JPS62240747A - Thermo mechanical precipitation hardened high tensile steel superior in cold workability and weldability and manufacture thereof - Google Patents

Thermo mechanical precipitation hardened high tensile steel superior in cold workability and weldability and manufacture thereof

Info

Publication number
JPS62240747A
JPS62240747A JP8375686A JP8375686A JPS62240747A JP S62240747 A JPS62240747 A JP S62240747A JP 8375686 A JP8375686 A JP 8375686A JP 8375686 A JP8375686 A JP 8375686A JP S62240747 A JPS62240747 A JP S62240747A
Authority
JP
Japan
Prior art keywords
steel
strength
toughness
weldability
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8375686A
Other languages
Japanese (ja)
Other versions
JPH0327622B2 (en
Inventor
Yukio Tomita
冨田 幸男
Takeshi Tsuzuki
岳史 都築
Ryota Yamaba
山場 良太
Fumihiro Kawazoe
川副 文宏
Hisashi Inoue
井上 尚志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP8375686A priority Critical patent/JPS62240747A/en
Publication of JPS62240747A publication Critical patent/JPS62240747A/en
Publication of JPH0327622B2 publication Critical patent/JPH0327622B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Abstract

PURPOSE:To manufacture the titled steel stock, by specifying contents of Cu, Nb in steel stock having a specified compsn. CONSTITUTION:To Fe, by weight % 0.02-0.30 C, 0.05-1.0 Si, 0.5-2.5 Mn, 0.3-2.0 Ni, 0.005-0.20 Ti, 0.003-0.050 Nb, 0.5-1.5 Cu, 0.005-0.1 Al, <=0.0070 N, <=0.0030 O. The steel is heated to about 950-1,100 deg.C, then rolled at about <=850 deg.C by >=about 50% accumulative draft, then immediately water cooled to <=about 250 deg.C by >=about 0.5m<2>/m<2>.min water quantity density. Cu improves strength without deteriorating HAZ toughness and raises strength due to ppt. hardening in normalizing process after pipe making, hence, >=0.5% Cu is required, but toughness is lowered with the rise thereof. Since Nb steeply deteriorates HAZ toughness due to ppt. hardening, it is regulated to the min quantity required to recrystallization suppressing effect. The steel is easily cold bent at time of use, work hardened by bending while increasing strength and attaining to the aimed strength by successive tempering, further, superior in weldability.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、冷間加工性及び溶接性にすぐれた加工・析出
硬化型高張力鋼材及びその製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a process/precipitation hardening type high tensile strength steel material with excellent cold workability and weldability, and a method for producing the same.

(従来の技術) 近年、エネルギー開発が寒冷地や極地で行われ、かつ、
深海化している。そのため、海洋構造物の巨大化が著し
く、水深の深い所では、従来のセミサブリグに代わり、
着底型のジヤツキアップリグにより安全性及び操業効率
を上げることが検討されている。さらに、海象・気象条
件の厳しい海域においては、高い波浪にも耐える必要が
ある。そのために、新しいジヤツキアップリグが考えら
れている・このジャ・ノキア・ノブリグの設計上の配慮
として波浪による影響を小さくするため、投影面積を小
さくする必要があり、厚肉の小径高張力鋼管が求められ
ている。従来、この種の鋼管はHT80鋼の熱間加工で
製造していた。この場合、HTBe鋼は通常焼入れ焼戻
しで製造されるために造管時熱間加工を行うため強度低
下を生じる問題があること、またこれら従来の80kg
/me”扱高張力鋼は、C!tが高いこと、添加合金元
素が多いことにより継手靭性が十分とはいえない。一方
、これらの合金元素を低めに抑えて強度を低めとした鋼
を素材とし熱間加工後析出硬化熱処理により強度を上昇
せしめる方法は、アール、ジエー、ジッセマンとジー、
ジエー、マーフィー、“メカニカルプロパティーズ ア
ンド プレシピティションハードニング レスポンス 
イン ASTM A710 クレード八 アンドA73
670イ スティール プレーツ” イン セツション
 V オン ジ インターナショナル カンファレンス
 オン テクノロジー アンド アピリケーションズ 
オンII S L A  スティールズ OCT、 3
−6.1983イン フィラディルフィア(R,J、J
esseman と G、J、Murphy’ Mec
hanical Properties and Pr
ecipitationllardening Re5
ponse in ASTM A710 Grade 
A and八7へ6   A11oy  5teel 
 Plates’  in  5ession  V 
 of  theInternational  Co
nference  on  Technology 
 andApplications of ll5LA
 5teels Oct、3−6.19831nPhi
ladelphia、)により知られているが、このよ
うにして得られるものも溶接性の点では継手靭性は十分
とは言えない。
(Conventional technology) In recent years, energy development has been carried out in cold regions and polar regions, and
The sea is getting deeper. As a result, offshore structures have become extremely large, and in deep water, conventional semi-subrigs have been replaced by
Improvements in safety and operational efficiency are being considered with bottom-mounted jack-up rigs. Furthermore, in sea areas with severe sea and weather conditions, it is necessary to withstand high waves. To this end, a new jack-up rig is being considered.In order to reduce the influence of waves, the projected area must be made small, and thick-walled, small-diameter high-tensile steel pipes are used as design considerations for this jack-up rig. is required. Conventionally, this type of steel pipe has been manufactured by hot working HT80 steel. In this case, since HTBe steel is usually manufactured by quenching and tempering, there is a problem in that the strength decreases due to hot working during pipe making, and these conventional 80kg
/me” high tensile strength steel does not have sufficient joint toughness due to its high C!t and many added alloying elements.On the other hand, steel with lower strength by suppressing these alloying elements to a lower level A method of increasing the strength of the raw material through precipitation hardening heat treatment after hot working is described by R., G.I., Gisseman and G.
Murphy, J.A., “Mechanical Properties and Precipitation Hardening Response.
In ASTM A710 Clade 8 And A73
670 Steel Plates” in Session V on the International Conference on Technology and Applications
On II SLA Steels OCT, 3
-6.1983 in Philadelphia (R, J, J
esseman and G.J.Murphy' Mec.
hanical Properties and Pr
cipitationllardening Re5
ponse in ASTM A710 Grade
A and 87 to 6 A11oy 5teel
Plates' in 5ession V
of the International Co.
nference on Technology
andApplications of ll5LA
5teels Oct, 3-6.19831nPhi
However, the joint toughness obtained in this way cannot be said to be sufficient in terms of weldability.

(発明が解決しようとする問題点) しかるに、これら従来の鋼材は、造管機の能力上熱間加
工でしか加工できずかつ、造管可能板厚にも上限があり
比較的薄物でないと加工できないという問題があった。
(Problems to be Solved by the Invention) However, these conventional steel materials can only be processed by hot working due to the capacity of the pipe making machine, and there is an upper limit to the thickness that can be made into pipes, and they cannot be processed unless they are relatively thin. The problem was that I couldn't do it.

そこで、冷間加工で、かつ、厚手の鋼板を造管できるよ
う、鋼板の段階では、低強度で造管しやすく、造管後に
所定の強度が得られるような鋼板の出現が求められてい
る。
Therefore, in order to be able to produce thick steel plates through cold working, there is a need for a steel plate that has low strength and is easy to form into pipes at the steel plate stage, and that can obtain a specified strength after pipe forming. .

(問題点を解決するための手段) 本発明は、以上の如き問題点を解決するためになされた
もので、その要旨とするところは、下記のとおりである
(Means for Solving the Problems) The present invention has been made to solve the above problems, and the gist thereof is as follows.

(11熱間圧延後焼入工程を経て製造される鋼材であっ
て、重量比にて、 C: 0.02〜0.30%、   Si  :0.0
5〜1.0%。
(11 Steel material manufactured through a quenching process after hot rolling, in weight ratio: C: 0.02 to 0.30%, Si: 0.0
5-1.0%.

Mn  :0.5〜2.5%、   Ni  :0.3
〜2.0%。
Mn: 0.5-2.5%, Ni: 0.3
~2.0%.

Ti  :0.005〜0.20%、  Nb :0.
003〜0.050%。
Ti: 0.005-0.20%, Nb: 0.
003-0.050%.

Cu  :0.5〜1.5%、   p、 e : 0
.005〜0.1%。
Cu: 0.5-1.5%, p, e: 0
.. 005-0.1%.

N : 0.0070%以下、    O: 0.00
30%以下。
N: 0.0070% or less, O: 0.00
Less than 30%.

を含有し、残部Fe及び不可避不純物よりなることを特
徴とする冷間加工性及び溶接性にすぐれた加工、析出硬
化型高張力鋼材。
A precipitation hardening type high tensile strength steel material having excellent cold workability and weldability, characterized in that the remainder is Fe and unavoidable impurities.

(2)重量比にて、 C: 0.02〜0.30%、    Si  :0.
05〜1.0%。
(2) Weight ratio: C: 0.02-0.30%, Si: 0.
05-1.0%.

Mn  :0.5〜2.5%、   Ni  :Q、3
〜2.0%。
Mn: 0.5-2.5%, Ni: Q, 3
~2.0%.

Ti  :0.005〜0.20%、  Nb  :0
.003〜0.050%。
Ti: 0.005-0.20%, Nb: 0
.. 003-0.050%.

Cu  :0.5〜1.5%、   A 1 : 0.
005〜0.1%。
Cu: 0.5-1.5%, A1: 0.
005-0.1%.

N : 0.0070%以下、    O: 0.00
30%以下。
N: 0.0070% or less, O: 0.00
Less than 30%.

を含有し、残部Fe及び不可避不純物よりなる鋼を、9
50〜1100℃に加熱後、圧延温度850℃以下で累
積圧下率を50%以上とし、圧延後直ちに水量密度0.
5d/d・分収上で250℃以下まで水冷することを特
徴とする冷間加工性にすぐれた加工、析出硬化型高張力
鋼材の製造方法。
9. A steel containing
After heating to 50 to 1100°C, the rolling temperature is 850°C or lower, the cumulative rolling reduction is 50% or more, and the water density is 0.
A method for manufacturing a precipitation-hardening high-strength steel material with excellent cold workability, characterized by water cooling to 250° C. or lower at a 5d/d split.

すなわち、本発明者らは、多数の実験の結果得られた知
見に基づき、曲げ加工能力の限られた造管機にて、冷間
加工でかつ厚肉−小径の高張力鋼管を製造するためには
、造管前の鋼板の強度はある値以下の低強度である必要
があることを確かめた。しかしてその鋼板を造管後に、
目的の強度にするため、本発明者らは種々の研究を行な
った結果、この種高張力鋼材の適切な成分組成の選択と
冷間加工での加工硬化、および造管後の焼ならし熱処理
での析出硬化を利用した強度上昇により、造管後に目的
の強度を得ることができること、且つこのようにして得
られる鋼板はすぐれた溶接性を存することを見出したも
のである。
That is, based on the knowledge obtained as a result of numerous experiments, the present inventors have developed a method for producing cold-worked, thick-walled, small-diameter high-tensile steel pipes using a pipe-making machine with limited bending capacity. It was confirmed that the strength of the steel plate before pipe making must be below a certain value. However, after the steel plate is made into pipes,
In order to achieve the desired strength, the present inventors conducted various studies and found that the selection of an appropriate composition of this type of high-strength steel, work hardening in cold working, and normalizing heat treatment after pipe making. The inventors have discovered that the desired strength can be obtained after pipe forming by increasing the strength using precipitation hardening, and that the steel sheets obtained in this way have excellent weldability.

すなわち、前記焼ならしによる析出はCuによる析出硬
化によるものである。一般に析出硬化元素としては、N
b、Vがあり常用されるが、両者ともHAZ靭性を大幅
に劣化させる。これに対して、CuはHA Z靭性をほ
とんど劣化させずに強度上昇させうろことを見出したも
のである。
That is, the precipitation caused by the normalizing is caused by precipitation hardening due to Cu. Generally, N is a precipitation hardening element.
B and V are commonly used, but both significantly deteriorate HAZ toughness. On the other hand, it was discovered that Cu increases the strength without substantially deteriorating the HAZ toughness.

しかして、厚手鋼板の靭性向上に不可欠な元素であるN
bについては、従来はこの元素に再結晶抑制効果と析出
効果の両者を受は持たせていたが、本発明では、Nbに
よる析出硬化でHAZ靭性が大幅に劣化することを見出
し、Nbは再結晶抑制効果に必要な最低量だけ添加する
こととしている。
Therefore, N is an essential element for improving the toughness of thick steel plates.
Regarding b, conventionally this element had both a recrystallization suppressing effect and a precipitation effect, but in the present invention, it was discovered that precipitation hardening by Nb significantly deteriorates HAZ toughness, and Nb The minimum amount necessary for the crystal suppressing effect is added.

本発明は上記知見をもとに構成したものである。The present invention has been constructed based on the above findings.

次に、本発明における成分限定理由を述べる。Next, the reason for limiting the components in the present invention will be described.

Cは安価に強度を上昇させる元素で強度確保のため0.
02%以上の添加が必要であるが、多量に添加すると鋼
の靭性及び溶接性を害するので上限を0.30%とした
C is an element that increases strength at a low cost, and is set at 0.0% to ensure strength.
It is necessary to add 0.02% or more, but since adding too much will impair the toughness and weldability of the steel, the upper limit was set at 0.30%.

Siは鋼の脱酸のため少なくとも0.05%以上の添加
が必要であるが、多くなると溶接性を害するので、上限
を0.1%とする。
Si needs to be added in an amount of at least 0.05% to deoxidize the steel, but if the amount increases, weldability will be impaired, so the upper limit is set at 0.1%.

Mnは強度確保のため0.5%以上の添加が必要である
が、多くなると溶接性、靭性の劣化を招くため上限を2
.5%とする。
It is necessary to add Mn in an amount of 0.5% or more to ensure strength, but if the amount increases, it will cause deterioration of weldability and toughness, so the upper limit should be set at 2.
.. 5%.

AIは脱酸のため、0.005%以上必要であるが、多
くなると靭性が劣化するため0.1%を上限とする。
AI is required to be present in an amount of 0.005% or more for deoxidation, but if the amount increases, the toughness deteriorates, so the upper limit is set at 0.1%.

CuはHAZ靭性を損なわずに強度を上昇させることが
可能で、本発明の主要な元素であるが、造管後の焼なら
し工程で析出効果により強度を上昇させるため、 0.
5%以上必要であるが、多くなると靭性の低下をきたす
ため、1.5%を上限とする。
Cu can increase the strength without impairing the HAZ toughness and is the main element of the present invention, but since it increases the strength due to the precipitation effect in the normalizing process after pipe making, 0.
5% or more is necessary, but if it increases, the toughness will decrease, so the upper limit is set at 1.5%.

Niは靭性向上のため0.3%以上は必要であるが、高
価な元素であるため2.0%を上限とする。
Ni is required to be at least 0.3% in order to improve toughness, but since it is an expensive element, the upper limit is set at 2.0%.

Nbは靭性、特に板厚中心部の靭性向上に不可欠な元素
であるため、再結晶抑制に必要な0.003%以上含有
させるが、溶接性、特に継手靭性上より0.050%を
上限とする。
Since Nb is an essential element for improving toughness, especially the toughness in the center of the plate thickness, it should be contained in an amount of at least 0.003%, which is necessary to suppress recrystallization. do.

Tiはオーステナイト粒の粗大化を防ぎ、かつHAZ靭
性上から不可欠な元素であるため、O,005%以上必
要であるが、多くなる・とHAZ靭性を損なうため、0
.20%を上限としている。
Ti prevents coarsening of austenite grains and is an essential element from the viewpoint of HAZ toughness, so O,005% or more is required.
.. The upper limit is 20%.

Nは多くなるとHAZ靭性を劣化させるため、上限を0
.0070%としている。
If N increases, it will deteriorate HAZ toughness, so the upper limit is set to 0.
.. It is set at 0070%.

0は多くなるとアルミナ系の介在物が多くなり冷間加工
による造管時の曲げ割れの原因となるため、0.003
0%を上限とする。
The value of 0 is 0.003 because the higher the value, the more alumina-based inclusions will be present, which will cause bending cracks during pipe forming by cold working.
The upper limit is 0%.

次に成分以外の製造条件について述べる。Next, the manufacturing conditions other than the ingredients will be described.

本発明鋼材は鋼材製造段階で焼入処理され、使用時、造
管(冷間曲げ加工)後焼戻し熱処理するものであり、加
工時には成形が容易で加工による加工硬化と熱処理によ
る析出硬化によって高強度、高靭性が得られるようにし
たものであり、基本的には上記の成分組成によってこれ
を達成したものである。
The steel material of the present invention is quenched during the steel manufacturing stage, and when used, is subjected to tempering heat treatment after pipe forming (cold bending).It is easy to form during processing, and has high strength due to work hardening due to processing and precipitation hardening due to heat treatment. , high toughness is obtained, and this is basically achieved by the above-mentioned component composition.

ここに使用時の冷間曲げ加工量は10%以上の曲げ加工
量が好ましく、これ以下であると加工硬化量が不十分で
好ましくない、また焼戻し熱処理はCuによる析出硬化
が充分に起こる500〜600℃とすることが好ましい
The amount of cold bending when used here is preferably 10% or more, and if it is less than this, the amount of work hardening is insufficient, and the tempering heat treatment is performed at a temperature of 500 to 500, which sufficiently causes precipitation hardening due to Cu. The temperature is preferably 600°C.

次に第2項発明の加熱、圧延、冷却条件について述べる
Next, the heating, rolling and cooling conditions of the second invention will be described.

鋼板の製造は制御圧延−制御冷却法で行う。まず加熱温
度は、オーステナイト粒の細粒化のため上限を1100
℃とする。そして加熱時にNbを固溶させるため、下限
温度は950℃が必要である。
The steel plate is manufactured using a controlled rolling-controlled cooling method. First, the upper limit of the heating temperature is set to 1100 to make the austenite grains finer.
℃. In order to form a solid solution of Nb during heating, the lower limit temperature needs to be 950°C.

次に熱間圧延は850℃以下で50%以上圧下する。こ
れは、この温度以上及びこの圧下率以下では細粒化がな
されないためである。
Next, hot rolling is performed at a temperature of 850° C. or lower and a reduction of 50% or more. This is because grain refinement is not achieved above this temperature and below this rolling reduction.

次に、圧延後の加速冷却において充分な強度上昇が得ら
れるように水量密度の下限は、0.5n?/rrr−m
inとしている。さらに、水冷停止温度は、板厚方向の
均一性を得るために鋼板の表面温度で250℃以下とす
る。
Next, in order to obtain a sufficient increase in strength during accelerated cooling after rolling, the lower limit of water density is 0.5n? /rrr-m
It is set as in. Further, the water cooling stop temperature is set to 250° C. or less at the surface temperature of the steel plate in order to obtain uniformity in the thickness direction.

しかして鋼の溶製は転炉、電気炉のいずれでも良く、溶
製後は造塊法又は連続鋳造法によってスラブとなし、熱
間圧延して所定の寸法にするものである。
Therefore, steel may be melted in either a converter or an electric furnace, and after melting, it is formed into a slab by an ingot-forming method or a continuous casting method, and then hot-rolled to a predetermined size.

(実施例) 実施例1 第1表に示す化学成分を有する供試鋼を用い、1250
°Cに加熱し、仕上温度900℃で熱間圧延し、一旦冷
却したのち焼入れし、冷間にて曲げ加工を施して焼戻し
熱処理を加えた。このときの製造条件と焼入れ後、冷間
曲げ加工後、及び最終焼もどし後の各段階の機械的性質
と最終焼戻し後の低温靭性、溶接入熱45 kJ / 
amの潜弧溶接でのFusion Lineの継手靭性
値を第2表に示す。
(Example) Example 1 Using test steel having the chemical composition shown in Table 1, 1250
°C, hot rolled at a finishing temperature of 900 °C, once cooled, quenched, cold bent, and tempered. Manufacturing conditions at this time, mechanical properties at each stage after quenching, cold bending, and final tempering, low temperature toughness after final tempering, welding heat input 45 kJ /
Table 2 shows the joint toughness values of Fusion Line in AM submerged arc welding.

本発明を適用して得た厚鋼板AI、Bl、CIはいずれ
も引張強さ、低温靭性値、溶接継手靭性が優れているこ
とが分る。
It can be seen that the thick steel plates AI, Bl, and CI obtained by applying the present invention are all excellent in tensile strength, low-temperature toughness value, and welded joint toughness.

これに対し比較例のDlではCuが2.10%と高く冷
間曲げ加工が不能であった。ElはNbが0.060%
と高く、継手靭性値が低い、Flは現状の80キロ鋼で
あるがMo、Cr、Vが添加されており、冷間曲げ加工
不能であった。
On the other hand, in Dl of the comparative example, the Cu content was as high as 2.10%, making cold bending impossible. El is 0.060% Nb
Fl is the current 80 kg steel, which has a high joint toughness value, but it has Mo, Cr, and V added, and cannot be cold bent.

実施例2 第1表に示すA鋼を用い熱間圧延後直ちに水冷し、冷間
にて曲げ加工を施して焼戻し熱処理を加えた。第3表に
このときの製造条件と水冷後、冷間曲げ加工後、及び最
終焼戻し後の各段階の機械的性質と、最終焼戻し後の低
温靭性、溶接入熱45kJ/amの潜弧溶接でのFus
ion Lineの継手靭性値を示す。
Example 2 Steel A shown in Table 1 was hot-rolled, immediately cooled with water, cold bent, and tempered. Table 3 shows the manufacturing conditions, mechanical properties at each stage after water cooling, cold bending, and final tempering, low temperature toughness after final tempering, and latent arc welding with a welding heat input of 45 kJ/am. Fus of
ion Line joint toughness values are shown.

本発明法を適用して得た厚鋼板A2〜A5はいずれも引
張強さ、低温靭性値、溶接継手靭性が優れていることが
分る。
It can be seen that the thick steel plates A2 to A5 obtained by applying the method of the present invention are all excellent in tensile strength, low-temperature toughness value, and welded joint toughness.

これに対し比較例のA6は加熱温度が1150℃と高(
、A7は加熱温度が900℃と低く、A8は圧延湯度が
870℃と高く低温靭性値が低い。
On the other hand, the comparative example A6 has a heating temperature as high as 1150℃ (
, A7 has a low heating temperature of 900°C, and A8 has a high rolling hot water temperature of 870°C and has a low low temperature toughness value.

A9は水量密度が0.arrr/rrr−minと低く
、AIOは冷間曲げ加工率が5%と低く、Allは焼も
どし温度が450℃と低く、A13は焼もどし温度が6
50℃と高く、引張強さが低い。
A9 has a water density of 0. arrr/rrr-min, AIO has a low cold bending rate of 5%, All has a low tempering temperature of 450℃, and A13 has a low tempering temperature of 6%.
The temperature is as high as 50°C, and the tensile strength is low.

(発明の効果) 以上の如く本発明は、使用時冷間曲げ成型が容易で、曲
げ加工により加工硬化して強度が向上し、ひきつづいて
施こす焼戻しにより、目標とする強度に達する鋼材であ
るため、従来不可能であった冷間加工で造管可能な肉厚
小径の高強度鋼管が容易に得られかつ適切な成分組成の
選択と含有量の上限規制により溶接性にも優れている。
(Effects of the Invention) As described above, the present invention provides a steel material that is easy to cold bend during use, improves strength through work hardening through bending, and reaches the target strength through subsequent tempering. Therefore, a high-strength steel pipe with a small wall thickness and small diameter that can be formed by cold working, which was previously impossible, can be easily obtained, and it also has excellent weldability by selecting an appropriate component composition and regulating the upper limit of the content.

また製造に際しては合金元素の低減により低コストであ
るという多大な効果を奏する。
In addition, during manufacturing, the reduction in alloying elements results in a significant effect of low cost.

Claims (2)

【特許請求の範囲】[Claims] (1)熱間圧延後焼入工程を経て製造される鋼材であっ
て、重量比にて、 C:0.02〜0.30%、Si:0.05〜1.0%
、Mn:0.5〜2.5%、Ni:0.3〜2.0%、
Ti:0.005〜0.20%、Nb:0.003〜0
.050%、Cu:0.5〜1.5%、Al:0.00
5〜0.1%、N:0.0070%以下、O:0.00
30%以下、を含有し、残部Fe及び不可避不純物より
なることを特徴とする冷間加工性及び溶接性にすぐれた
加工、析出硬化型高張力鋼材。
(1) A steel material manufactured through a quenching process after hot rolling, with a weight ratio of C: 0.02 to 0.30%, Si: 0.05 to 1.0%
, Mn: 0.5-2.5%, Ni: 0.3-2.0%,
Ti: 0.005-0.20%, Nb: 0.003-0
.. 050%, Cu: 0.5-1.5%, Al: 0.00
5-0.1%, N: 0.0070% or less, O: 0.00
30% or less, with the balance consisting of Fe and unavoidable impurities.
(2)重量比にて、 C:0.02〜0.30%、Si:0.05〜1.0%
、Mn:0.5〜2.5%、Ni:0.3〜2.0%、
Ti:0.005〜0.20%、Nb:0.003〜0
.050%Cu:0.5〜1.5%、Al:0.005
〜0.1%、N:0.0070%以下、O:0.003
0%以下、を含有し、残部Fe及び不可避不純物よりな
る鋼を、950〜1100℃に加熱後、圧延温度850
℃以下で累積圧下率を50%以上とし、圧延後直ちに水
量密度0.5m^3/m^2・分以上で250℃以下ま
で水冷することを特徴とする冷間加工性にすぐれた加工
、析出硬化型高張力鋼材の製造方法。
(2) Weight ratio: C: 0.02-0.30%, Si: 0.05-1.0%
, Mn: 0.5-2.5%, Ni: 0.3-2.0%,
Ti: 0.005-0.20%, Nb: 0.003-0
.. 050%Cu: 0.5-1.5%, Al: 0.005
~0.1%, N: 0.0070% or less, O: 0.003
0% or less, with the balance consisting of Fe and unavoidable impurities.
℃ or less, the cumulative reduction rate is 50% or more, and immediately after rolling, water cooling is performed to 250℃ or less at a water flow density of 0.5 m^3/m^2 min or more, which has excellent cold workability, A method for producing precipitation hardening high tensile strength steel.
JP8375686A 1986-04-11 1986-04-11 Thermo mechanical precipitation hardened high tensile steel superior in cold workability and weldability and manufacture thereof Granted JPS62240747A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8375686A JPS62240747A (en) 1986-04-11 1986-04-11 Thermo mechanical precipitation hardened high tensile steel superior in cold workability and weldability and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8375686A JPS62240747A (en) 1986-04-11 1986-04-11 Thermo mechanical precipitation hardened high tensile steel superior in cold workability and weldability and manufacture thereof

Publications (2)

Publication Number Publication Date
JPS62240747A true JPS62240747A (en) 1987-10-21
JPH0327622B2 JPH0327622B2 (en) 1991-04-16

Family

ID=13811394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8375686A Granted JPS62240747A (en) 1986-04-11 1986-04-11 Thermo mechanical precipitation hardened high tensile steel superior in cold workability and weldability and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS62240747A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0225517A (en) * 1988-07-15 1990-01-29 Kawasaki Steel Corp Production of steel plate having excellent toughness at welding connecting part
KR100368243B1 (en) * 2000-08-16 2003-01-24 주식회사 포스코 Steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same, welding fabric using the same
KR100368242B1 (en) * 2000-08-02 2003-02-06 주식회사 포스코 Steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same, welding fabric using the same
KR100368244B1 (en) * 2000-08-22 2003-02-07 주식회사 포스코 Method for steel plate having superior toughness in weld heat-affected zone
US6558483B2 (en) 2000-06-12 2003-05-06 Sumitomo Metal Industries, Ltd. Cu precipitation strengthened steel
KR100482196B1 (en) * 2000-12-15 2005-04-21 주식회사 포스코 Method of manufacturing steel plate to be precipitating TiO and TiN by nitriding treatment for welded structures
JP2008111331A (en) * 2008-01-24 2008-05-15 Nippon Steel Corp Building with joint metal
JP2008111332A (en) * 2008-01-24 2008-05-15 Nippon Steel Corp Joint metal
WO2009072663A1 (en) * 2007-12-07 2009-06-11 Nippon Steel Corporation Steel with weld heat-affected zone having excellent ctod properties and process for producing the steel
WO2009093712A1 (en) * 2008-01-24 2009-07-30 Nippon Steel Corporation Connection metal fitting and building with the same
JP2011001815A (en) * 2010-07-15 2011-01-06 Nippon Steel Corp Building with joint metal
US8668784B2 (en) 2009-05-19 2014-03-11 Nippon Steel & Sumitomo Metal Corporation Steel for welded structure and producing method thereof
JP2019127620A (en) * 2018-01-25 2019-08-01 日本製鉄株式会社 High-strength seamless steel pipe and bracing pipe of jack up rig

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0668126B2 (en) * 1988-07-15 1994-08-31 川崎製鉄株式会社 Manufacturing method of steel plate with excellent toughness of welded joint
JPH0225517A (en) * 1988-07-15 1990-01-29 Kawasaki Steel Corp Production of steel plate having excellent toughness at welding connecting part
US6558483B2 (en) 2000-06-12 2003-05-06 Sumitomo Metal Industries, Ltd. Cu precipitation strengthened steel
KR100368242B1 (en) * 2000-08-02 2003-02-06 주식회사 포스코 Steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same, welding fabric using the same
KR100368243B1 (en) * 2000-08-16 2003-01-24 주식회사 포스코 Steel plate having superior toughness in weld heat-affected zone and method for manufacturing the same, welding fabric using the same
KR100368244B1 (en) * 2000-08-22 2003-02-07 주식회사 포스코 Method for steel plate having superior toughness in weld heat-affected zone
KR100482196B1 (en) * 2000-12-15 2005-04-21 주식회사 포스코 Method of manufacturing steel plate to be precipitating TiO and TiN by nitriding treatment for welded structures
JP4547037B2 (en) * 2007-12-07 2010-09-22 新日本製鐵株式会社 Steel excellent in CTOD characteristics of weld heat affected zone and method for producing the same
US8361248B2 (en) 2007-12-07 2013-01-29 Nippon Steel Corporation Steel superior in CTOD properties of weld heat-affected zone and method of production of same
WO2009072663A1 (en) * 2007-12-07 2009-06-11 Nippon Steel Corporation Steel with weld heat-affected zone having excellent ctod properties and process for producing the steel
JPWO2009072663A1 (en) * 2007-12-07 2011-04-28 新日本製鐵株式会社 Steel excellent in CTOD characteristics of weld heat affected zone and method for producing the same
JP2008111332A (en) * 2008-01-24 2008-05-15 Nippon Steel Corp Joint metal
JP4664997B2 (en) * 2008-01-24 2011-04-06 新日本製鐵株式会社 Buildings with joint hardware
WO2009093712A1 (en) * 2008-01-24 2009-07-30 Nippon Steel Corporation Connection metal fitting and building with the same
JP2008111331A (en) * 2008-01-24 2008-05-15 Nippon Steel Corp Building with joint metal
US8511025B2 (en) 2008-01-24 2013-08-20 Nippon Steel & Sumitomo Metal Corporation Metal joint and building comprising the same
US8668784B2 (en) 2009-05-19 2014-03-11 Nippon Steel & Sumitomo Metal Corporation Steel for welded structure and producing method thereof
JP2011001815A (en) * 2010-07-15 2011-01-06 Nippon Steel Corp Building with joint metal
JP2019127620A (en) * 2018-01-25 2019-08-01 日本製鉄株式会社 High-strength seamless steel pipe and bracing pipe of jack up rig

Also Published As

Publication number Publication date
JPH0327622B2 (en) 1991-04-16

Similar Documents

Publication Publication Date Title
US4521258A (en) Method of making wrought high tension steel having superior low temperature toughness
EP1182268B1 (en) High strength, high toughness, seamless steel pipe for line pipe
EP4442850A1 (en) Corrosion-resistant high-strength steel sheet weldable with high heat input and used for ocean engineering, and preparation method therefor
JPS62240747A (en) Thermo mechanical precipitation hardened high tensile steel superior in cold workability and weldability and manufacture thereof
JP5958428B2 (en) Manufacturing method of steel plates for high heat input welding
JPH08209287A (en) Steel for high strength line pipe having low yield ratio and excellent in low temperature toughness
JP4362219B2 (en) Steel excellent in high temperature strength and method for producing the same
JP5515954B2 (en) Low yield ratio high-tensile steel plate with excellent weld crack resistance and weld heat-affected zone toughness
JP3879607B2 (en) Welded structural steel with excellent low temperature toughness
JP5008879B2 (en) High strength steel plate with excellent strength and low temperature toughness and method for producing high strength steel plate
JP2005097694A (en) Method for manufacturing non-heat-treated high-strength thick steel plate superior in brittle crack arrestability
JP2005097683A (en) Method for producing high tension thick steel plate excellent in brittle crack propagation stopping characteristic and supper large inlet-heat welding-heat affected part toughness
JP2007119861A (en) Method for producing high tensile-strength steel for welding structure excellent in high temperature strength and low temperature toughness
JP2006274388A (en) HIGH TENSILE STRENGTH STEEL SHEET SATISFYING YIELD STRENGTH OF &gt;=650 MPa AND HAVING LOW ACOUSTIC ANISOTROPY, AND METHOD FOR PRODUCING THE SAME
JP7506305B2 (en) High-strength steel plate for large heat input welding
JPH03211230A (en) Production of low alloy steel for line pipe with high corrosion resistance
JP2002224835A (en) Method of welding high toughness high tension steel having excellent weld heat influence zone toughness
JP3882701B2 (en) Method for producing welded structural steel with excellent low temperature toughness
JP4299743B2 (en) High strength steel for high strength welded structure with excellent base metal toughness and super high heat input weld HAZ toughness, and its manufacturing method
JP7506306B2 (en) High-strength steel plate for large heat input welding
JP2005029841A (en) High strength steel for welded structure having excellent low temperature toughness in high heat input weld part haz, and its production method
JP7381838B2 (en) steel plate
JPH05279735A (en) Manufacture of building fire resistant steel plate excellent in toughness in high heat input weld heat-affected zone
JP2006241510A (en) Steel for high strength welded structure having excellent low temperature toughness in high heat input weld haz and its production method
JP4028815B2 (en) 780 MPa class high strength steel excellent in high temperature strength and manufacturing method thereof

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees