JPS63256519A - Production of superconductor - Google Patents

Production of superconductor

Info

Publication number
JPS63256519A
JPS63256519A JP62092851A JP9285187A JPS63256519A JP S63256519 A JPS63256519 A JP S63256519A JP 62092851 A JP62092851 A JP 62092851A JP 9285187 A JP9285187 A JP 9285187A JP S63256519 A JPS63256519 A JP S63256519A
Authority
JP
Japan
Prior art keywords
solvolysis
superconductor
oxygen atmosphere
hydrolysis
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62092851A
Other languages
Japanese (ja)
Other versions
JP2528117B2 (en
Inventor
Michiya Fujiki
道也 藤木
Takeshi Sukegawa
助川 健
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP62092851A priority Critical patent/JP2528117B2/en
Publication of JPS63256519A publication Critical patent/JPS63256519A/en
Application granted granted Critical
Publication of JP2528117B2 publication Critical patent/JP2528117B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/01Manufacture or treatment
    • H10N60/0268Manufacture or treatment of devices comprising copper oxide

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To produce a high temp. superconductor having a sharp transition temp. width and superior characteristics in a short time and at low temp. with satisfactory reproducibility by heat treating an alkali hydrolyzed or solvolyzed product of a mixture of specified amts. of halides or nitrates of elements constituting an aimed material. CONSTITUTION:Each specified amt. of halide or nitrate of at least one kind of element M1 selected from B, Al, Ga, In, Ti, Sc, Y, and lanthanides (La-Lu), at least one kind of element M2 selected from Be, Mg, Ca, Sr, Ba, Ra, Sn, and Pb, and an element M3(=Cu) is hydrolyzed or solvolyzed under heating or without heating after adding, if necessary, an org. material having >=2 OH groups, in the presence of an alkali hydrolyzing agent or a solvolyzing agent (such as tetraalkyl ammonium hydroxide) contg. no alkali metal capable of generating OH ions or alkoxide ions in aq. soln. or in an org. solvent. The hydrolyzed or solvolyzed product is isolated, and heated in (non)oxygen atmosphere, to obtain thus a superconductor expressed by formula (wherein x-w are optional mole fractions).

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超伝導体の製造方法に関するものである。[Detailed description of the invention] (Industrial application field) The present invention relates to a method for manufacturing a superconductor.

(従来の技術) 従来、銅酸化物系を中心とした超伝導体の製造法には、
(i)対応する金属酸化物あるいは金属炭酸塩を乳鉢で
微細に砕き、あるいは得られた微粉末をふるいにかけ、
あるいは適当なバインダーとともに混練りし、800−
1200°Cの高温で焼結する方法(Wu、 M、  
K、  ら。
(Conventional technology) Conventionally, methods for producing superconductors mainly based on copper oxides include:
(i) Finely crush the corresponding metal oxide or metal carbonate in a mortar or sieve the resulting fine powder,
Alternatively, knead with a suitable binder and
A method of sintering at a high temperature of 1200 °C (Wu, M,
K, et al.

Phys、Rev、Lett、58,908 (198
7))   (ii)対応する金属硝酸塩の均一水溶液
に炭酸ナトリウムを加え、生成した難溶性金属炭酸塩を
800°Cで脱炭酸し、最終的に1100°Cで焼結す
る方法あるいは蓚酸塩の形で同様に脱炭酸させる方法(
Capone。
Phys, Rev, Lett, 58,908 (198
7)) (ii) A method in which sodium carbonate is added to a homogeneous aqueous solution of the corresponding metal nitrate, the resulting poorly soluble metal carbonate is decarboxylated at 800°C, and finally sintered at 1100°C. A similar method of decarboxylation in the form (
Capone.

D、 W、らAppl、  Phys、Lett、50
,543  (1987))等が知られている。
D, W, et al. Appl, Phys, Lett, 50
, 543 (1987)) are known.

しかしながら、 (i)の方法は、固相反応により対応
する種々の金属酸化物の固溶体を形成する過程を含み、
化学反応の常識からすると。
However, method (i) includes a process of forming a solid solution of the corresponding various metal oxides by solid phase reaction,
From the common knowledge of chemical reactions.

均一な組成を持つ材料を合成するには高温と長時間を要
する0例えば、銅酸化物について言えば、2価の銅は1
050°C以上の温度では1価の銅に転化することが知
られ、これは超伝導性を失うことに通じる。一方、均一
な組成の超伝導体を得るには、1100°C以上の高温
を必要とする。(ii)の方法は水溶性金属硝酸塩を出
発原料にするため、金属塩の均一混合は室温で行われる
。しかしながら、800℃で脱炭酸を起こさせ1200
°Cの高温で脱泡、焼結させる必要がある。これは超伝
導体内部に気泡やクランクを生じやすい。
Synthesizing a material with a uniform composition requires high temperatures and a long time.For example, in the case of copper oxide, divalent copper is
It is known that copper is converted to monovalent copper at temperatures above 050°C, which leads to a loss of superconductivity. On the other hand, obtaining a superconductor with a uniform composition requires a high temperature of 1100° C. or higher. Since method (ii) uses a water-soluble metal nitrate as a starting material, the metal salts are uniformly mixed at room temperature. However, decarboxylation occurs at 800℃ and 1200℃
It is necessary to degas and sinter at a high temperature of °C. This tends to cause bubbles and cranks inside the superconductor.

(発明の解決しようとする問題点) 本発明はこの様な点を改良するために、低温でかつ均一
混合焼結を可能とする超伝導体の製造方法を与えるもの
である。
(Problems to be Solved by the Invention) In order to improve these points, the present invention provides a method for manufacturing a superconductor that enables uniform mixed sintering at low temperatures.

(問題点を解決するための手段) 本発明は、所望の各種金属イオンに対応する各種金属が
均一に混合された超伝導体を得るために、ハロゲン化物
あるいは金属硝酸塩を水あるいは有機溶剤に溶かした均
一な金属イオン混合物を水あるいは有機溶剤に可溶な加
水分解剤あるいは加溶媒分解剤により、対応する種々の
金属ヒドロゲルや金属オルガノゲルの混合物を生じさせ
る工程とこれにより生じた生成物を単離した後、該生成
物を酸素雰囲気下あるいは無酸素雰囲気下で加熱処理し
て金属酸化物とする工程を含むことを特徴とする。この
とき、加水分解剤または加溶媒分解剤の効果を上げるた
め、または反応を十分に進行させることを目的に、適宜
加温することが出来る。
(Means for Solving the Problems) The present invention involves dissolving halides or metal nitrates in water or organic solvents in order to obtain a superconductor in which various metals corresponding to various desired metal ions are uniformly mixed. A process of producing a mixture of various metal hydrogels and metal organogels by using a hydrolyzing agent or solvolytic agent soluble in water or an organic solvent from a homogeneous metal ion mixture, and isolating the resulting products. After that, the method is characterized by including a step of heat-treating the product in an oxygen atmosphere or an oxygen-free atmosphere to form a metal oxide. At this time, heating can be carried out as appropriate in order to increase the effect of the hydrolyzing agent or solvolytic agent or for the purpose of sufficiently advancing the reaction.

第一の好ましい態様によれば、加水分解剤あるいは加溶
媒分解剤が特に超伝導性発現の妨害となりうるアルカリ
金属を含まないことを特徴とし、このような加水分解剤
あるいは加溶媒分解剤を用いることで、超伝導転移温度
の高い超伝導体が得られる。
According to a first preferred embodiment, the hydrolyzing agent or solvolytic agent is characterized in that it does not contain an alkali metal that may particularly interfere with the development of superconductivity, and such a hydrolyzing agent or solvolytic agent is used. By doing so, a superconductor with a high superconducting transition temperature can be obtained.

第二の好ましい態様によれば、第一の態様においてもっ
とも好適に用いることができる加水分解剤あるいは加溶
媒分解剤として水溶液中あるいは有機溶剤中で水酸イオ
ンやアルコキサイドイオンを発生する能力を有する有機
化合物を用いることが出来る。最も好ましくは、テトラ
アルキルアンモニウムヒドロキサイド、トリアルキルス
ルフオニウムヒドロキサイド、ジアザビシクロウンデセ
ン、ジメチルアミノピリジンが用いることができる。
According to the second preferred embodiment, the hydrolyzing agent or solvolytic agent that can be most preferably used in the first embodiment has the ability to generate hydroxyl ions or alkoxide ions in an aqueous solution or an organic solvent. It is possible to use an organic compound having Most preferably, tetraalkylammonium hydroxide, trialkylsulfonium hydroxide, diazabicycloundecene, and dimethylaminopyridine can be used.

第三の好ましい態様によれば、加水分解あるいは加溶媒
分解時に、あらかじめ水酸基を2個以上有する有機物質
を加える。このような水酸基を2個以上有する有機物質
を加えることで。
According to a third preferred embodiment, an organic substance having two or more hydroxyl groups is added in advance during hydrolysis or solvolysis. By adding an organic substance having two or more such hydroxyl groups.

組成のyi質性の高い超伝導体を得ることが出来る。A superconductor having a high yi composition can be obtained.

また、他の好ましい態様によれば、あらかじめあるいは
加水分解または加溶媒分解後に、ポリマーを添加し3次
いで生成物を酸素雰囲気中で加熱処理する。この態様に
よれば、加水分解あるいは加溶媒分解した後、単離した
生成物を酸素雰囲気下あるいは無酸素雰囲気下で加熱処
理する工程において超伝導体を任意の形状に成形加工す
ることが容易となる。
According to another preferred embodiment, the polymer is added beforehand or after hydrolysis or solvolysis and the product is then heat treated in an oxygen atmosphere. According to this aspect, the superconductor can be easily molded into any shape in the step of heat-treating the isolated product after hydrolysis or solvolysis in an oxygen atmosphere or an oxygen-free atmosphere. Become.

本発明の加熱処理について概説すると9本発明の加熱処
理は、加水分解あるいは加溶媒分解により合成した混合
金属ヒドロあるいはオルガノゲルをその溶液中でさらに
加熱処理する事によって、直接微細な混合金属酸化物の
プリフォームを得る工程を含めてもよい。また、このよ
うにして合成した混合金属ヒドロゲル、オルガノゲルま
たは微細な混合金属酸化物体微粒子を粒子間を連続させ
るためにさらに高温でしかしながら2価銅が還元を起こ
すには十分低い温度で加熱処理する工程も含む。また、
その焼結をより完全に行うため、加水分解時に小量のポ
リマーを溶液中に共存させ、生成したゲルあるいは溶液
加熱処理で生じた金属酸化物微粒子を共存ポリマーに吸
着させ、あるいは、単離したゲル体あるいはその加熱に
より生じた金属酸化物微粒子に小量のポリマーを吸着さ
せたものを焼結する工程を含めても良い。
To give an overview of the heat treatment of the present invention, 9 The heat treatment of the present invention directly produces fine mixed metal oxides by further heat-treating the mixed metal hydro or organogel synthesized by hydrolysis or solvolysis in its solution. A step of obtaining a preform may also be included. In addition, there is a step of heat-treating the mixed metal hydrogel, organogel, or fine mixed metal oxide particles synthesized in this way at a higher temperature, but at a temperature low enough to cause reduction of divalent copper, in order to make the particles continuous. Also included. Also,
In order to achieve more complete sintering, a small amount of polymer is allowed to coexist in the solution during hydrolysis, and the resulting gel or metal oxide fine particles generated during solution heating are adsorbed onto the coexisting polymer, or isolated. It may also include a step of sintering a gel body or a metal oxide fine particle generated by heating the gel body to which a small amount of polymer is adsorbed.

本発明によれば、高温超伝導体を常温付近で所定の組成
に原子スケールで均一混合でき、これの加熱処理により
脱水あるいはアルキル部分解反応を完結させることがで
き、従って、金属イオンの最小限の拡散により超伝導相
を示す結晶構造を従来法に比べ低温で完結することがで
きる。またアルカリ金属を含む塩基性物質による加水分
解で起こるこれらイオン類のゲルへの取り込みを完全に
抑えることができ、最終的にこれまで報告されている焼
結温度に比べ、高温焼結でありがちな2価銅の還元を起
こさずに比較的低温で超伝導体の製造が可能になると言
う点で大きな利点を有する。
According to the present invention, high-temperature superconductors can be uniformly mixed on an atomic scale to a predetermined composition at around room temperature, and the dehydration or alkyl partial decomposition reaction can be completed by heating the superconductor, thereby minimizing the amount of metal ions. Due to the diffusion of , a crystal structure exhibiting a superconducting phase can be completed at a lower temperature than conventional methods. In addition, it is possible to completely suppress the incorporation of these ions into the gel that occurs due to hydrolysis by basic substances containing alkali metals, and the final sintering temperature is higher than that reported so far. This method has a great advantage in that superconductors can be produced at relatively low temperatures without reducing divalent copper.

以下に9本発明の典型的実施例を示す。Nine typical embodiments of the present invention are shown below.

(実施例1) YCI:l  0.2mol/1.BaCl20.2 
 mol/1.CuC1z  0.2m。
(Example 1) YCI:l 0.2mol/1. BaCl20.2
mol/1. CuC1z 0.2m.

1/lの各水溶液を室温にて1:2:3の割合で混ぜた
。これにテトラメチルアンモニウムヒドロキサイド10
%水溶液を徐々に添加し、生じたヒドロゲルを吸引ろ過
した。これを300−400°Cで仮焼結した。さらに
、酸素雰囲気下、600−900’Cで焼結した。得ら
れた粉末を400−600 Kg/cm”でプレスした
。このペレットをさらに酸素雰囲気下、920−105
0°Cで焼結した。徐冷した試料を4端子交流法により
導電率の温度変化を求めた。結果を第1図に示す。絶対
温度92にで完全に超伝導に至り、試料の良否の目安で
ある転移幅がわずか0.2にであった。
1/l of each aqueous solution was mixed at room temperature in a ratio of 1:2:3. To this, 10% tetramethylammonium hydroxide
% aqueous solution was added gradually and the resulting hydrogel was filtered with suction. This was pre-sintered at 300-400°C. Furthermore, it was sintered at 600-900'C in an oxygen atmosphere. The obtained powder was pressed at 400-600 Kg/cm''.
Sintered at 0°C. Temperature changes in electrical conductivity of the slowly cooled samples were determined using a four-terminal AC method. The results are shown in Figure 1. Complete superconductivity was achieved at an absolute temperature of 92, and the transition width, which is a measure of sample quality, was only 0.2.

(実施例2) LaC1,0,2mo I/1.BaBrzO,2mo
l/1.CuC1g  0.2mol/1  の各エタ
ノール溶液を室温にて1=2:3の割合で混ぜた。これ
にテトラメチルアンモニウムヒドロキサイド10%メタ
ノール溶液を徐々に添加し、生じたゲルを吸引ろ過した
。これを300−400°Cで仮焼結した。さらに、酸
素雰囲気下、600−900°Cで焼結した。得られた
粉末を400−600Kg/cm2でプレスした。この
ペレットをさらに酸素雰囲気下、920−1050°C
で焼結した。徐冷した試料を4端子交流法により導電率
の温度変化を求めた。絶対温度37にで完全に超伝導に
至り、試料の良否の目安である転移幅はわずか0.2に
であった。
(Example 2) LaC1,0,2mo I/1. BaBrzO,2mo
l/1. Each ethanol solution containing 1 g of CuC and 0.2 mol/1 was mixed at room temperature in a ratio of 1=2:3. A 10% methanol solution of tetramethylammonium hydroxide was gradually added to this, and the resulting gel was filtered with suction. This was pre-sintered at 300-400°C. Furthermore, it was sintered at 600-900°C in an oxygen atmosphere. The obtained powder was pressed at 400-600 Kg/cm2. The pellets were further heated at 920-1050°C under an oxygen atmosphere.
Sintered with Temperature changes in electrical conductivity of the slowly cooled samples were determined using a four-terminal AC method. Complete superconductivity was reached at an absolute temperature of 37, and the transition width, which is a measure of sample quality, was only 0.2.

(実施例3) YCI、  0.2mo 1/1.BaCl20.2 
 mol/1.CuC1z  0.2m。
(Example 3) YCI, 0.2mo 1/1. BaCl20.2
mol/1. CuC1z 0.2m.

1/1  の各水溶液を室温にて6:4:1の割合で混
ぜた。これにテトラメチルアンモニウムヒドロキサイド
10%水溶液を徐々に添加し。
The 1/1 aqueous solutions were mixed at room temperature in a ratio of 6:4:1. A 10% aqueous solution of tetramethylammonium hydroxide was gradually added to this.

生じたヒドロゲルを吸引ろ過した。これを300−40
0°Cで仮焼結した。さらに、酸素雰囲気下、600−
900℃で焼結した。得られた粉末を400−600 
Kg/cm”でプレスした。このペレットをさらに酸素
雰囲気下、920−1050°Cで焼結した。徐冷した
試料を4端子交流法により導電率の温度変化を求めた。
The resulting hydrogel was filtered with suction. This is 300-40
Temporary sintering was performed at 0°C. Furthermore, under an oxygen atmosphere, 600-
It was sintered at 900°C. The obtained powder is 400-600
Kg/cm". This pellet was further sintered at 920-1050°C in an oxygen atmosphere. The temperature change in electrical conductivity of the slowly cooled sample was determined by a four-probe alternating current method.

絶対温度83にで完全に超伝導に至り、転移幅はわずか
0.5にであった。
Complete superconductivity was reached at an absolute temperature of 83, and the transition width was only 0.5.

(実施例4) LaC1*  0.2mo t、’1,5rC1tO,
2mol/l、CuC1z  0.2m o 1 / 
l  の各水溶液を室温にて9:1:4の割合で混ぜた
。これにテトラメチルアンモニウムヒドロキサイド10
%水溶液を徐々に添加し、生じたヒドロゲルを吸引ろ過
した。これを300−400°Cで仮焼結した。さらに
、酸素雰囲気下、600−900°Cで焼結した。得ら
れた粉末を400−600Kg/cm”でプレスした。
(Example 4) LaC1*0.2mo t,'1,5rC1tO,
2mol/l, CuC1z 0.2m o 1/
1 aqueous solutions were mixed at room temperature in a ratio of 9:1:4. To this, 10% tetramethylammonium hydroxide
% aqueous solution was added gradually and the resulting hydrogel was filtered with suction. This was pre-sintered at 300-400°C. Furthermore, it was sintered at 600-900°C in an oxygen atmosphere. The obtained powder was pressed at 400-600 Kg/cm''.

このペレットをさらに酸素雰囲気下。This pellet is further heated under an oxygen atmosphere.

920−1050°Cで焼結した。徐冷した試料を4端
子交流法により導電率の温度変化を求めた。絶対温度3
7にで完全に超伝導に至り、転移幅は1、M2、5にで
あった。
Sintered at 920-1050°C. Temperature changes in electrical conductivity of the slowly cooled samples were determined using a four-terminal AC method. absolute temperature 3
It reached complete superconductivity at 7, and the transition width was 1, M2, and 5.

(実施例5) YCIs  0.2mo I/1.BaBrzO,2m
ol/l、CuC1z  0.2m。
(Example 5) YCIs 0.2mo I/1. BaBrzO, 2m
ol/l, CuC1z 0.2m.

1/1  の各グリセリン溶液を室温にて1:2:3の
割合で混ぜた。これにテトラメチルアンモニウムヒドロ
キサイド10%メタノール溶液を徐々に添加し、生じた
ゲルを吸引ろ過した。
1/1 of each glycerin solution was mixed at room temperature in a ratio of 1:2:3. A 10% methanol solution of tetramethylammonium hydroxide was gradually added to this, and the resulting gel was filtered with suction.

これを300−400℃で仮焼結した。さらに、酸素雰
囲気下、600−900°Cで焼結した。得られた粉末
を400−600Kg/cm”でプレスした。このペレ
ットをさらに酸素雰囲気下、920−1050°Cで焼
結した。徐冷した試料を4端子交流法により導電率の温
度変化を求めた。結果を第1図に示す。絶対温度92に
で完全に超伝導に至り、試料の良否の目安である転移幅
がわずか0.2にであった。
This was pre-sintered at 300-400°C. Furthermore, it was sintered at 600-900°C in an oxygen atmosphere. The obtained powder was pressed at 400-600 kg/cm''.The pellet was further sintered at 920-1050°C in an oxygen atmosphere.The temperature change in conductivity of the slowly cooled sample was determined by the four-terminal AC method. The results are shown in Figure 1. Superconductivity was reached completely at an absolute temperature of 92, and the transition width, which is a measure of sample quality, was only 0.2.

(実施例6) YCl、  0.2mo l/l、BaC1゜0.2 
 mol/l、CuCL  O,2mo  ’1/1 
の各水溶液を室温にて1:2:3の割合で混ぜた。これ
にKOH水溶液を徐々に添加し、生じたヒドロゲルを吸
引ろ過した。純水で十分に洗浄した後これを300−4
00°Cで仮焼結した。さらに、酸素雰囲気下、600
−900°Cで焼結した。得られた粉末を400−60
0Kg/cm”でプレスした。このペレットをさらに酸
素雰囲気下、920−1050℃で焼結した。徐冷した
試料を4端子交流法により導電率の温度変化を求めた。
(Example 6) YCl, 0.2 mol/l, BaCl 1°0.2
mol/l, CuCLO,2mo'1/1
The respective aqueous solutions were mixed at room temperature in a ratio of 1:2:3. A KOH aqueous solution was gradually added thereto, and the resulting hydrogel was suction filtered. After thoroughly washing with pure water, add 300-4
Temporary sintering was performed at 00°C. Furthermore, under an oxygen atmosphere, 600
Sintered at -900°C. The obtained powder was 400-60
0 kg/cm". This pellet was further sintered at 920-1050° C. in an oxygen atmosphere. The temperature change in conductivity of the slowly cooled sample was determined by a four-terminal alternating current method.

絶対温度86にで完全に超伝導に至り、試料の良否の目
安である転移幅は0.9にであった。
Complete superconductivity was achieved at an absolute temperature of 86, and the transition width, which is a measure of sample quality, was 0.9.

(実施例7) YCl、  0.2mo 1/1.BaC1zO,2m
ol/l、CuC1z  0.2m。
(Example 7) YCl, 0.2mo 1/1. BaC1zO,2m
ol/l, CuC1z 0.2m.

1/1  の各水溶液を室温にて1:2:3の割合で混
ぜた。これにテトラメチルアンモニウムヒドロキサイド
10%水溶液を徐々に添加し。
Each 1/1 aqueous solution was mixed at a ratio of 1:2:3 at room temperature. A 10% aqueous solution of tetramethylammonium hydroxide was gradually added to this.

生じたヒドロゲルをさらに溶液中で加温処理を施し、生
じた黒色沈澱を吸引ろ過した。これを300−400°
Cで仮焼結した。さらに、酸素、雰囲気下、600−9
00°Cで焼結した。得られた粉末を400−600K
g/cm”でプレスした。このペレットをさらに酸素雰
囲気下。
The resulting hydrogel was further heated in the solution, and the resulting black precipitate was suction filtered. 300-400°
Temporary sintering was performed using C. Furthermore, under oxygen atmosphere, 600-9
Sintered at 00°C. The obtained powder was heated to 400-600K.
g/cm". This pellet was further pressed under an oxygen atmosphere.

920−1050°Cで焼結した。徐冷した試料を4端
子交流法により導電率の温度変化を求めた。絶対温度9
0にで完全に超伝導に至り、試料の良否の目安である転
移幅は0.6にであった。
Sintered at 920-1050°C. Temperature changes in electrical conductivity of the slowly cooled samples were determined using a four-terminal AC method. absolute temperature 9
0, it reached complete superconductivity, and the transition width, which is a measure of the quality of the sample, was 0.6.

(実施例8) YNOs  O,2mo 1/l、BaN0+0、 2
   mol/1.CuN0. 0. 2m。
(Example 8) YNOs O,2mo 1/l, BaN0+0, 2
mol/1. CuN0. 0. 2m.

1/l  の各水溶液を室温にて1:2:3の割合で混
ぜた。これにテトラメチルアンモニウムヒドロキサイド
10%水溶液を徐々に添加し。
1/l of each aqueous solution was mixed at room temperature in a ratio of 1:2:3. A 10% aqueous solution of tetramethylammonium hydroxide was gradually added to this.

生じたヒドロゲルを吸引ろ過した。これを空気中300
−400°Cで仮焼結した。さらに、酸素雰囲気下、6
00−900°Cで焼結した。得られた粉末を400−
600 Kg/cm”でプレスした。このペレットをさ
らに酸素雰囲気下、920−1050°Cで焼結した。
The resulting hydrogel was filtered with suction. 300% of this in the air
Temporary sintering was performed at -400°C. Furthermore, under an oxygen atmosphere, 6
Sintered at 00-900°C. The obtained powder was heated to 400-
600 Kg/cm''. The pellets were further sintered at 920-1050°C under an oxygen atmosphere.

徐冷した試料を4端子交流法により導電率の温度変化を
求めた。結果を第1図に示す。絶対温度92にで完全に
超伝導に至り、試料の良否の目安である転移幅がわずか
0.2にであった。
Temperature changes in electrical conductivity of the slowly cooled samples were determined using a four-terminal AC method. The results are shown in Figure 1. Complete superconductivity was achieved at an absolute temperature of 92, and the transition width, which is a measure of sample quality, was only 0.2.

(実施例9) YCl30.2mol/l、BaC1zO,2mol/
1.CuC1z  0.2m。
(Example 9) YCl30.2mol/l, BaClzO,2mol/
1. CuC1z 0.2m.

1/1  の各水溶液を室温にて1:2:3の割合で混
ぜた。これにポリビニルアルコール水溶液を小量添加し
、テトラメチルアンモニウムヒドロキサイド10%水溶
液を徐々に添加し、生じたヒドロゲルを吸引ろ過した。
Each 1/1 aqueous solution was mixed at a ratio of 1:2:3 at room temperature. A small amount of polyvinyl alcohol aqueous solution was added thereto, and a 10% aqueous solution of tetramethylammonium hydroxide was gradually added thereto, and the resulting hydrogel was suction-filtered.

これを300−400°Cで仮焼結した。さらに、酸素
雰囲気下、600−900’Cで焼結した。得られた粉
末を400−600Kg/cm2でプレスした。このペ
レットをさらに酸素雰囲気下、92〇−1050°Cで
焼結した。徐冷した試料を4端子交流法により導電率の
温度変化を求めた。絶対温度93にで完全に超伝導に至
り、試料の良否の目安である転移幅がわずか0.3にで
あった。
This was pre-sintered at 300-400°C. Furthermore, it was sintered at 600-900'C in an oxygen atmosphere. The obtained powder was pressed at 400-600 Kg/cm2. This pellet was further sintered at 920-1050°C under an oxygen atmosphere. Temperature changes in electrical conductivity of the slowly cooled samples were determined using a four-terminal AC method. Complete superconductivity was achieved at an absolute temperature of 93, and the transition width, which is a measure of sample quality, was only 0.3.

(実施例10) YCl3 0.2mo l/I、BaC1g0.2  
mol/I、CuC1t  O,2m。
(Example 10) YCl3 0.2mol/I, BaCl1g0.2
mol/I, CuCltO, 2m.

1/l  の各水溶液を室温にて11:3の割合で混ぜ
た。これにテトラメチルアンモニウムヒドロキサイド1
0%水溶液を徐々に添加し。
1/l of each aqueous solution was mixed at room temperature in a ratio of 11:3. To this, tetramethylammonium hydroxide 1
Add 0% aqueous solution gradually.

さらに加温処理して生じた黒色沈澱を吸引ろ過した。こ
れを小量のポリビニルアルコール溶液と混練りし、30
0−400’Cで仮焼結した。
Further, the black precipitate produced by the heating treatment was suction-filtered. This was kneaded with a small amount of polyvinyl alcohol solution, and
Temporary sintering was performed at 0-400'C.

さらに、酸素雰囲気下、600−900°Cで焼結した
。得られた粉末を400−600Kg/cm2でプレス
した。このペレットをさらに酸素雰囲気下、920−1
050°Cで焼結した。
Furthermore, it was sintered at 600-900°C in an oxygen atmosphere. The obtained powder was pressed at 400-600 Kg/cm2. This pellet was further heated to 920-1 under an oxygen atmosphere.
Sintered at 050°C.

徐冷した試料を4端子交流法により導電率の温度変化を
求めた。絶対温度90にで完全に超伝導に至り、試料の
良否の目安である転移幅がわずか0.4にであった。
Temperature changes in electrical conductivity of the slowly cooled samples were determined using a four-terminal AC method. Complete superconductivity was achieved at an absolute temperature of 90°C, and the transition width, which is a measure of sample quality, was only 0.4.

以下同様にして、所定の組成に仕込んだY。In the same manner, Y was prepared to a predetermined composition.

Scおよびランタニド系元素、Baを初めとするアルカ
リ土類系元素、そして銅のハロゲン化物、あるいは硝酸
塩を原料にして、加水分解して、目的物質を得た。結果
を次表にまとめる。
Sc and lanthanide elements, alkaline earth elements such as Ba, and copper halides or nitrates were used as raw materials and hydrolyzed to obtain the target substance. The results are summarized in the table below.

(発明の効果) 以上説明したように8本発明の加水分解法あるいは加溶
媒分解法を経由した低温製造法によれば、2価銅の還元
が起こらない温度で焼結でき、かつ低温でのヒドロゲル
の脱水、あるいはオルガノゲルのアルキル部の熱分解を
伴う仮焼結により転移幅のシャープな特性の良い高温超
伝導体を再現良(作製することができるという利点を有
する。高温超伝導体、特に絶対温度77にの液体窒素温
度以上で超伝導に至る材料は、ジョセフソン素子、電力
輸送、高磁場発生磁石等の幅広い工業的応用が期待され
、その素材加工上2本発明は低温プロセスで作製できる
という点で極めて大きなインパクトを与える。
(Effects of the Invention) As explained above, according to the low-temperature production method via the hydrolysis method or solvolysis method of the present invention, sintering can be performed at a temperature at which divalent copper does not reduce, and it is possible to sinter at a low temperature. It has the advantage of being able to easily produce high-temperature superconductors with sharp transition widths and good characteristics by dehydration of hydrogels or pre-sintering accompanied by thermal decomposition of the alkyl moieties of organogel.High-temperature superconductors, especially Materials that achieve superconductivity at temperatures above the liquid nitrogen temperature of 77% are expected to have a wide range of industrial applications such as Josephson devices, power transport, and magnets that generate high magnetic fields. It has a huge impact in that it can be done.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の方法により作製されたY+、。 Ba、、。Cu3.。酸化物超伝導体の抵抗一温度特性
を示す図である。
FIG. 1 shows Y+ produced by the method of the present invention. Ba... Cu3. . FIG. 2 is a diagram showing resistance-temperature characteristics of an oxide superconductor.

Claims (6)

【特許請求の範囲】[Claims] (1)一般組成式(M1)_x(M2)_y(M3)_
zO_w(M1は(B、Al、Ga、In、Tl、Sc
、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、G
d、Tb、Dy、Ho、Er、Tm、Yb、Lu)から
なる群から選ばれた一または二以上の元素、M2は(B
e、Mg、Ca、Sr、Ba、Ra、Sn、Pb)から
なる群から選ばれた一または二以上の元素、M3はCu
、x、y、z、wは任意の原子モル分率)で表される超
伝導体の製造方法に於て、M1、M2、M3のハロゲン
化物あるいは硝酸塩を加温または加温せずにアルカリ加
水分解あるいは加溶媒分解する工程とこれにより生じた
生成物を単離した後、該生成物を酸素雰囲気下あるいは
無酸素雰囲気下で加熱処理して金属酸化物とする工程を
含むことを特徴とする超伝導体の製造方法。
(1) General compositional formula (M1)_x(M2)_y(M3)_
zO_w(M1 is (B, Al, Ga, In, Tl, Sc
, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, G
d, Tb, Dy, Ho, Er, Tm, Yb, Lu), M2 is (B
e, Mg, Ca, Sr, Ba, Ra, Sn, Pb), M3 is Cu
, x, y, z, w are arbitrary atomic mole fractions) In the method for producing superconductors, halides or nitrates of M1, M2, and M3 are heated or not heated to form an alkali. It is characterized by comprising a step of hydrolysis or solvolysis, and a step of isolating the resulting product, and then heat-treating the product in an oxygen atmosphere or an oxygen-free atmosphere to form a metal oxide. A method for manufacturing superconductors.
(2)アルカリ加水分解あるいは加溶媒分解するときの
分解剤がアルカリ金属を含まないことを特徴とする特許
請求の範囲第1項記載の超伝導体の製造方法。
(2) The method for producing a superconductor according to claim 1, wherein the decomposing agent used in alkaline hydrolysis or solvolysis does not contain an alkali metal.
(3)アルカリ加水分解あるいは加溶媒分解するときの
分解剤が水溶液中あるいは有機溶剤中で水酸イオンある
いはアルコキサイドイオンを発生する能力を有する有機
化合物であることを特徴とする特許請求の範囲第1項又
は第2項記載の超伝導体の製造方法。
(3) Claims characterized in that the decomposing agent during alkaline hydrolysis or solvolysis is an organic compound having the ability to generate hydroxyl ions or alkoxide ions in an aqueous solution or an organic solvent. A method for producing a superconductor according to item 1 or 2.
(4)アルカリ加水分解あるいは加溶媒分解するときの
分解剤がテトラアルキルアンモニウムヒドロキサイド、
トリアルキルスルフォニウムヒドロキサイド、ジアザビ
シクロウンデセン、ジメチルアミノピリジンであること
を特徴とする特許請求の範囲第1項、第2項、第3項い
ずれか記載の超伝導体の製造方法。
(4) The decomposing agent during alkaline hydrolysis or solvolysis is tetraalkylammonium hydroxide,
The method for producing a superconductor according to any one of claims 1, 2, and 3, characterized in that the superconductor is trialkylsulfonium hydroxide, diazabicycloundecene, or dimethylaminopyridine.
(5)加水分解あるいは加溶媒分解時に、あらかじめ水
酸基を2個以上有する有機物質を加えることを特徴とす
る特許請求の範囲第1項、第2項、第3項、第4項いず
れか記載の超伝導体の製造方法。
(5) Claims 1, 2, 3, and 4, characterized in that an organic substance having two or more hydroxyl groups is added in advance during hydrolysis or solvolysis. Method of manufacturing superconductors.
(6)あらかじめあるいは加水分解または加溶媒分解後
に、ポリマーを添加し、次いで生成物を酸素雰囲気中で
加熱処理する工程を含むことを特徴とする特許請求の範
囲第1項、第2項、第3項、第4項、第5項いずれか記
載の超伝導体の製造方法。
(6) Claims 1, 2 and 2 include the step of adding the polymer beforehand or after hydrolysis or solvolysis, and then heat-treating the product in an oxygen atmosphere. A method for producing a superconductor according to any one of Items 3, 4, and 5.
JP62092851A 1987-04-15 1987-04-15 Superconductor manufacturing method Expired - Fee Related JP2528117B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62092851A JP2528117B2 (en) 1987-04-15 1987-04-15 Superconductor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62092851A JP2528117B2 (en) 1987-04-15 1987-04-15 Superconductor manufacturing method

Publications (2)

Publication Number Publication Date
JPS63256519A true JPS63256519A (en) 1988-10-24
JP2528117B2 JP2528117B2 (en) 1996-08-28

Family

ID=14065929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62092851A Expired - Fee Related JP2528117B2 (en) 1987-04-15 1987-04-15 Superconductor manufacturing method

Country Status (1)

Country Link
JP (1) JP2528117B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255529A (en) * 1989-03-28 1990-10-16 Nec Corp Oxide superconductor composition and production thereof
JPH038717A (en) * 1989-06-05 1991-01-16 Nec Corp Oxide superconductor composition and production thereof
US5300483A (en) * 1992-01-16 1994-04-05 Sinha Shome N Process for preparing shaped superconductor materials via nonequilibrium precursors
WO2004047129A1 (en) * 2002-11-19 2004-06-03 E.I. Du Pont De Nemours And Company Divalent europium-containing compositions

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230523A (en) * 1987-03-19 1988-09-27 Asahi Chem Ind Co Ltd Superconductive material
JPS63252925A (en) * 1987-04-10 1988-10-20 Kazuo Fueki Production of superconductive material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63230523A (en) * 1987-03-19 1988-09-27 Asahi Chem Ind Co Ltd Superconductive material
JPS63252925A (en) * 1987-04-10 1988-10-20 Kazuo Fueki Production of superconductive material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02255529A (en) * 1989-03-28 1990-10-16 Nec Corp Oxide superconductor composition and production thereof
JPH038717A (en) * 1989-06-05 1991-01-16 Nec Corp Oxide superconductor composition and production thereof
US5300483A (en) * 1992-01-16 1994-04-05 Sinha Shome N Process for preparing shaped superconductor materials via nonequilibrium precursors
WO2004047129A1 (en) * 2002-11-19 2004-06-03 E.I. Du Pont De Nemours And Company Divalent europium-containing compositions
US6906375B2 (en) 2002-11-19 2005-06-14 E. I. Du Pont De Nemours And Company Divalent europium-containing compositions

Also Published As

Publication number Publication date
JP2528117B2 (en) 1996-08-28

Similar Documents

Publication Publication Date Title
Yue et al. Preparation and magnetic properties of titanium-substituted LiZn ferrites via a sol-gel auto-combustion process
CN110357612A (en) A kind of preparation method of graphene-CCTO base ceramic composite dielectric material
CN110818405A (en) Microwave dielectric ceramic, preparation method thereof and 5G base station
JPS63256519A (en) Production of superconductor
JP2622117B2 (en) Superconductor manufacturing method
Chandradass et al. Synthesis and characterization of LaAlO3 nanopowders by various fuels
CN104193323A (en) Preparation method of SrTiO3/TiO2 composite thermoelectric ceramic material
JPS63307113A (en) Production of superconductor
RU2681860C1 (en) Method of obtaining high-temperature thermoelectric material based on calcium cobaltite
JPS63259927A (en) Manufacture of thin film of superconductive matter
Ramli et al. Microstructure and superconducting properties of Ag-substituted YBa2-xAgxCu3O7-δ ceramics prepared by sol-gel method
JP2966442B2 (en) Bi-based oxide superconductor and method for producing wire thereof
JPS63295415A (en) Production of superconductor
Calleja et al. Exploring the polyvinyl alcohol method for preparing cuprates and manganites
JPH03183619A (en) Production of oxide superconductor
JPH0574528B2 (en)
CN109095508B (en) Method for microwave-assisted rapid synthesis of iron oxide nano permanent magnet
Ali et al. Elemental Influence on Dielectric Properties and Loss Tangent in CaCu₃Ti₄O₁₂ Ceramics
JPS63307114A (en) Production of superconductor
JPS63282120A (en) Production of superconductive conjugated metal oxide
CN113087015A (en) Core-shell nano-particles prepared by heterogeneous precipitation method and method for preparing nano-ceramics
CN104496463A (en) Surfactant assisted in situ co-precipitation method for preparing core-shell structure nano powder
CN116219550A (en) Method for hydrothermally growing bismuth selenide oxide film
CN115353151A (en) Synthesis method of rare earth cobalt-based oxide electronic phase change material
JPH01298057A (en) Production of high-temperature superconducting ceramic compact

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees