JPS6217572A - Defroster for air-cooled heat pump type refrigerator - Google Patents
Defroster for air-cooled heat pump type refrigeratorInfo
- Publication number
- JPS6217572A JPS6217572A JP15680685A JP15680685A JPS6217572A JP S6217572 A JPS6217572 A JP S6217572A JP 15680685 A JP15680685 A JP 15680685A JP 15680685 A JP15680685 A JP 15680685A JP S6217572 A JPS6217572 A JP S6217572A
- Authority
- JP
- Japan
- Prior art keywords
- capacity
- defrosting
- compressor
- unloader
- control means
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Sorption Type Refrigeration Machines (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Defrosting Systems (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は逆サイクルによる除霜(デフロスト)を行わせ
る機構を有する空冷ヒートポンプ冷凍機において液戻り
を防止して安全性に冨む除霜装置の構成に関する。Detailed Description of the Invention (Industrial Application Field) The present invention provides a defrosting device which prevents liquid return and increases safety in an air-cooled heat pump refrigerator having a mechanism for defrosting by reverse cycle. Regarding the configuration of
(従来の技術)
アンローダ機構を有する圧縮機を運転し、かつ除霜サイ
クルに切換えて熱源側コイルに付着した霜を融かす空冷
ヒートポンプ式冷凍機において、特に差圧式の四路切換
弁を使用する場合に切換えが速やかに行われるため、高
圧側と低圧側の圧力変動が激しくて圧縮機への液戻りが
起るおそれがある。(Prior art) In an air-cooled heat pump type refrigerator that operates a compressor with an unloader mechanism and switches to a defrosting cycle to melt frost attached to the heat source side coil, a differential pressure type four-way switching valve is particularly used. In some cases, switching is carried out quickly, so pressure fluctuations between the high pressure side and the low pressure side are severe and there is a risk that liquid may return to the compressor.
か−る液戻り現象を排除し得る除霜運転が行える装置と
しては、特公昭59−6345号公報等によって公知の
ものが従来からあるが、これは、除霜開始信号の発生時
から1定時間アンローダ機構を作動させて圧縮機を低能
力運転させた後、高能力運転に切換えるよう構成したも
のである。As a device capable of defrosting operation that can eliminate such a liquid return phenomenon, there is a device known from Japanese Patent Publication No. 59-6345, etc. The compressor is configured to operate the compressor at low capacity by operating the unloader mechanism for a period of time, and then switch to high capacity operation.
(発明が解決しようとする問題点)
上述の従来装置は低能力運転の時間を長くするとヒート
ポンプ式冷凍機の積算暖房能力の大巾な低下をもたらし
て好ましくなく、逆に時間を短くして急激に負荷率をあ
げると液戻りが完全に避け6れないおそれがあることが
ら、低能力運転を行わせる時間を適正値に設定すること
は可成り難かしかった。また、急激に負荷率をあげる切
換え直後にどうしても液戻りが生じ易いために、低能力
運転の時間を可成り長くせざるを得なくて積算暖房能力
の高率維持が難しいのも問題であった。(Problems to be Solved by the Invention) With the above-mentioned conventional device, if the duration of low-capacity operation is prolonged, the integrated heating capacity of the heat pump type refrigerator will be drastically reduced, which is undesirable; If the load factor is increased, liquid return may not be completely avoided, so it is quite difficult to set the time period for low capacity operation to an appropriate value. Another problem was that liquid return tends to occur immediately after switching to a sudden increase in the load factor, which forces low-capacity operation to take a considerable length of time, making it difficult to maintain a high cumulative heating capacity. .
本発明はか\る従来の装置が有する欠陥を排除しようと
して成されたものであって、除霜開始時の圧縮機能力を
低能力から段階的に漸増させることによって、液戻りの
排除と積算暖房能力の高率維持とを併せて果させようと
する点を目的とする。The present invention was developed in an attempt to eliminate the deficiencies of the conventional equipment, and by gradually increasing the compression function from a low capacity at the start of defrosting, liquid return can be eliminated and accumulated. The purpose is to simultaneously maintain a high rate of heating capacity.
(問題点を解決するための手段)
しかして本発明は複数段のアンローダ機構(10)を有
する圧縮機(1)を運転し、かつ除霜サイクルに切換え
る除霜運転を除霜指令6園の除霜指令により行わせ、除
霜完了指令器α2の除霜完了指令により停止せしめる空
冷ヒートポンプ式冷凍機の除霜装置として、第1能力制
御手段a3及び第2能力制御手段14)の両手段により
構成したものである。(Means for Solving the Problems) The present invention operates a compressor (1) having a multi-stage unloader mechanism (10) and switches the defrosting operation to a defrosting cycle according to the defrosting command 6. As a defrosting device for an air-cooled heat pump type refrigerator that is activated by a defrosting command and stopped by a defrosting completion command from a defrosting completion command unit α2, both the first capacity control means a3 and the second capacity control means 14) are used. It is composed of
前記第1能力制御手段031は、除霜指令器ωの前記除
霜指令によって作動し圧縮機(1)が最小能力になるよ
う前記アンローダ機Ill no+を制御せしめると共
に、これを例えば30秒程度の所定短時間保持するよう
形成している。The first capacity control means 031 operates according to the defrosting command from the defrosting command unit ω, and controls the unloader machine Ill no+ so that the compressor (1) has the minimum capacity, and also controls the unloader machine Ill no+ for about 30 seconds, for example. It is formed to be held for a predetermined short time.
1万、前記第2能力制御手段Q41は、上記の第1能力
制御手段Q31に続いて切り換り作動し圧縮機(1)が
中間能力となるように前記アンローダ機構+IO+ 全
制御せしめると共に、これを所定短時間保持し、その後
アンローダ機構(IO)を不作動にするよう形成してい
る。10,000, the second capacity control means Q41 switches and operates following the first capacity control means Q31 to fully control the unloader mechanism +IO+ so that the compressor (1) has an intermediate capacity; is held for a predetermined short period of time, after which the unloader mechanism (IO) is made inactive.
(作用)
本発明は除霜開始時は液戻り防止のために圧縮機fi+
を最小能力で運転し、つづいて短時間のうちに中間能力
まで増大させる除霜運転を行わせることにより、圧縮機
(1)への液戻りを防止しながら可及的に短時間で最大
能力に至らせて効率の良い除霜運転が可能となる。(Function) The present invention uses the compressor fi+ to prevent liquid return at the start of defrosting.
By operating the compressor (1) at its minimum capacity and then performing a defrosting operation that increases the capacity to an intermediate capacity within a short period of time, the capacity is increased to the maximum capacity in the shortest possible time while preventing liquid from returning to the compressor (1). This enables efficient defrosting operation.
(実施例)
以下、本発明の1実施例を添付図面にもとづいて説明す
る。(Example) Hereinafter, one example of the present invention will be described based on the accompanying drawings.
第1図は空冷ヒートポンプ式冷凍機であって、II+は
アンローダ機tll++αを有する圧縮機、(21は四
路切換弁、131は熱源側対空気熱交換器(以下熱源側
コイルと、称す) 、fuは冷媒調節器、(51は冷房
用膨張弁、(61は利用側対水熱交換器(以下利用側コ
イルと称す) 、H−+は暖房用膨張弁、(8A)〜(
8D)は整流用各逆止弁、(91はアキュムレータであ
って、相互を図示した配管接続を行うことによって密閉
回路となし、公知の可逆冷凍サイクルを形成せしめ、冷
房サイクルは冷媒が実線矢示の流通となって、熱源側フ
ィル131が凝縮器、利用側コイル(61が蒸発器とな
って、利用側コイル(61において冷房用の冷水が得ら
れる。FIG. 1 shows an air-cooled heat pump type refrigerator, in which II+ is a compressor having an unloader tll+α, (21 is a four-way switching valve, 131 is a heat source side to air heat exchanger (hereinafter referred to as the heat source side coil), fu is a refrigerant regulator, (51 is an expansion valve for cooling, (61 is a user-side water heat exchanger (hereinafter referred to as a user-side coil), H-+ is an expansion valve for heating, (8A) to (
8D) are check valves for rectification, (91 is an accumulator, and by connecting the pipes as shown in the figure, a sealed circuit is formed to form a known reversible refrigeration cycle. In the cooling cycle, the refrigerant is As a result, the heat source side fill 131 functions as a condenser, the usage side coil (61) functions as an evaporator, and cold water for air conditioning is obtained in the usage side coil (61).
また、暖房サイクルは冷媒が破線矢示の流通となって、
熱源側コイル13+が蒸発器、利用側フィル161が凝
縮器となって、利用側コイル161において暖房用の温
水が得られる。In addition, in the heating cycle, the refrigerant flows as indicated by the dashed arrow,
The heat source side coil 13+ functions as an evaporator, the usage side fill 161 functions as a condenser, and hot water for heating is obtained in the usage side coil 161.
圧縮機(1)におけるアンローダ機構1101は、3個
のアンローダ制御弁(IIA)〜(110)を有[、て
いて、それ等を全て非作動の閉弁状態とした場合には圧
縮4!1 (1)が100%能力となり、第1アンロー
ダ制御弁(IIA)を開弁作動させた場合には、70%
能力となり、また第2アンローダ制御弁CIIB)を開
弁作動させた場合には、40%能力となり、また、第3
アンローダ制御弁(110)を開弁作動させた場合には
、12%能力となるように設けられている。The unloader mechanism 1101 in the compressor (1) has three unloader control valves (IIA) to (110), and when all of them are in the non-operating closed state, the compression is 4!1. (1) becomes 100% capacity, and when the first unloader control valve (IIA) is opened, the capacity becomes 70%.
When the second unloader control valve CIIB) is opened, the capacity becomes 40%, and the third
When the unloader control valve (110) is opened, the capacity is 12%.
なお、このとき一つのアンロード弁が開のとき、他の2
つのアンロード弁は閉制御される。At this time, when one unload valve is open, the other two
Two unload valves are controlled closed.
この場合の12%能力とは、通常の低負荷時において用
いる小能力に比しさらに低い値であって、スクリュー形
圧縮機を例にあげると、気体圧縮を殆ど行わなくて単な
るポンプ作用をなす如き極小能力に相当するものである
。The 12% capacity in this case is a value that is even lower than the small capacity normally used during low loads, and, taking a screw compressor as an example, it performs almost no gas compression and only performs a pumping action. It is equivalent to such a minimal ability.
なお、アンローダ機構(101としては、この他に圧縮
機[1)を駆動するモータの回転速度を無段階あるいは
段階的に制御することにより圧縮能力の制御を行い得る
ものであってもよく、また、能力低減率を前記例とは異
ならしめたものでもよく、各種の能力制御機構を総称し
てアンローダ機構と呼んでいる。In addition, the unloader mechanism (101) may be one that can control the compression capacity by steplessly or stepwise controlling the rotational speed of the motor that drives the compressor [1]. , the capacity reduction rate may be different from the above example, and various capacity control mechanisms are collectively called an unloader mechanism.
上記冷凍機は暖房運転の際に、前記熱源側フィル+31
の伝熱部分に着霜が生じるので、その場合には冷凍サイ
クルを冷房サイクルに切換えて自身の冷媒が保有する熱
によって除霜を行わせるが、熱源側コイル]31には図
示しないが着霜を検出して除霜指令を発する除霜指令器
、例えばコイル温度検知器が設けられ、一方、四路切換
弁(21と熱源側コイル131とを接続するガス管の途
中には第1高圧々力開閉器α2を介設せしめて、この開
閉器α力を除霜が完了したことを圧力の上昇によって検
知し除霜完了指令を発する除霜完了指令器lI2)を利
用している。When the refrigerator is in heating operation, the heat source side fill +3
In that case, the refrigeration cycle is switched to the cooling cycle and defrosting is performed using the heat held by the refrigerant itself. A defrosting command device, for example, a coil temperature detector, is provided to detect the temperature and issue a defrosting command, while a first high-pressure valve is installed in the middle of the gas pipe connecting the four-way switching valve (21 and the heat source side coil 131). A defrost completion command lI2) is used which uses the force switch α2 to detect the completion of defrosting by the increase in pressure and issues a defrost completion command.
なお・除霜完了指令器としては、この他に熱源側フィル
Illの冷房サイクル時出口における冷媒温度を検知す
る温度検知器、除霜指令器の除霜指令によって計時開始
し、除霜完了までに要する時間として予め設定しておい
た所定時間経過すると、指令を発するタイマなど各種の
制御器が利用可能である。In addition, as a defrosting completion command device, there is also a temperature detector that detects the refrigerant temperature at the outlet of the heat source side filter Ill during the cooling cycle, and a defrosting command device that starts timing by the defrosting command and waits until the defrosting is completed. Various controllers such as a timer that issues a command when a predetermined time set in advance has elapsed can be used.
しかして上記冷凍機には、前記アンローダ機構101に
関連して、除霜運転時の圧縮機能力を制御する除霜出力
制御系を付設せしめており、該制御系は第1能力制御手
段u3、第2能力制御手段圓、融霜検知手段(lω及び
第3能力制御手段[+61から形成している。Therefore, in connection with the unloader mechanism 101, the refrigerator is provided with a defrosting output control system that controls the compression function during defrosting operation, and the control system includes a first capacity control means u3, It is formed from a second capacity control means, a frost melting detection means (lω), and a third capacity control means [+61].
上記除霜出力制御系は、冷凍機の運転全般を集中制御す
るマイクロ・コンピュータ中に機能の一部として組込ま
せ、あるいは有接点方式による回路で形成することも可
能であるが、融霜検知手段α5)については、例えば四
路切換弁(2)と熱源側コイル13)とを接続するガス
管中に前記高圧々カ開閉器112Iと協調的な関係を存
して介設した第2高圧々力開閉器が利用されるものであ
って、前記除霜完了指令器としての第1高圧々力開閉器
021が完全除霜によって高圧々力の上昇(18鴇以上
)に伴い常開接点を閉成するのに対して、それよりも圧
力が低く、例えば15鴇以上になると常開接点を閉成し
て・霜の大部分が溶けて若干量着霜した状態になってい
ることを圧力の変化で検知し指令信号を発することがで
きるように構成している。The above-mentioned defrosting output control system can be incorporated as a part of the function in a microcomputer that centrally controls the overall operation of the refrigerator, or it can be formed as a circuit using a contact system. Regarding α5), for example, a second high-pressure switch is interposed in a gas pipe connecting the four-way switching valve (2) and the heat source side coil 13) in a cooperative relationship with the high-pressure switch 112I. A power switch is used, and the first high pressure and pressure switch 021 as the defrosting completion command device closes the normally open contact as the high pressure and pressure increases (18 or more) due to complete defrosting. On the other hand, if the pressure is lower than that, for example 15 or more, the normally open contact is closed and the pressure is lowered to indicate that most of the frost has melted and a small amount of frost has formed. It is configured so that it can detect changes and issue command signals.
次に第1能力制御手段f131は、前記除霜指令器の除
霜指令を受けて作動し、第3アンローダ制御弁(110
)に開弁出力を発してアンローダ機構uO)を制御せし
め、圧縮機(1)を12%能力の最小能力に低下させる
と共に、これを所定短時間例えば30秒程度保持するよ
う構成している。Next, the first capacity control means f131 operates in response to the defrosting command from the defrosting command device, and operates the third unloader control valve (110
) to control the unloader mechanism uO) to reduce the compressor (1) to the minimum capacity of 12% capacity, and to maintain this for a predetermined short period of time, for example, about 30 seconds.
また、第2能力制御手段[141は、前記第1能力制御
手段a3に絖いて切り換り作動し、第3アンロード制御
弁(110)を閉とし、第2アンロード制御弁(IIE
)を開とし、所定短時間例えば約30秒を経過した徒、
第2アンローダ制御弁CIIB)を閉とし、かつ第1ア
ンローダ制御弁(IIA)の閉状態を持続してアンロー
ダ機構110)を最大能力まで段階的に逓増するよう段
階的に制御せしめて最終段の100能力では当然アンロ
ーダ機構を不作動にするよう構成している。Further, the second capacity control means [141] operates by switching over the first capacity control means a3, closes the third unload control valve (110), and closes the second unload control valve (IIE).
), and after a predetermined period of time, for example, about 30 seconds,
The second unloader control valve (CIIB) is closed, and the first unloader control valve (IIA) is kept closed to control the unloader mechanism 110) in a step-by-step manner to gradually increase the capacity to the maximum capacity. 100 capacity, the unloader mechanism is naturally configured to be inoperative.
さらに第3能力制御手段aSは、前記融霜検知手段α5
)としての第2高圧々力開閉器α5)が15鴇の高圧々
力を検知して指令信号を発すると、これを受けて第2ア
ンローダ制御弁(IIB)に開出力を発し、圧縮機(1
)を40%能力に低下させるためにアンローダ機構(1
0)を制御せしめるよう構成している。Further, the third capacity control means aS is configured to control the frost melting detection means α5.
), the second high pressure and force switch α5) detects a high pressure and force of 15 degrees and issues a command signal, and in response to this, it generates a development force to the second unloader control valve (IIB), and the compressor ( 1
) to reduce the capacity to 40%.
0).
叙上の各機能を有する除霜出力制御系において各能力制
御手段α3.αもαGは第2図に示すシーケンスコント
ローラαη内に設けられていて、このシーケンスコント
ローラαηは入力端子部αaに対して、後記する除霜指
令器261のりレールの接点(25a)、第1・2高圧
々力開閉器1121.[151、運転用リレー、水循環
ポンプ1241用リレー、停止用リレー、冷暖切換リレ
ー、冷温水温度調節器等の各種指令器が入力指令を与え
る機器として夫々接続され一一万、出力端子F!v、Q
91に対しては、圧a機(1)用電磁開閉器ノ電磁コイ
ル(至)、四路切換弁121の電磁ソレノイド(2S)
、熱源側コイル131のファンムモータ用電磁開閉器の
電磁コイル!2B、利用側コイル16)の水循環ポンプ
例月電磁M閉器の電磁コイルの、前記第1乃至第3アン
ローダ制御弁(IIA)〜(110)の電磁ソレノイド
(IIAS) 〜 (llos)、タイマサーモ方式
の除霜指令器−及びそのリレー(251が駆動出力を与
える機器として夫々接続されている。In the defrosting output control system having each of the functions described above, each capacity control means α3. α and αG are provided in the sequence controller αη shown in FIG. 2 High pressure force switch 1121. [151, various command devices such as operation relay, water circulation pump 1241 relay, stop relay, cooling/heating switching relay, cold/hot water temperature regulator, etc. are connected as devices for giving input commands, and 110,000, output terminal F! v, Q
For 91, the electromagnetic coil (to) of the electromagnetic switch for the pressure machine (1), the electromagnetic solenoid (2S) of the four-way switching valve 121
, the electromagnetic coil of the electromagnetic switch for the fan motor on the heat source side coil 131! 2B, the water circulation pump of the user side coil 16), the electromagnetic coil of the monthly electromagnetic M-closer, the electromagnetic solenoids (IIAS) to (llos) of the first to third unloader control valves (IIA) to (110), and the timer thermostat. A system defrosting command device and its relay (251) are connected as devices that provide drive output.
しかしてシーケンスコントローラαηは周知のマイクロ
コンピュータからなっていて、前記入・出力端子部t1
81.α創、電源回路、入力回路、タイマ回路、出力回
路、演算制御回路、プログラムカウンタ、P−ROM、
演算結果メモリを備えていて、冷温水設定温度、過電流
、異常高圧々力、熱源側フィル温度、圧力、外気温度、
などの各基本制御値や、リレーシーケンスの制御内容を
P−ROMに記憶させておいて、冷房、暖房各運転の際
における圧縮m mの発停、能力制御、暖房とデフロス
トとの間の運転切換え、ポンプダウン運転などをP−R
OMに書込まれたプログラム内容の指示に基いて随時行
わせるよう出力信号を発するものである0
以上説明した電気制御回路ならびに第3図のフローチャ
ートによって、暖房運転中の除霜運転との切換え制御に
ついて説明する。The sequence controller αη consists of a well-known microcomputer, and the input/output terminal section t1
81. α creation, power supply circuit, input circuit, timer circuit, output circuit, arithmetic control circuit, program counter, P-ROM,
Equipped with calculation result memory, cold and hot water set temperature, overcurrent, abnormally high pressure and force, heat source side fill temperature, pressure, outside air temperature,
Each basic control value such as and the control contents of the relay sequence are stored in the P-ROM, and compression mm is started and stopped during each cooling and heating operation, capacity control, and operation between heating and defrost. P-R for switching, pump down operation, etc.
It emits an output signal to perform the operation at any time based on the instructions of the program contents written in the OM.0 Using the electric control circuit explained above and the flowchart in Figure 3, switching control between defrosting operation and heating operation is performed. I will explain about it.
暖房運転開始の指令を押釦スイッチの操作等によって発
せしめると、シーケンスコントローラαηは利用側フィ
ル(61の水温と設定温度とを比較して暖房運転の必要
があると判断すれば、前記各電磁コイルω、 21+、
+221に励磁のための出力を発する。When a command to start heating operation is issued by operating a push button switch, etc., the sequence controller αη compares the water temperature of the user side fill (61) with the set temperature, and if it is determined that heating operation is necessary, starts each electromagnetic coil. ω, 21+,
It emits an output for excitation at +221.
カくシて圧縮$1111、熱源側フィル131のファン
ツ、利用側フィル[61の水循環用ポンプ蜘は夫々付勢
して第1図において冷媒が破線矢示方向に流、れる冷凍
サイクルが形成され暖房運転が開始される。The water circulation pump spider of the heat source side fill 131 and the use side fill 61 is energized to form a refrigeration cycle in which the refrigerant flows in the direction indicated by the broken line in FIG. 1. Heating operation starts.
なお、圧縮機!11の起動の際に前記各アンローダ制御
弁(IIA)〜(110)の順序励磁を行わせて、小能
力運転から順次能力を増大せしめるアンローダ運転を適
宜行わせる。In addition, the compressor! 11, the unloader control valves (IIA) to (110) are sequentially energized to appropriately perform an unloader operation in which the capacity is gradually increased from a low capacity operation.
この暖房運転中に熱源側コイル131に着霜が進行して
くる除霜指令器−が作動して除霜指令を発する+()の
で、電磁ソレノイド(2S)を励磁させて四路切換弁+
2)を冷房側に切換えると共に、電磁コイルQ9]を消
磁させて熱源側フィル131のファンのを停止せしめる
と同時に、第1能力制御手段Q3を作動せしめるようシ
ーケンスコントローラaωは指令を発する(口]。During this heating operation, frost builds up on the heat source side coil 131, and the defrost command device - operates and issues a defrost command +(), so the electromagnetic solenoid (2S) is energized and the four-way switching valve +
2) to the cooling side, demagnetizes the electromagnetic coil Q9 and stops the fan of the heat source side filter 131, and at the same time, the sequence controller aω issues a command to operate the first capacity control means Q3. .
かくして冷凍機は除霜運転に切換って高圧冷媒が熱源側
コイルI31内に流れ込むことにより除霜が開始される
が、この場合、第1能力制御手段a3の作動によって電
磁ソレノイド(1108) を励磁させてアンローダ
制御弁(110)を開弁状態に保持させるG/)。In this way, the refrigerator switches to defrosting operation and high-pressure refrigerant flows into the heat source side coil I31, thereby starting defrosting. In this case, the electromagnetic solenoid (1108) is excited by the operation of the first capacity control means a3. G/) to keep the unloader control valve (110) open.
従って圧縮機il+は12%の最小能力の下で運転され
ることとなり、液戻りを起させない除霜への切換えが成
される。Therefore, the compressor il+ is operated at a minimum capacity of 12%, and a switch is made to defrost without causing liquid return.
この最小能力による除霜運転が30秒経過したかどうか
のチェック(に)を行って30秒経過すると第1能力制
御手段03)を非作動に転じさせると共に、第2能力制
御手段Q4Iを作動せしめる[4゜第2能力制御手段α
4は作動と同時に電磁ソレノイド(11BS)全励磁さ
せ、かつ、電磁ソレノイド(11os)を非励磁にさせ
る出力を発するので、アンローダ機構floIは第3ア
ンローダ制御弁(110)及び第1アンローダ制御弁(
IIA)を閉弁に、第2アンローダ制御弁(IIB)を
開弁に夫々作動させる(−4こととなって圧縮機(口は
40%能力に段階的に増加する。It is checked whether 30 seconds have elapsed in the defrosting operation at the minimum capacity, and when 30 seconds have elapsed, the first capacity control means 03) is deactivated, and the second capacity control means Q4I is activated. [4゜Second ability control means α
4 emits an output that fully energizes the electromagnetic solenoid (11BS) and de-energizes the electromagnetic solenoid (11os) at the same time as the operation, so the unloader mechanism floI is operated by the third unloader control valve (110) and the first unloader control valve (
IIA) is closed and the second unloader control valve (IIB) is opened (-4), and the compressor capacity increases stepwise to 40% capacity.
この40%能力運転が例えば30秒経過したかどうかの
チェック(ト]を行って30秒が経過したとき、第2能
力制御手段■は励磁中の第2電磁ソレノイドCIIBS
) を非励磁に転じさせる出力を発するので、アンロ
ーダ機構+101は全てのアンローダ制御弁(IIA)
、 CIIB)、 (110)を閉弁に夫々作動させる
【力こととなって作動が解除される結果、圧縮機(11
は100%能力に段階的に増加する。When 30 seconds have elapsed after checking (g) whether this 40% capacity operation has elapsed, for example, the second electromagnetic solenoid CIIBS is energized.
) to de-energize, the unloader mechanism +101 has all unloader control valves (IIA)
, CIIB), and (110) to close the valves.
increases gradually to 100% capacity.
以上のように除霜開始から1分を経過した時点で第2能
力制御手段側は作動完了し、以後は圧縮機(1)が全能
力で除霜のための圧縮運転を行い、その運転態様は第4
図に示す通りである。As described above, the operation of the second capacity control means is completed when one minute has passed from the start of defrosting, and from then on, the compressor (1) performs compression operation for defrosting at full capacity, and its operation mode is is the fourth
As shown in the figure.
しかして除霜運転の開始と同時に第2高圧々力開閉器α
6)が圧力検出を行っているが、除霜が進行して霜の大
部分が融けた状態となって高圧々力が15鶏となるのを
検知し前記開閉器αωが作動したコトヲチェック(す)
すると、第3能力制御手段αeを作11J状態に保持せ
しめ(7)で、電磁ソレノイド(11B8)を励磁させ
て第2アンローダ制御弁CIIB)を開弁状態に保持さ
せ(’7)る口
かぐして100%能力で運転していた圧縮Ill 11
1はアンローダm tRIIO+の作動によって40%
能力に低下し除霜運転を持続するために、除霜完了前の
高圧々力の上昇は第5図に示す如く緩やかになり、除霜
が完了する時点になると高圧々力が18獅に上昇するの
で第1高圧々力開閉器α2が作動する。However, at the same time as the start of defrosting operation, the second high-pressure force switch α
6) is performing pressure detection, but as defrosting progresses and most of the frost melts, it detects that the high pressure has reached 15 degrees, and the switch αω is activated. vinegar)
Then, the third capacity control means αe is held in the open state (7), and the electromagnetic solenoid (11B8) is energized to keep the second unloader control valve CIIB in the open state ('7). Compression Ill 11 was operating at 100% capacity.
1 is 40% due to the operation of the unloader m tRIIO+
In order to continue defrosting operation due to the decrease in capacity, the increase in high pressure and pressure before the completion of defrosting becomes gradual as shown in Figure 5, and when defrosting is completed, the high pressure and pressure rises to 18 l. Therefore, the first high-pressure force switch α2 is activated.
従って、シーケンスコントローラαηは第1高圧々力開
閉器α2の作動をチェック(至)して電磁ソレノイド(
2S)の励磁を解いて四路切換弁(2)を暖房側に切換
えると共に、電磁フィルf21)を励磁させて熱源側コ
イルL31のファンのを付勢せしめル(司。Therefore, the sequence controller αη checks the operation of the first high-pressure force switch α2 and controls the electromagnetic solenoid (
2S) is deenergized and the four-way switching valve (2) is switched to the heating side, and at the same time, the electromagnetic filter f21) is energized to energize the fan of the heat source side coil L31.
つづいて除霜完了指令器としての第1高圧々力開閉器1
I21及び第2高圧々力開閉器α61が最初の状態に復
することによって第3能力制御手段[+61はサーモ自
動制御によるはじめの暖房運転に切換えられるO
なお、デフロスト終了時の切換えによる暖房運転の開始
は冷凍サイクルの切換えが成されるので圧縮機(1)へ
の液戻りを防止するために除霜運転開始時と同じく、第
1能力制御手段(13と第2能力制御手段14)を利用
して圧縮機能力を小能力から段階的に漸増するようにす
ることは好ましい態様であり、この状態は第4図に示す
通りである。Next, the first high-pressure force switch 1 as a defrosting completion command device
By returning I21 and the second high-pressure force switch α61 to the initial state, the third capacity control means [+61 is switched to the initial heating operation by thermo automatic control. At the start, the refrigeration cycle is switched, so in order to prevent the liquid from returning to the compressor (1), the first capacity control means (13 and second capacity control means 14) are used in the same way as when starting the defrosting operation. It is a preferable embodiment to gradually increase the compressive force from a small capacity, and this state is shown in FIG.
以上述べた実施例は除霜運転の開始時に圧縮機(1)を
最小能力から全能力まで段階的に漸増させるよう制御し
ているので液戻りを確実に防止できる。In the embodiment described above, since the compressor (1) is controlled to gradually increase the capacity from the minimum capacity to the full capacity at the start of the defrosting operation, liquid return can be reliably prevented.
また、除霜運転の際に霜の大部分が融けるまでは圧縮機
fl+を100%高能力で運転して除霜能力を高く保持
し、その後の除霜完了までは低能力で運転して熱源側コ
イルC31における圧力の上昇を緩やかに制御するよう
にしているので除霜完了の誤検出を起生させないで残留
フロストラ排除シ、確実な除霜を行わすことができる。In addition, during defrosting operation, the compressor fl+ is operated at 100% high capacity until most of the frost melts to maintain high defrosting capacity, and then operated at low capacity until the defrosting is completed. Since the increase in pressure in the side coil C31 is controlled slowly, residual frost can be removed and defrost can be carried out reliably without causing false detection of completion of defrosting.
なお、以上の実施例では除霜開始時から圧縮機H1の能
力12%→4o%→100%と制御したが、これは%1
2%→40%→70%→100(第4図破線参照)と制
御してもよくこの場合いずれの能力制御運転も例えば3
0秒間ずつ行うようにすればよい。In addition, in the above embodiment, the capacity of the compressor H1 was controlled from 12% → 4o% → 100% from the start of defrosting, but this is %1
The control may be performed as follows: 2% → 40% → 70% → 100 (see the broken line in Figure 4).
It is sufficient to do this for 0 seconds at a time.
(発明の効果)
本発明は以上詳述した如く、除霜運転開始時にアンロー
ダ機構+10)を作動させて圧縮機…を最小能力から最
大能力まで短時間中に段階的に漸増するよう能力制御を
行わせているので、圧縮機il+の吸入力が小さくなり
液戻り量を極端に少くでき、圧縮機での液圧縮を確実に
防止し得る。(Effects of the Invention) As detailed above, the present invention operates the unloader mechanism +10) at the start of defrosting operation to control the capacity of the compressor so that it gradually increases from the minimum capacity to the maximum capacity in a short period of time. As a result, the suction force of the compressor il+ is reduced, the amount of liquid returned can be extremely reduced, and liquid compression in the compressor can be reliably prevented.
しかも最初の圧縮機(1)能力をアンローダ機構+IO
Iで可能な最小能力に設定しているので、液戻りを抑え
ながら短時間中に速やかに100%能力まで移行できる
ことから、デフロスト所要時間を短く保持し得て積算暖
房能力を高めることが可能であり、特にスクロール、ス
クリューなどの回転圧縮機を持つ冷凍機に使用して顕著
な効果が奏される0Moreover, the capacity of the first compressor (1) is increased by unloader mechanism + IO
Since the capacity is set to the minimum possible in I, it is possible to quickly shift to 100% capacity in a short period of time while suppressing liquid return, making it possible to keep the time required for defrosting short and increase the cumulative heating capacity. It is especially effective when used in refrigerators with rotary compressors such as scrolls and screws.
第1図は本発明の1実施例に係るヒートポンプ冷凍機の
装置回路図、第2図は同じくシーケンスコントローラの
概要図、第3図は本発明の1実施例に係る除霜運転態様
を説明するフロー標図1第4図及び第5図は同じく除霜
運転特性線図である。
(1)・・・圧縮機+ 1101・・・アンローダ機
構。
+121・・・除霜完了指令器。
a3・・・第1能力制御手段。
■・・・第2能力制御手段。
園・・・除霜指令器。Fig. 1 is a device circuit diagram of a heat pump refrigerator according to an embodiment of the present invention, Fig. 2 is a schematic diagram of a sequence controller, and Fig. 3 explains a defrosting operation mode according to an embodiment of the present invention. Flow Chart 1 FIGS. 4 and 5 are also defrosting operation characteristic diagrams. (1) Compressor + 1101 Unloader mechanism. +121...Defrost completion command device. a3...first ability control means. ■...Second ability control means. Garden... Defrost command device.
Claims (1)
1)を運転し、かつ除霜サイクルに切換える除霜運転を
除霜指令器(26)の除霜指令により行わせ、除霜完了
指令器(12)の除霜完了指令により停止せしめる空冷
ヒートポンプ式冷凍機において、前記除霜指令によつて
作動し圧縮機(1)が最小能力になるよう前記アンロー
ダ機構(10)を制御せしめると共にこれを所定短時間
保持する第1能力制御手段(13)と、前記第1能力制
御手段(13)に続いて切り換り作動し圧縮機(1)が
中間能力となるように前記アンローダ機構(10)を制
御せしめると共にこれを所定短時間保持し、その後アン
ローダ機構(10)を不作動にする第2能力制御手段(
14)とからなることを特徴とする空冷ヒートポンプ式
冷凍機の除霜装置。1. A compressor with a multi-stage unloader mechanism (10) (
1) and switches to the defrost cycle.The air-cooled heat pump type operates the defrost operation in response to the defrost command from the defrost command device (26), and stops it in response to the defrost completion command from the defrost completion command device (12). In the refrigerator, first capacity control means (13) operates in accordance with the defrosting command to control the unloader mechanism (10) so that the compressor (1) reaches a minimum capacity and maintains this for a predetermined period of time; , the unloader mechanism (10) is switched and activated following the first capacity control means (13) to control the unloader mechanism (10) so that the compressor (1) has an intermediate capacity and maintains this for a predetermined period of time; second capacity control means (
14) A defrosting device for an air-cooled heat pump type refrigerator, comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15680685A JPS6217572A (en) | 1985-07-15 | 1985-07-15 | Defroster for air-cooled heat pump type refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP15680685A JPS6217572A (en) | 1985-07-15 | 1985-07-15 | Defroster for air-cooled heat pump type refrigerator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6217572A true JPS6217572A (en) | 1987-01-26 |
JPH0435662B2 JPH0435662B2 (en) | 1992-06-11 |
Family
ID=15635729
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP15680685A Granted JPS6217572A (en) | 1985-07-15 | 1985-07-15 | Defroster for air-cooled heat pump type refrigerator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6217572A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0375448A (en) * | 1989-08-11 | 1991-03-29 | Daikin Ind Ltd | Refrigerating apparatus |
US5902899A (en) * | 1996-12-05 | 1999-05-11 | Sumika Fine Chemicals Co., Ltd. | Process for preparing 1, 3-disubstituted urea |
WO2015129128A1 (en) * | 2014-02-25 | 2015-09-03 | 三菱重工業株式会社 | Heat pump system and operation method therefor |
JP2016156602A (en) * | 2015-02-26 | 2016-09-01 | 株式会社富士通ゼネラル | Heat pump type heating water heater |
WO2018029763A1 (en) * | 2016-08-08 | 2018-02-15 | 三菱電機株式会社 | Air conditioner |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS596345A (en) * | 1982-06-30 | 1984-01-13 | Res Inst Electric Magnetic Alloys | Alloy reduced in change of electric resistance over wide temperature range and preparation thereof |
JPS6069446A (en) * | 1983-09-27 | 1985-04-20 | Toshiba Corp | Method for controlling operation of compressor |
-
1985
- 1985-07-15 JP JP15680685A patent/JPS6217572A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS596345A (en) * | 1982-06-30 | 1984-01-13 | Res Inst Electric Magnetic Alloys | Alloy reduced in change of electric resistance over wide temperature range and preparation thereof |
JPS6069446A (en) * | 1983-09-27 | 1985-04-20 | Toshiba Corp | Method for controlling operation of compressor |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0375448A (en) * | 1989-08-11 | 1991-03-29 | Daikin Ind Ltd | Refrigerating apparatus |
US5902899A (en) * | 1996-12-05 | 1999-05-11 | Sumika Fine Chemicals Co., Ltd. | Process for preparing 1, 3-disubstituted urea |
WO2015129128A1 (en) * | 2014-02-25 | 2015-09-03 | 三菱重工業株式会社 | Heat pump system and operation method therefor |
JP2015158337A (en) * | 2014-02-25 | 2015-09-03 | 三菱重工業株式会社 | Heat pump system and heat pump system operation method |
US10215470B2 (en) | 2014-02-25 | 2019-02-26 | Mitsubishi Heavy Industries Thermal Systems, Ltd. | Heat pump system and operation method therefor |
JP2016156602A (en) * | 2015-02-26 | 2016-09-01 | 株式会社富士通ゼネラル | Heat pump type heating water heater |
WO2018029763A1 (en) * | 2016-08-08 | 2018-02-15 | 三菱電機株式会社 | Air conditioner |
JPWO2018029763A1 (en) * | 2016-08-08 | 2019-03-14 | 三菱電機株式会社 | Air conditioner |
Also Published As
Publication number | Publication date |
---|---|
JPH0435662B2 (en) | 1992-06-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0828969A (en) | Cooling system | |
JPS60228856A (en) | Method of operating refrigerator and controller thereof | |
JPH0529830B2 (en) | ||
JPH073224B2 (en) | Method for controlling operation of crankcase heater of refrigerant compressor of heat pump circuit | |
JP2002013781A (en) | Air-conditioning system | |
JPS6217572A (en) | Defroster for air-cooled heat pump type refrigerator | |
JPH0333992B2 (en) | ||
JP2914020B2 (en) | Heating and cooling machine | |
JPS6246166A (en) | Refrostation control method of air conditioner | |
JPS629160A (en) | Defroster for refrigerator | |
JP3284588B2 (en) | Operation control device for refrigeration equipment | |
JP2000097479A (en) | Air conditioner | |
JPH0316587B2 (en) | ||
JPS62202950A (en) | Indoor fan control device for air conditioner | |
JP3337264B2 (en) | Air conditioner defroster | |
JP3087306B2 (en) | Heating and cooling machine | |
JPS6252381A (en) | Heat pump type air conditioner | |
JPS6221889Y2 (en) | ||
JPH01127873A (en) | Defroster for air conditioner | |
JPS59217463A (en) | Refrigeration cycle of air conditioner | |
JPH07217965A (en) | Air conditioning equipment | |
JPS61276649A (en) | Defrosting controller of heat pump type air conditioner | |
JP2567710B2 (en) | Cooling device operation control device | |
JPS6021716Y2 (en) | Refrigerator defrost device | |
JPH0395338A (en) | Device for controlling defrosting in air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |