JPS62197487A - Production of phosphor - Google Patents
Production of phosphorInfo
- Publication number
- JPS62197487A JPS62197487A JP3821986A JP3821986A JPS62197487A JP S62197487 A JPS62197487 A JP S62197487A JP 3821986 A JP3821986 A JP 3821986A JP 3821986 A JP3821986 A JP 3821986A JP S62197487 A JPS62197487 A JP S62197487A
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- firing
- compd
- mixture
- afterglow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 title claims abstract description 39
- 238000004519 manufacturing process Methods 0.000 title claims description 11
- 238000010304 firing Methods 0.000 claims abstract description 21
- 239000000203 mixture Substances 0.000 claims abstract description 18
- 230000001590 oxidative effect Effects 0.000 claims abstract description 13
- 230000004907 flux Effects 0.000 claims abstract description 9
- 238000010298 pulverizing process Methods 0.000 claims abstract description 7
- 229910052787 antimony Inorganic materials 0.000 claims abstract description 6
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 6
- 229910052748 manganese Inorganic materials 0.000 claims abstract description 5
- 229910052712 strontium Inorganic materials 0.000 claims abstract description 4
- 150000001875 compounds Chemical class 0.000 claims description 23
- 238000010438 heat treatment Methods 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 239000002994 raw material Substances 0.000 claims description 3
- 239000000843 powder Substances 0.000 abstract description 2
- 229910000344 rubidium sulfate Inorganic materials 0.000 abstract description 2
- 239000011572 manganese Substances 0.000 abstract 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 abstract 2
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 abstract 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 abstract 2
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 abstract 2
- FLJPGEWQYJVDPF-UHFFFAOYSA-L caesium sulfate Chemical compound [Cs+].[Cs+].[O-]S([O-])(=O)=O FLJPGEWQYJVDPF-UHFFFAOYSA-L 0.000 abstract 2
- 239000011575 calcium Substances 0.000 abstract 2
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 abstract 2
- 239000007832 Na2SO4 Substances 0.000 abstract 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 abstract 1
- LJCFOYOSGPHIOO-UHFFFAOYSA-N antimony pentoxide Inorganic materials O=[Sb](=O)O[Sb](=O)=O LJCFOYOSGPHIOO-UHFFFAOYSA-N 0.000 abstract 1
- 229910000019 calcium carbonate Inorganic materials 0.000 abstract 1
- 235000010216 calcium carbonate Nutrition 0.000 abstract 1
- 229910052939 potassium sulfate Inorganic materials 0.000 abstract 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 abstract 1
- 229910052938 sodium sulfate Inorganic materials 0.000 abstract 1
- 235000011152 sodium sulphate Nutrition 0.000 abstract 1
- 229910000018 strontium carbonate Inorganic materials 0.000 abstract 1
- LEDMRZGFZIAGGB-UHFFFAOYSA-L strontium carbonate Chemical compound [Sr+2].[O-]C([O-])=O LEDMRZGFZIAGGB-UHFFFAOYSA-L 0.000 abstract 1
- 238000000034 method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 238000004020 luminiscence type Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 230000005284 excitation Effects 0.000 description 3
- 235000019353 potassium silicate Nutrition 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 238000001354 calcination Methods 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000533901 Narcissus papyraceus Species 0.000 description 1
- 101710201952 Photosystem II 22 kDa protein, chloroplastic Proteins 0.000 description 1
- 102100021941 Sorcin Human genes 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical group 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Luminescent Compositions (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、カラーディスプレイ管用の長残光性の青色蛍
光体に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a long afterglow blue phosphor for color display tubes.
コンピュータの普及に伴い、入出力端末として精細度が
高いカラーディスプレイ管の需要が急速に増加しつつあ
る。しかし、上記のようなディスプレイ管に通常の短残
光蛍光体を用い、商用周波数でリフレッシュして走査線
の本数だけを増したのでは、画面のちらつきが大きくな
り、端末利用者の疲労が増加する。したがって、画面の
フレーム周波数を増さずに長残光蛍光体を使用する方法
と、短残光蛍光体を用いてフレーム周波数を高くする方
法とが採用されている。後者の場合には、回路、半導体
素子および偏光ヨーク等の部品を必要とし非常にコスト
高になり、その上に技術的な困難さを伴うことになる。With the spread of computers, the demand for high-definition color display tubes as input/output terminals is rapidly increasing. However, if ordinary short afterglow phosphors are used in the display tube as described above, and only the number of scanning lines is increased by refreshing at a commercial frequency, the screen will flicker and the fatigue of terminal users will increase. do. Therefore, a method of using a long afterglow phosphor without increasing the frame frequency of the screen, and a method of increasing the frame frequency using a short afterglow phosphor have been adopted. In the latter case, components such as circuits, semiconductor elements, and polarization yokes are required, resulting in extremely high costs and technical difficulties.
そのため、前者の方法がより好ましいとされている。Therefore, the former method is considered more preferable.
現在、カラーディスプレイ管においては、3原色の蛍光
体のうち、緑色にはb
(P39.長残光)、赤色にはZn5(POa )2
: Mn(P27.長残光)、青色にはZnS : A
g、 Cl (P 22B、短残光)、あるいはZnS
: Ag、 M、 X (ただしM=Gaまたは■Ω
、X=ハロゲンまたはAj’)が使われている(特開昭
58−83084.特開昭58−83085 、長谷、
吉田、三上:第205回蛍光体同学会講演予稿、9頁〜
10頁)。また、実用に供されていないが、青色蛍光体
としてSr Sb、 O,: Mnが知られティる(
M、−L、 Yu、 A11salu:イズヴエスチア
・アカジエミイ・ナウカ・ニス・ニス・ニス−xル(I
zvest、 Akad、 Nauk、 5SSR)2
3 (1959)1346〜1348)。Currently, in color display tubes, among the three primary color phosphors, b (P39. Long afterglow) is used for green, and Zn5 (POa)2 is used for red.
: Mn (P27. long afterglow), ZnS for blue color : A
g, Cl (P22B, short afterglow), or ZnS
: Ag, M, X (However, M=Ga or ■Ω
, X=halogen or Aj') is used (JP-A-58-83084, JP-A-58-83085, Hase,
Yoshida, Mikami: Proceedings of the 205th Fluorescent Society Conference, pp. 9-
page 10). Although not in practical use, SrSb, O,:Mn is known as a blue phosphor (
M, -L, Yu, A11salu: Izveestia akajiemii nauka nis nis nis-
zvest, Akad, Nauk, 5SSR)2
3 (1959) 1346-1348).
青色蛍光体としてZnS : Ag、 Clを用いた場
合は、上記蛍光体が短残光であるため、他の色との残光
特性の相違により残光の途中で画面の色が側割変化し、
かつ、ちらつき低減効果も少なくなる。When ZnS:Ag, Cl is used as a blue phosphor, since the phosphor has a short afterglow, the color of the screen may change in the middle of the afterglow due to the difference in afterglow characteristics with other colors. ,
Moreover, the flicker reduction effect is also reduced.
また、ZnS : Ag、 M、 Xを用いた場合には
、上記蛍光体が電流密度の高い所で顕著な輝度飽和を示
すこと、残光特性が輝度レベルの低い長残光成分をもつ
「尾引型」であること、発光色が電流密度によって変化
すること、というような欠点がある。Furthermore, when using ZnS:Ag, M, or It has drawbacks such as being "drawn" and the color of the emitted light changing depending on the current density.
さらに、5rSb20. : Mnについては、結晶構
造および発光スペクトルは明らかにされているが、その
他の特性については不明であるため、上記蛍光体を通常
の方法で合成して発光特性を調べてみた。Furthermore, 5rSb20. : Although the crystal structure and emission spectrum of Mn have been clarified, other properties are unknown, so the above phosphor was synthesized by a conventional method and its emission properties were investigated.
その結果、上記蛍光体の発光が指数関数型の長い減衰を
示し、かつその減衰特性が電流密度によって変化しない
こと、色度座標X = 0.10. Y=0.125で
飽和度が高い青色であること、輝度飽和現象が比較的少
ないことが明らかになった。しかし、唯一の欠点は輝度
が低いことである。本発明は、上記によりカラーディス
プレイ管用に好適な青色蛍光体の製造方法を得ることを
目的とする。As a result, the luminescence of the phosphor exhibits a long exponential decay, and the decay characteristics do not change depending on the current density, and the chromaticity coordinates X = 0.10. It was revealed that the blue color has a high degree of saturation at Y=0.125, and that there is relatively little luminance saturation phenomenon. However, the only drawback is low brightness. An object of the present invention is to obtain a method for producing a blue phosphor suitable for use in color display tubes as described above.
上記目的は、(Sr1−uCau)1.、−vMnvS
b206の合成方法を工夫することによって達成される
。すなわち、Sr、 Ca、 MnおよびSbの酸化物
、もしくは加熱することにより上記各元素の酸化物とな
り得る化合物、さらにフラックースとしてに、SO4゜
Rb、SO4,NazSO4およびCs、SO4のうち
、少なくとも1種の化合物を原料として焼成した一般式
%式%
ただし、0 (u (0,15、0,03< v< 0
.3なる蛍光体を得る製造方法において、上記製造方法
は、Sr化合物、Ca化合物およびSb化合物を混合し
、800℃ないし1000℃の空気中で焼成する第1工
程と、上記焼成物を粉砕してMn化合物と7ラツクスと
を加え、1000°Cないし1100℃の酸化雰囲気中
で焼成する第2工程と、上記焼成物を粉砕後、1150
℃ないし1250℃の酸化雰囲気中で焼成する第3工程
とを経ることによって達成できる。The above purpose is (Sr1-uCau)1. , -vMnvS
This can be achieved by devising a synthetic method for b206. That is, oxides of Sr, Ca, Mn, and Sb, or compounds that can become oxides of each of the above elements by heating, and as a flux, at least one of SO4°Rb, SO4, NazSO4, and Cs, SO4. The general formula % formula % is calculated using the compound as a raw material. However, 0 (u (0,15, 0,03<v< 0
.. In the manufacturing method for obtaining the phosphor No. 3, the manufacturing method includes a first step of mixing an Sr compound, a Ca compound, and an Sb compound and firing the mixture in air at 800°C to 1000°C, and pulverizing the fired product. A second step of adding a Mn compound and 7 lux and firing in an oxidizing atmosphere at 1000°C to 1100°C;
This can be achieved by performing a third step of firing in an oxidizing atmosphere at a temperature of 1250°C to 1250°C.
上記第1工程は、Mnがなイ(Sr1−uCau)Sb
206を作る工程である。この工程で2価のMn化合物
−エ←(消−1−−L L λln2+ 講イ
λJr+4” l−基ムIし 七 も ユI+が
着色する。そこで、まずMn無添加の母体を合成する。The first step is Mn (Sr1-uCau)Sb
This is the process of making 206. In this step, the divalent Mn compound
λJr+4'' L-based I+ is colored. Therefore, first, a matrix without Mn addition is synthesized.
ここでは第2工程以降でMn2+をドープしやすくする
ために、結晶性が悪い(Sr1−uCau)Sb2o、
を作る必要がある。(5r1−uCau)SbzOsは
800℃以上で生成し始めること、および1000℃を
こえると結晶性が良くなることから焼成温度範囲を80
0〜1ooo℃に限定した。Here, in order to facilitate doping with Mn2+ in the second and subsequent steps, Sb2o with poor crystallinity (Sr1-uCau),
It is necessary to make (5r1-uCau)SbzOs starts to form at temperatures above 800°C, and crystallinity improves above 1000°C, so the firing temperature range was set at 80°C.
The temperature was limited to 0-100°C.
第2工程はMn2+をドープする工程であるが、120
0℃付近で焼成するとMn2+が酸化されてMn”にな
り着色し効率の低下をきたすので1100℃より低い温
度で焼成することが望ましい。また1000”Cより低
い温度ではMn2+の拡散が不十分になる。The second step is the step of doping Mn2+.
If fired at around 0°C, Mn2+ will be oxidized and become Mn'', resulting in coloration and a decrease in efficiency, so it is desirable to fire at a temperature lower than 1100°C. Also, at a temperature lower than 1000°C, Mn2+ will not diffuse sufficiently. Become.
このことから、第2工程の焼成温度範囲を1000〜1
100℃に限定した。上記焼成は酸化雰囲気中で行う。From this, the firing temperature range for the second step was set at 1000 to 1
The temperature was limited to 100°C. The above firing is performed in an oxidizing atmosphere.
空気中でも焼成可能であるが、酸素を補った空気中にお
いて焼成するのが好ましい。また、フラックスはM n
2+の酸化を防ぎ、かつ拡散を容易にし、加えて母体
の結晶化も促進する。Although it is possible to perform firing in air, it is preferable to perform firing in air supplemented with oxygen. Also, the flux is M n
It prevents oxidation of 2+, facilitates diffusion, and also promotes crystallization of the host.
第3工程は結晶化促進の工程である。上記第2工Plで
枯晶巾1r Mn計か脛tどド−プ六わアいスf−め、
1200℃付近で焼成してもMn の酸化による着色
は生じない。1150〜1250℃の範囲で焼成するこ
とにより、従来のZnS二Agl Ga、 cl!より
も輝度の高いものが得られるだめ、上記温度範囲に限定
した。焼成は酸化雰囲気中で行い、第2工程における焼
成と同様に、酸素を補った空気中で行うのがよい。各工
程における焼成時間は30分前後が適当である。用いる
試薬のうち、特にMn化合物はMn 、 P2O,の形
で用いることにより、輝度が高い蛍光体を得ることがで
きる。上記フラックス添加量の最適量は、その代置の4
0〜50重量%である。The third step is a step of promoting crystallization. In the above-mentioned 2nd engineering Pl, the dry crystal width is 1r.
Even when fired at around 1200°C, no coloration occurs due to oxidation of Mn. By firing in the range of 1150-1250°C, conventional ZnS2AglGa, cl! The temperature was limited to the above temperature range in order to obtain a product with higher brightness. The calcination is performed in an oxidizing atmosphere, preferably in air supplemented with oxygen, similar to the calcination in the second step. Appropriate firing time in each step is about 30 minutes. Among the reagents used, a phosphor with high brightness can be obtained by using the Mn compound in the form of Mn or P2O. The optimum amount of the above flux addition is the alternative 4
It is 0 to 50% by weight.
上記3工程を経た焼成物はフラックスと未反応の微量の
Mn化合物を含んでいるため、水洗後に稀塩酸、酒石酸
あるいはエチレンジアミン四酢酸で洗滌処理することが
必要である。Since the fired product that has gone through the above three steps contains a trace amount of Mn compound that has not reacted with the flux, it is necessary to wash it with dilute hydrochloric acid, tartaric acid, or ethylenediaminetetraacetic acid after washing with water.
上記のようにして得られた蛍光体は、例えば(SrO,
gMnol) Sb、Osおよび(srO,85caO
,15)0.97 Mn0f13Sbz○6の電子線励
起(25KV、 0.15μA/c+()による輝度は
、ZnS : Ag、 Ga、 C1に較べそれぞれ1
6%および60チ高かった。The phosphor obtained as described above is, for example, (SrO,
gMnol) Sb, Os and (srO,85caO
, 15) 0.97 The brightness of Mn0f13Sbz○6 by electron beam excitation (25 KV, 0.15 μA/c+() is 1 compared to ZnS: Ag, Ga, and C1, respectively.
It was 6% and 60 inches higher.
上記青色長残光蛍光体と、InBO3二Eu、 CaS
:Mn、 (Ca、 Mg) S : MnまたはZ
n3(PO4)2 : Mnのうち、いずれかの長残光
性−黄〜赤色蛍光体と組合わせることにより、ちらつき
が少ない白色ディスプレイ管用蛍光体を得ることができ
る。The above blue long afterglow phosphor, InBO32Eu, CaS
:Mn, (Ca, Mg) S: Mn or Z
n3(PO4)2: By combining Mn with any long afterglow yellow to red phosphor, a white phosphor for display tubes with less flickering can be obtained.
つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.
第1図は本発明による蛍光体の製造方法により製造した
青色長残光蛍光体Sro、g MnO,I 5b206
の残光特性を示す図、第2図は実施例に記載した蛍光体
およびブラウン管の発光色度座標図、第3図はSrl−
vMnvSb206における輝度のMn濃度(V)依存
性を示す図である。FIG. 1 shows a blue long afterglow phosphor Sro, g MnO, I 5b206 manufactured by the phosphor manufacturing method according to the present invention.
FIG. 2 is a diagram showing the luminescence chromaticity coordinates of the phosphor and cathode ray tube described in the examples, and FIG. 3 is a diagram showing the afterglow characteristics of Srl-
FIG. 3 is a diagram showing the dependence of brightness on Mn concentration (V) in vMnvSb206.
実施例I
Sr CO31,328gと5b20S 3.235g
をよく混合し、これをアルミナボートに薄く詰め、空気
中において1000℃で30分間焼成する。上記焼成物
にMn2P207−3 HzOヲ0.1688g トに
2SO4ヲ1892g加え、めのう乳鉢で混合し、これ
を10rr+I!のアルミするつぼに詰め、酸化雰囲気
中において1100℃で30分間焼成する。つぎに、上
記焼成物を粉砕してアルミするつぼに詰め、さらに酸化
雰囲気中において1200℃で30分間焼成する。上記
焼成物をKz S Oaを除くために水洗し、さらに未
反応であった微量のMn化合物を除去するために、0.
2Nの塩酸で処理したのち水洗した。このようにして得
られた蛍光体は、SrO,g Mnol 5b2o6の
組成を有し、電子線励起(25KV、 0.15μA/
aj ’)による輝度は、ZnS :Ag、 Ga、
Clに較べて16%高かった。従来の長残光青色蛍光体
と残光特性を比較した図を第1図に示す。図におけるl
は本実施例によるS rQ、9 M no、I S b
206で、2は従来蛍光体の特性である。なお、第2図
に示す色度座標の3が本実施例の長残光青色蛍光体であ
る。また、Srl−vMnvSb206における輝度が
Mn濃度に依存する状態を第3図に示す。Example I 1,328 g of Sr CO3 and 3.235 g of 5b20S
The mixture was mixed well, packed thinly into an alumina boat, and fired in air at 1000°C for 30 minutes. Add 0.1688 g of Mn2P207-3 HzO and 1892 g of 2SO4 to the above fired product, mix in an agate mortar, and mix at 10rr+I! The mixture was packed in an aluminum crucible and fired at 1100°C for 30 minutes in an oxidizing atmosphere. Next, the fired product is crushed and packed in an aluminum crucible, and further fired at 1200° C. for 30 minutes in an oxidizing atmosphere. The above-mentioned fired product was washed with water to remove KzS Oa, and further washed with water of 0.05 to remove a trace amount of unreacted Mn compound.
After treatment with 2N hydrochloric acid, it was washed with water. The thus obtained phosphor has a composition of SrO, g Mnol 5b2o6, and is subjected to electron beam excitation (25 KV, 0.15 μA/
aj') brightness is ZnS:Ag, Ga,
It was 16% higher than Cl. FIG. 1 shows a comparison of the afterglow characteristics with a conventional long afterglow blue phosphor. l in the diagram
are S rQ, 9 M no, I S b according to the present example.
In 206, 2 is a characteristic of a conventional phosphor. Note that the chromaticity coordinate 3 shown in FIG. 2 is the long afterglow blue phosphor of this example. Further, FIG. 3 shows a state in which the brightness in Srl-vMnvSb 206 depends on the Mn concentration.
実施例2
SrCOs 1.217g、 CaCO50,146g
およびSb、053.235gをよく混合し、該混合物
をアルミナボー焼成する。上記焼成物にMn2P2O7
・3H,Oを0.051gとに、 So、を1.860
gとを加え、めのう乳鉢で混合したのち10m/のアル
ミするつぼに詰めて、酸化雰囲気中で1100 ’C−
30分間焼成する。ついで上記焼成物を粉砕しアルミす
るつぼに詰め、さらに酸化雰囲気中において1200℃
で30分間焼成する。その後の工程を実施例1と同様に
行って得られた蛍光体は(sro、85 caO,15
)0.97 Mn0.035b206の組成を有し、電
子線励起(25KV、 0.15μA/cyl! )に
よる輝度はZnS : Ag、 Ga、 Clに較へ6
0係高かった。Example 2 SrCOs 1.217g, CaCO50,146g
and Sb, 053.235 g, were thoroughly mixed, and the mixture was calcined with alumina powder. Mn2P2O7 in the above fired product
・3H,O to 0.051g, So, 1.860
g and mixed in an agate mortar, packed in a 10 m aluminum crucible, and heated at 1100'C in an oxidizing atmosphere.
Bake for 30 minutes. The fired product was then crushed, packed into an aluminum pot, and further heated at 1200°C in an oxidizing atmosphere.
Bake for 30 minutes. The phosphor obtained by performing the subsequent steps in the same manner as in Example 1 was (sro, 85 caO, 15
)0.97 Mn0.035b206, and the brightness by electron beam excitation (25KV, 0.15μA/cyl!) is 6 compared to ZnS: Ag, Ga, and Cl.
0 section was expensive.
実施例3
上記実施例同様の手順によって作製された組成が(Sr
0.87 Ca O,+3 )0.9 Mno、+ S
b20s テある長残光青色蛍光体(第2図中4)とC
a0.998 MnO,QO3S (第2図中8)とを
、9:1の重量比で秤取し、十分よく混合したのち、よ
く知られた水ガラス懸濁液中における沈降法によって9
インチ単色ディスプレイ管を作成した。上記ディスプレ
イ管の発光色は色麻古v=n′2T;、 V=I”l
QQ (笛9PA由+’) )mn郭4’hX白色(P
aper White )で、10%残光時間は25m
5であった。ZnS : Ag、 Cl (P22B、
第2図中11)を青成分として用いた同じ色調の長残光
型ディスプレイ管は、残光の途中で色調が変化したが、
本実施例のディスプレイ管では、発光のピークからその
l/10に減衰するまでの時間域では色調変化が認めら
れなかった。Example 3 A composition prepared by the same procedure as in the above example was (Sr
0.87 CaO, +3) 0.9 Mno, +S
b20s long afterglow blue phosphor (4 in Figure 2) and C
a0.998 MnO, QO3S (8 in Figure 2) were weighed out at a weight ratio of 9:1, mixed thoroughly, and then 9 was prepared by the well-known sedimentation method in a water glass suspension.
An inch monochrome display tube was created. The color of the emitted light from the display tube is as follows: V=n′2T;, V=I”l
QQ (Flute 9PA Yu +') mn Guo 4'hX White (P
aper White), 10% afterglow time is 25m
It was 5. ZnS: Ag, Cl (P22B,
A long afterglow display tube with the same color tone using 11) in Figure 2 as the blue component had a change in color tone during the afterglow, but
In the display tube of this example, no change in color tone was observed in the time range from the peak of luminescence to attenuation to 1/10 of the peak of luminescence.
実施例4
(S ro9s Ca O,05)0.9 MnO,l
S b206 (D組成を有する長残光青色蛍光体(
第2図中4)とIn0.96 EuO,04BO3(第
2図中9)とを重量比17:1の割合にとってよく混合
した。上記混合物の発光色度座標はX=0.23 、
y = 0.24でライトブルー(第2図中14)であ
った。この色調はZnS : Ag、 Cl CP22
B ) (7)色調よりも視感度が高(、ディスプレイ
用として需要がある。10%残光時間は約35m5で、
残光途中の色調変化は認められなかった。Example 4 (S ro9s Ca O, 05) 0.9 MnO, l
S b206 (long afterglow blue phosphor with D composition (
4) in Figure 2 and In0.96EuO,04BO3 (9 in Figure 2) were mixed well in a weight ratio of 17:1. The emission chromaticity coordinates of the above mixture are X=0.23,
It was light blue (14 in Figure 2) with y = 0.24. This color tone is ZnS: Ag, Cl CP22
B) (7) Visibility is higher than color tone (and is in demand for display purposes. The 10% afterglow time is approximately 35 m5,
No change in color tone was observed during afterglow.
実施例5
(sro、73 Ca0.27 )0.9 MnO,l
Sb20s (第2図中6)と(Zn5(P 04)
2 : Mn ) (P 27.第2図中10)とを1
.5:■の重量比に取り、混合し水ガラス懸濁液中にお
ける沈降法によって9インチ単色ディスプレイ管を作製
した。上記ディスプレイ管の発光色は” Paper
White”(第2図中12)である。IO%残光時間
は100 msであった。P22Bを用いた同じ色調の
長残光型ディスプレイ管に較ベルト、本実施例のディス
プレイ管は残光が長く、かつ残光の途中における色調変
化が僅かであった。Example 5 (sro, 73 Ca0.27 )0.9 MnO,l
Sb20s (6 in Figure 2) and (Zn5 (P 04)
2: Mn) (P27.10 in Figure 2) and 1
.. A 9-inch monochromatic display tube was prepared by mixing the materials at a weight ratio of 5:■ and performing a sedimentation method in a water glass suspension. The emitting color of the display tube above is "Paper
White" (12 in Figure 2).The IO% afterglow time was 100 ms.Compared to a long afterglow display tube of the same color using P22B, the display tube of this example had no afterglow. was long, and there was only a slight change in color tone during the afterglow.
実施例6
(SrO,95Ca0.05 ) 0.95 Mno、
os Sb206(第2図中4)とcao、999 M
nO,ool S (第2図中8)とを30=1の重量
比に取って十分混合し、水ガラス懸濁液中における沈降
塗布法により9インチ単色ディスプレイ管を作製した。Example 6 (SrO,95Ca0.05) 0.95 Mno,
os Sb206 (4 in Figure 2) and cao, 999 M
nO, ool S (8 in FIG. 2) were thoroughly mixed in a weight ratio of 30=1, and a 9-inch monochrome display tube was prepared by a sedimentation coating method in a water glass suspension.
上記ディスプレイ管の発光色はX=0.25. y=0
.29で表わされる青白色(第2図中13)であり、1
0係残光時間は3Qmsであった。従来の同色長残光デ
ィスプレイ管は、青色成分としてP22Bを用いており
、色調変化が顕著であるのに対し、本実施例では色調変
化が認められなかった。The emission color of the above display tube is X=0.25. y=0
.. 29 (13 in Figure 2), and 1
The zero afterglow time was 3 Qms. Conventional same-color long afterglow display tubes use P22B as the blue component, and the change in color tone is significant, whereas in this example, no change in color tone was observed.
上記のように本発明による蛍光体の製造方法は、Sr、
Ca、 MnおよびSbの酸化物、もしくは加熱によ
り上記元素の酸化物になりうる化合物と、さらにフラッ
クスとしてに2SO4,Rb2SO4,Na、SO4お
よびC3zSo4のうちの少な(とも1種の化合物とを
原料として焼成し、一般式
%式%
ただし、0 < u < 0.15.0.03 < V
< 0.3なる蛍光体の製造方法において、上記製造
方法は、Sr化合物、Ca化合物およびSb化合物を混
合し、800℃ないし1000℃の空気中で焼成する第
1工程と、上記焼成物を粉砕してMn化合物と7ラツク
スとを加え、1000℃ないし1100℃の酸化雰囲気
中で焼成する第2工程と、上記焼成物を粉砕後、115
0℃ないし1250℃の酸化雰囲気中で焼成する第3工
程とからなることにより、上記(Sr、−uCau)+
−vMnvSb20g蛍光体の輝度を大きく向上し、
上記蛍光体を用いることにより、ちらつきが少なく、し
かも青色輝度が従来より高いカラーディスプレイ残光性
の赤〜黄色蛍光体と組合わせて、ちらつきが少ない白色
ディスプレイ管用蛍光体を得ることができる。As described above, the method for manufacturing a phosphor according to the present invention includes Sr,
Oxides of Ca, Mn, and Sb, or compounds that can be turned into oxides of the above elements by heating, and a small amount (both one type of compound) of 2SO4, Rb2SO4, Na, SO4, and C3zSo4 as a flux are used as raw materials. After firing, the general formula % formula % However, 0 < u < 0.15. 0.03 < V
< 0.3, the manufacturing method includes a first step of mixing an Sr compound, a Ca compound, and an Sb compound and firing the mixture in air at 800°C to 1000°C, and pulverizing the fired product. a second step of adding a Mn compound and 7 lux and firing in an oxidizing atmosphere at 1000°C to 1100°C; and after pulverizing the fired product,
The above (Sr, -uCau)+
- Greatly improves the brightness of vMnvSb20g phosphor,
By using the above phosphor, it is possible to obtain a phosphor for a white display tube with less flicker by combining it with a red to yellow phosphor having a color display afterglow property that has less flicker and has higher blue brightness than conventional ones.
第1図は本発明による蛍光体の製造方法により製造した
青色長残光蛍光体の残光特性を示す図、第2図は実施例
に記載した蛍光体およびディスプレイ管の発光色度座標
図、第3図は上記青色長残光蛍光体における輝度のMn
濃度(v)依存性を示す図である。
代理人弁理士 中 村 純 之 助
第1図
第2図
X 値
第3図
Mn 3度(V)FIG. 1 is a diagram showing the afterglow characteristics of a blue long afterglow phosphor manufactured by the method for manufacturing a phosphor according to the present invention, and FIG. 2 is an emission chromaticity coordinate diagram of the phosphor and display tube described in Examples. Figure 3 shows the luminance Mn of the blue long afterglow phosphor.
It is a figure showing concentration (v) dependence. Representative Patent Attorney Junnosuke Nakamura Figure 1 Figure 2 X Value Figure 3 Mn 3 degrees (V)
Claims (2)
熱により上記元素の酸化物になりうる化合物と、さらに
フラックスとしてK_2SO_4,Rb_2SO_4,
Na_2SO_4およびCs_2SO_4のうちの少な
くとも1種の化合物とを原料として焼成した一般式 (Sr_1_−_uCa_u)_1_−_vMn_vS
b_2O_6ただし、0≦u≦0.15,0.03≦v
≦0.3なる蛍光体の製造方法において、上記製造方法
は、Sr化合物、Ca化合物およびSb化合物を混合し
、800℃ないし1000℃の空気中で焼成する第1工
程と、上記焼成物を粉砕してMn化合物とフラックスと
を加え、1000℃ないし1100℃の酸化雰囲気中で
焼成する第2工程と、上記焼成物を粉砕後、1150℃
ないし1250℃の酸化雰囲気中で焼成する第3工程と
からなることを特徴とする蛍光体の製造方法。1. Oxides of Sr, Ca, Mn, and Sb, or compounds that can become oxides of the above elements by heating, and K_2SO_4, Rb_2SO_4, as a flux.
General formula (Sr_1_-_uCa_u)_1_-_vMn_vS which is fired with at least one compound of Na_2SO_4 and Cs_2SO_4 as a raw material
b_2O_6 However, 0≦u≦0.15, 0.03≦v
≦0.3, the manufacturing method includes a first step of mixing an Sr compound, a Ca compound, and an Sb compound and firing the mixture in air at 800°C to 1000°C, and pulverizing the fired product. a second step of adding the Mn compound and flux and firing in an oxidizing atmosphere at 1000°C to 1100°C; and after pulverizing the fired product, heating at 1150°C.
A method for producing a phosphor, comprising a third step of firing in an oxidizing atmosphere at a temperature of 1250°C to 1250°C.
とを特徴とする特許請求の範囲第1項に記載した蛍光体
の製造方法。2. The method for producing a phosphor according to claim 1, wherein the Mn compound is Mn_2P_2O_7.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3821986A JPS62197487A (en) | 1986-02-25 | 1986-02-25 | Production of phosphor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP3821986A JPS62197487A (en) | 1986-02-25 | 1986-02-25 | Production of phosphor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62197487A true JPS62197487A (en) | 1987-09-01 |
Family
ID=12519192
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP3821986A Pending JPS62197487A (en) | 1986-02-25 | 1986-02-25 | Production of phosphor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62197487A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7554129B2 (en) | 2004-06-10 | 2009-06-30 | Seoul Semiconductor Co., Ltd. | Light emitting device |
US8070984B2 (en) | 2004-06-10 | 2011-12-06 | Seoul Semiconductor Co., Ltd. | Luminescent material |
US9209162B2 (en) | 2004-05-13 | 2015-12-08 | Seoul Semiconductor Co., Ltd. | Light emitting device including RGB light emitting diodes and phosphor |
US11322484B2 (en) | 2006-03-31 | 2022-05-03 | Seoul Semiconductor Co., Ltd. | Light emitting device and lighting system having the same |
-
1986
- 1986-02-25 JP JP3821986A patent/JPS62197487A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9209162B2 (en) | 2004-05-13 | 2015-12-08 | Seoul Semiconductor Co., Ltd. | Light emitting device including RGB light emitting diodes and phosphor |
US10186642B2 (en) | 2004-05-13 | 2019-01-22 | Seoul Semiconductor Co., Ltd. | Light emitting device including RGB light emitting diodes and phosphor |
US10672956B2 (en) | 2004-05-13 | 2020-06-02 | Seoul Semiconductor Co., Ltd. | Light emitting device including RGB light emitting diodes and phosphor |
US10916684B2 (en) | 2004-05-13 | 2021-02-09 | Seoul Semiconductor Co., Ltd. | Light emitting device including RGB light emitting diodes and phosphor |
US11605762B2 (en) | 2004-05-13 | 2023-03-14 | Seoul Semiconductor Co., Ltd. | Light emitting device including RGB light emitting diodes and phosphor |
US7554129B2 (en) | 2004-06-10 | 2009-06-30 | Seoul Semiconductor Co., Ltd. | Light emitting device |
US8066909B2 (en) | 2004-06-10 | 2011-11-29 | Seoul Semiconductor Co., Ltd. | Light emitting device |
US8070984B2 (en) | 2004-06-10 | 2011-12-06 | Seoul Semiconductor Co., Ltd. | Luminescent material |
US8070983B2 (en) | 2004-06-10 | 2011-12-06 | Seoul Semiconductor Co., Ltd. | Luminescent material |
US11322484B2 (en) | 2006-03-31 | 2022-05-03 | Seoul Semiconductor Co., Ltd. | Light emitting device and lighting system having the same |
US12009348B2 (en) | 2006-03-31 | 2024-06-11 | Seoul Semiconductor Co., Ltd. | Light emitting device and lighting system having the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008202044A (en) | Deep red phosphor and method for production thereof | |
JPS61174291A (en) | Phosphor emitting blue light | |
JPS62197487A (en) | Production of phosphor | |
JP2000109826A (en) | Fluorescent substance of alkaline earth aluminate and fluorescent lamp | |
JP2000017257A (en) | Fluorescent substance and luminous screen using the same | |
JP2607316B2 (en) | Mixed type green light emitting phosphor and cathode ray tube using this green light emitting phosphor | |
JPS62201990A (en) | Sulfide phosphor | |
KR100289531B1 (en) | Green luminescent phosphor | |
KR910009221B1 (en) | Fluorescent substance | |
JPS6089061A (en) | Fluorescent lamp | |
JPS62257981A (en) | Cathode ray tube | |
JPH0345690A (en) | Phosphor and cathode ray tube made by using it | |
KR950004195B1 (en) | Green chemiluminescence | |
JP2978241B2 (en) | Green light-emitting phosphor for projection tubes | |
US2957829A (en) | Preparation of luminescent material | |
JPS59219383A (en) | Amber color phosphor | |
JPH06240252A (en) | Green emitting phosphor for fluorescent lamp | |
KR910004677B1 (en) | Orange color fluorescent substance | |
JP2726521B2 (en) | Phosphor and fluorescent lamp | |
JPS61136580A (en) | Preparation of phosphor | |
JPS6223031B2 (en) | ||
JPH0317182A (en) | Light emitting element for color image display device | |
JPS60147490A (en) | Fluorescent substance of sulfide | |
JPH01266188A (en) | High color rendering lamp | |
SU924075A1 (en) | Method for producing phosphors based on zink or zink and cadmium sulphides |