導体層、
3:透明導電膜、4:太陽光線、10……ガス供
給口、11……真空容器、12……基板ホルダ
ー、13……a−Si層を形成した基板、4……酸
化インジウム・錫の蒸発源、15……ヒーター、
16……直流電源、17……イオン化電極、18
……イオン化電源、19……ガス排出口、20…
…グリツド状電極、21……切替スイツチ、23
……磁石。
FIG. 1 is a sectional view showing the structure of a photovoltaic element. FIG. 2 is a cross-sectional view showing a conventional ion plating device, and FIGS. 3 and 4 are cross-sectional views of an ion plating device showing a specific example of the present invention, and the same numbers indicate the same items. . 1: stainless steel substrate, 2: a-Si semiconductor layer,
3: Transparent conductive film, 4: Sunlight, 10... Gas supply port, 11... Vacuum container, 12... Substrate holder, 13... Substrate with a-Si layer formed, 4... Indium tin oxide Evaporation source, 15... heater,
16...DC power supply, 17...Ionization electrode, 18
...Ionization power supply, 19...Gas exhaust port, 20...
... Grid-like electrode, 21 ... Selector switch, 23
……magnet.

Claims (1)

【特許請求の範囲】 1 少なくとも酸化物系透明電極と半導体が接合
してなる太陽電池素子の透明電極を半導体上にプ
ラズマ状態を経て形成する方法に於いて、該プラ
ズマをプラズマ生成空間内に閉じ込めることによ
り、酸化物系透明電極膜成長表面からイオン種及
び電子を遠ざけて成膜することを特徴とする太陽
電池素子の製造方法。 2 半導体がアモルフアスシリコンであることを
特徴とする特許請求の範囲第1項記載の太陽電池
素子の製造方法。 3 蒸発源と半導体基板表面との間にグリツド状
電極を設けることを特徴とする特許請求の範囲第
1項および第2項記載の太陽電池素子の製造方
法。 4 半導体基板あるいは半導体基板の支持台とグ
リツド状電極とを電気的に短絡接続することを特
徴とする特許請求の範囲第2項および第3項記載
の太陽電池素子の製造方法。 5 プラズマ中に基板表面に平行な方向に磁界を
かけることを特徴とする特許請求の範囲第1項お
よび第2項記載の太陽電池素子の製造方法。
[Claims] 1. In a method of forming a transparent electrode of a solar cell element, which is formed by bonding at least an oxide-based transparent electrode and a semiconductor, on a semiconductor through a plasma state, the plasma is confined in a plasma generation space. A method for manufacturing a solar cell element, characterized in that the film is formed while keeping ionic species and electrons away from the surface on which the oxide-based transparent electrode film is grown. 2. The method for manufacturing a solar cell element according to claim 1, wherein the semiconductor is amorphous silicon. 3. The method for manufacturing a solar cell element according to claims 1 and 2, characterized in that a grid-like electrode is provided between the evaporation source and the surface of the semiconductor substrate. 4. The method of manufacturing a solar cell element according to claims 2 and 3, characterized in that the semiconductor substrate or the support of the semiconductor substrate and the grid electrode are electrically short-circuited. 5. The method for manufacturing a solar cell element according to claims 1 and 2, characterized in that a magnetic field is applied to the plasma in a direction parallel to the substrate surface.
JP56126420A 1981-08-11 1981-08-11 Manufacture of solar battery cell Granted JPS5827377A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56126420A JPS5827377A (en) 1981-08-11 1981-08-11 Manufacture of solar battery cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56126420A JPS5827377A (en) 1981-08-11 1981-08-11 Manufacture of solar battery cell

Publications (2)

Publication Number Publication Date
JPS5827377A JPS5827377A (en) 1983-02-18
JPS6356712B2 true JPS6356712B2 (en) 1988-11-09

Family

ID=14934726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56126420A Granted JPS5827377A (en) 1981-08-11 1981-08-11 Manufacture of solar battery cell

Country Status (1)

Country Link
JP (1) JPS5827377A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02164077A (en) * 1988-12-19 1990-06-25 Hitachi Ltd Amorphous silicon solar cell
JPH02164078A (en) * 1988-12-19 1990-06-25 Hitachi Ltd Amorphous solar cell

Also Published As

Publication number Publication date
JPS5827377A (en) 1983-02-18

Similar Documents

Publication Publication Date Title
US4200473A (en) Amorphous silicon Schottky barrier solar cells incorporating a thin insulating layer and a thin doped layer
US4117506A (en) Amorphous silicon photovoltaic device having an insulating layer
US4163677A (en) Schottky barrier amorphous silicon solar cell with thin doped region adjacent metal Schottky barrier
US7141863B1 (en) Method of making diode structures
JPS59205770A (en) Photovoltaic device
US8053350B2 (en) Methods of forming a conductive transparent oxide film layer for use in a cadmium telluride based thin film photovoltaic device
CN218788382U (en) High-efficiency heterojunction solar cell
JPH0359588B2 (en)
US4415760A (en) Amorphous silicon solar cells incorporating an insulating layer in the body of amorphous silicon and a method of suppressing the back diffusion of holes into an N-type region
US4064522A (en) High efficiency selenium heterojunction solar cells
US8241938B2 (en) Methods of forming a conductive transparent oxide film layer for use in a cadmium telluride based thin film photovoltaic device
US20110265868A1 (en) Cadmium sulfide layers for use in cadmium telluride based thin film photovoltaic devices and methods of their manufacture
US8241930B2 (en) Methods of forming a window layer in a cadmium telluride based thin film photovoltaic device
JPH0125235B2 (en)
US8188562B2 (en) Multi-layer N-type stack for cadmium telluride based thin film photovoltaic devices and methods of making
JPS6356712B2 (en)
JPS58215083A (en) Hetero-junction photoelectric element and device therefor
TW201201396A (en) Method for manufacturing a solar panel
JPH0128512B2 (en)
JPH0363229B2 (en)
US20090260680A1 (en) Photovoltaic Devices and Associated Methods
JP3253449B2 (en) Method for manufacturing photovoltaic device
JPS6332276B2 (en)
JP2757896B2 (en) Photovoltaic device
JP4220014B2 (en) Method for forming thin film solar cell