JPS62174397A - Thin sn plated steel sheet for container having excellent corrosion resistance and weldability - Google Patents
Thin sn plated steel sheet for container having excellent corrosion resistance and weldabilityInfo
- Publication number
- JPS62174397A JPS62174397A JP1647186A JP1647186A JPS62174397A JP S62174397 A JPS62174397 A JP S62174397A JP 1647186 A JP1647186 A JP 1647186A JP 1647186 A JP1647186 A JP 1647186A JP S62174397 A JPS62174397 A JP S62174397A
- Authority
- JP
- Japan
- Prior art keywords
- plating
- layer
- thickness
- steel sheet
- plating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 50
- 239000010959 steel Substances 0.000 title claims abstract description 50
- 230000007797 corrosion Effects 0.000 title claims abstract description 25
- 238000005260 corrosion Methods 0.000 title claims abstract description 25
- 238000007747 plating Methods 0.000 claims abstract description 94
- ZCDOYSPFYFSLEW-UHFFFAOYSA-N chromate(2-) Chemical compound [O-][Cr]([O-])(=O)=O ZCDOYSPFYFSLEW-UHFFFAOYSA-N 0.000 claims abstract description 53
- 239000000956 alloy Substances 0.000 claims abstract description 14
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 14
- 238000009792 diffusion process Methods 0.000 claims abstract description 6
- 229910000990 Ni alloy Inorganic materials 0.000 claims abstract description 4
- 229910052759 nickel Inorganic materials 0.000 claims abstract description 4
- 239000010410 layer Substances 0.000 claims description 60
- 238000000576 coating method Methods 0.000 claims description 47
- 239000011248 coating agent Substances 0.000 claims description 46
- 229910052804 chromium Inorganic materials 0.000 claims description 19
- 239000011247 coating layer Substances 0.000 claims description 17
- 238000003466 welding Methods 0.000 claims description 16
- 238000009826 distribution Methods 0.000 claims description 11
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 229910052698 phosphorus Inorganic materials 0.000 claims description 4
- 229910052742 iron Inorganic materials 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- 229910003271 Ni-Fe Inorganic materials 0.000 abstract description 2
- 229910017091 Fe-Sn Inorganic materials 0.000 abstract 1
- 229910017142 Fe—Sn Inorganic materials 0.000 abstract 1
- 229910018054 Ni-Cu Inorganic materials 0.000 abstract 1
- 229910018104 Ni-P Inorganic materials 0.000 abstract 1
- 229910018487 Ni—Cr Inorganic materials 0.000 abstract 1
- 229910018481 Ni—Cu Inorganic materials 0.000 abstract 1
- 229910018536 Ni—P Inorganic materials 0.000 abstract 1
- 229910018605 Ni—Zn Inorganic materials 0.000 abstract 1
- 229910020900 Sn-Fe Inorganic materials 0.000 abstract 1
- 229910019314 Sn—Fe Inorganic materials 0.000 abstract 1
- 238000000034 method Methods 0.000 description 24
- 239000011651 chromium Substances 0.000 description 22
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 12
- 238000004519 manufacturing process Methods 0.000 description 11
- 238000012360 testing method Methods 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 8
- 239000003973 paint Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 6
- 239000002585 base Substances 0.000 description 5
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 238000004453 electron probe microanalysis Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052718 tin Inorganic materials 0.000 description 4
- 229910001128 Sn alloy Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000009713 electroplating Methods 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- 238000004452 microanalysis Methods 0.000 description 2
- 239000005028 tinplate Substances 0.000 description 2
- QIVUCLWGARAQIO-OLIXTKCUSA-N (3s)-n-[(3s,5s,6r)-6-methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-yl]-2-oxospiro[1h-pyrrolo[2,3-b]pyridine-3,6'-5,7-dihydrocyclopenta[b]pyridine]-3'-carboxamide Chemical compound C1([C@H]2[C@H](N(C(=O)[C@@H](NC(=O)C=3C=C4C[C@]5(CC4=NC=3)C3=CC=CN=C3NC5=O)C2)CC(F)(F)F)C)=C(F)C=CC(F)=C1F QIVUCLWGARAQIO-OLIXTKCUSA-N 0.000 description 1
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 1
- 239000004115 Sodium Silicate Substances 0.000 description 1
- 206010041349 Somnolence Diseases 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000001680 brushing effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000011088 calibration curve Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- KRVSOGSZCMJSLX-UHFFFAOYSA-L chromic acid Substances O[Cr](O)(=O)=O KRVSOGSZCMJSLX-UHFFFAOYSA-L 0.000 description 1
- 239000012611 container material Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000005868 electrolysis reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 238000009920 food preservation Methods 0.000 description 1
- AWJWCTOOIBYHON-UHFFFAOYSA-N furo[3,4-b]pyrazine-5,7-dione Chemical compound C1=CN=C2C(=O)OC(=O)C2=N1 AWJWCTOOIBYHON-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000004021 metal welding Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- XULSCZPZVQIMFM-IPZQJPLYSA-N odevixibat Chemical compound C12=CC(SC)=C(OCC(=O)N[C@@H](C(=O)N[C@@H](CC)C(O)=O)C=3C=CC(O)=CC=3)C=C2S(=O)(=O)NC(CCCC)(CCCC)CN1C1=CC=CC=C1 XULSCZPZVQIMFM-IPZQJPLYSA-N 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- NTHWMYGWWRZVTN-UHFFFAOYSA-N sodium silicate Chemical compound [Na+].[Na+].[O-][Si]([O-])=O NTHWMYGWWRZVTN-UHFFFAOYSA-N 0.000 description 1
- 229910052911 sodium silicate Inorganic materials 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000011179 visual inspection Methods 0.000 description 1
- 208000008918 voyeurism Diseases 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Landscapes
- Electroplating Methods And Accessories (AREA)
- Other Surface Treatments For Metallic Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はシーム溶接性及び塗膜下腐食性に優れた製缶用
表面処理鋼板に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a surface-treated steel sheet for can manufacturing that has excellent seam weldability and corrosion resistance under coating.
従来電解Snメッキ鋼板(以下ブリキと称す)、電解ク
ロム酸処理鋼板(以下TFS−CTと称す)、又一部に
電解Niメッキ鋼板(以下TFS−NTと称す)が知ら
れており、3ピ一ス缶製缶法としてそれぞ ゛れハン
ダ接合、接着接合、シーム容器等によって製缶されてき
た。Conventionally, electrolytic Sn-plated steel sheets (hereinafter referred to as tinplate), electrolytic chromic acid treated steel sheets (hereinafter referred to as TFS-CT), and some electrolytic Ni-plated steel sheets (hereinafter referred to as TFS-NT) are known. Cans have been made by soldering, adhesive bonding, seam containers, etc. as single can manufacturing methods.
ブリキは従来製缶用素材として最も広く使用されてきた
が、製缶コスト節減の中でSnが薄メツキ化され、製缶
法も従来のハング付に替り7−ム溶接法が採用され始め
友が、Snメッキ量が片面当り0.20μm厚以下にな
ると塗装耐食性、ンーム溶接性共劣化し、又シーム溶接
缶用素材として一部で使用されているTFS−NT (
Niメッキ鋼板)はシーム溶接性能が実用可能な範囲で
はあるが十分ではなく、又塗装耐食性も強酸a良品等腐
食性が高い内容物の場合不十分であることから、低コス
トでしかも塗装耐食性、シーム溶接性に優れた製缶用表
面処理鋼板が要望されている。Tinplate has traditionally been the most widely used material for can manufacturing, but in order to reduce can manufacturing costs, Sn has been made thinner, and 7-metal welding has begun to be adopted instead of the traditional hang method for can manufacturing. However, if the Sn plating amount is less than 0.20 μm per side, the corrosion resistance of the paint and the weldability will deteriorate.
Although the seam welding performance of Ni-plated steel sheets is within a practical range, it is not sufficient, and the paint corrosion resistance is also insufficient in the case of highly corrosive contents such as strong acid A non-defective products. There is a demand for surface-treated steel sheets for can making that have excellent seam weldability.
これに対し、本発明者等は特開昭60−75586号で
鋼板上に微lNiメッキ被覆を行った後Snメッキ層を
重l被覆する手法を、又特7VA昭60−242749
号で本発明と類似するSnメッキ被覆を有する容器用メ
ッキ鋼板もすでに、を願した。これらは確かに従来の単
純な薄Snメッキ鋼板と比較して、シーム溶接性、塗装
耐食性等で効果を有するが、関係需要家よりさらに改善
を求められているのが現状である。In contrast, the present inventors have proposed a method in Japanese Patent Laid-Open No. 60-75586 in which a thin Ni plating layer is applied to a steel plate and then a heavy Sn plating layer is applied.
A plated steel sheet for containers having a Sn plating coating similar to that of the present invention has also been proposed in No. Although these materials are certainly more effective than conventional simple thin Sn-plated steel sheets in terms of seam weldability, paint corrosion resistance, etc., the current situation is that related customers are demanding further improvements.
本発明者等はこの趣旨から従来より食品保存性能に実績
があり、有効であるSnを活用しながら、低コスト、高
性能なシーム溶接性と塗膜下脚食性に優れた表面処理鋼
板を開発することを目的として鋭意研究を行った結果、
本発明をなしたものである。To this end, the present inventors will develop a low-cost, high-performance surface-treated steel sheet that is excellent in seam weldability and corrosion resistance under paint film, while utilizing Sn, which has a proven track record in food preservation performance and is effective. As a result of intensive research aimed at
This invention has been made.
本発明の要旨とすると也ろは、鋼板上に凸部の間隙が1
〜30μmでミクロ的な凹凸を持ち、凹部のメッキ厚が
0.07μm以下、凸部のメッキ厚が0.20μm以上
でかつ平均メッキ厚さ0.17μm以下のSnメッキ層
、そしてこの上層に任意部分のクロメート被覆厚がその
部分のSnメッキ厚と逆比例関係にある分布を持ったク
ロメート被覆層を合せ持つ点にあり、すなわちクロメー
ト被積厚がSnメッキ層凸部で薄く、Snメッキ層凹部
で厚い被覆構造を有することにある。The gist of the present invention is that the gap between the protrusions on the steel plate is 1.
An Sn plating layer with microscopic irregularities of ~30 μm, a plating thickness of 0.07 μm or less on the concave portions, a plating thickness of 0.20 μm or more on the convex portions, and an average plating thickness of 0.17 μm or less, and an optional layer on top of this. The point is that the chromate coating layer has a distribution in which the chromate coating thickness of a portion is inversely proportional to the Sn plating thickness of that portion, that is, the chromate coating thickness is thinner in the convex portions of the Sn plating layer and thinner in the concave portions of the Sn plating layer. and has a thick coating structure.
そして本発明ではより潰れた耐食性を得るため、N1又
はNi K Fe、P、Zn、Cu、Crの一種又は二
B以上を含有するN1合金を被覆した鋼板(以下Nl系
前処理原板)、又はこれらNi5N1合金を被覆後加熱
処理によって一部又は全てを拡散処理(以下Ni系拡散
処理原板)を用いても良い。In the present invention, in order to obtain more crushed corrosion resistance, a steel sheet coated with N1 or an N1 alloy containing one or more of Ni K Fe, P, Zn, Cu, and Cr (hereinafter referred to as an Nl-based pretreated original sheet), or After coating these Ni5N1 alloys, a part or all of them may be subjected to diffusion treatment (hereinafter referred to as Ni-based diffusion treated original plate) by heat treatment.
かかる形態を有する製缶用48nメツキ鋼板は、凸状の
粗大Sn粒がA板表面に全+mに渡って散在して分布し
、時にこの部分はメッキ厚が片面当り0.17μm以下
と薄Snメッキになった場合にも、平均のSn膜厚よ〕
大であるため、リフロ一時及び塗装空焼時にもフIJ−
8n層が残留すると共に、クロメート被覆層はSnメッ
キ層の凸部で薄く、凹部で厚い分布を呈するため、溶接
時の通電起点となるSnメッキ層凸部では絶縁被膜であ
るクロメート被覆層が薄いことで、7−ム溶接性は向上
し、又、Sn層が薄く耐食性が低下する凹部はクコメー
ト被膜が厚くなるため耐食性低下をクロメート被膜の防
食効果で抑制できる。すなわち本発明に示すメッキ被膜
構成とすることで、従来薄Snメッキ鋼板の欠点とされ
ていたシーム溶接性、及び耐食性をバランス良く向上さ
せることが可能となる。In a 48n plated steel sheet for can manufacturing having such a configuration, convex coarse Sn grains are scattered and distributed over the entire surface of the A plate, and sometimes the plating thickness is 0.17 μm or less per side in this area. Even when plated, the average Sn film thickness is the same.
Because of its large size, it can also be used for temporary reflow and paint dry baking.
The 8n layer remains, and the chromate coating layer is thinner at the convex parts of the Sn plating layer and thicker at the concave parts, so the chromate coating layer, which is an insulating coating, is thin at the convex parts of the Sn plating layer, which is the starting point of current conduction during welding. As a result, the weldability of the 7-metal is improved, and since the cucomate coating becomes thick in the concave portions where the Sn layer is thin and the corrosion resistance decreases, the decrease in corrosion resistance can be suppressed by the anticorrosion effect of the chromate coating. That is, by adopting the plating film structure shown in the present invention, it is possible to improve seam weldability and corrosion resistance, which have been considered drawbacks of conventional thin Sn-plated steel sheets, in a well-balanced manner.
次に本発明をさらに詳細に説明する。Next, the present invention will be explained in more detail.
本発明のように製缶コスト低減化のためメッキ被覆層を
薄メツキ化した表面処理鋼板は製缶用塗料を塗装して使
用される場合が多く、シーム溶接部分はシーム溶接時ま
でに塗膜焼付による全焼を受けることになり、この際S
nメッキ破被覆層素地Feとの間で固相波数反応の進行
によって合金層が過去学会等で公知なように、良好なシ
ーム溶接性確保のため必要とされる未合金のフ’)−8
nが減少しシーム溶接性が不十分となる。このため前述
のように本発明者等は特開昭60−75586号及び特
願昭59−166989号にて、それぞれ鋼板上に微量
N1メッキ被覆を施した後Snメッキ被覆を重層被覆し
た鋼板及び特願昭60−242749号心発明と類似な
局部的凹凸を持つ@Snメッキ鋼板についてすでに開示
した。そしてこれらの提案によって確かに空焼後のフI
J −Snの確保が可能となジ、シーム溶接性が改善さ
れるとの知見を得たが、需要家に於ける要求が盗々厳し
くなり、さらに7−ム溶接性、耐食性を向上させること
が望まれていた。Surface-treated steel sheets with a thinner plating coating layer as in the present invention to reduce can manufacturing costs are often used after being coated with can manufacturing paint, and the seam welding area is coated with a coating by the time of seam welding. The S
As is known from past academic conferences, the alloy layer is formed due to the progress of a solid phase wave number reaction between the n-plated coating layer and the base material Fe, which is necessary to ensure good seam weldability.
n decreases and seam weldability becomes insufficient. For this reason, as mentioned above, the present inventors have proposed a steel plate in which a trace amount of N1 plating is applied to a steel plate and then a multilayer Sn plating coating is applied to the steel plate in Japanese Patent Application Laid-Open No. 60-75586 and Japanese Patent Application No. 59-166989. Patent Application No. 60-242749 has already disclosed an @Sn-plated steel plate having local irregularities similar to the invention. These suggestions will certainly improve the image quality after dry firing.
Although we have found that it is possible to secure J-Sn and improve seam weldability, the demands from customers are becoming increasingly strict, and it is necessary to further improve seam weldability and corrosion resistance. was desired.
そこで本発明者等はさらに鋭意検討を行い、Snメッキ
層に局所的凹凸を持たせるのみでなく、クロメート被覆
をSnメッキ層と逆の分布を持つよう電析させることで
間遺点を解決したのである。すなわちクロメート被覆層
は一種の絶縁被膜であるためシーム溶接待安定した通電
を妨害し、シーム溶密着性、塗膜下腐食性等薄Snメッ
キ鋼板の、¥f性を向上させる効果も有する。従って薄
Snメッキ鋼板のシーム溶接性を向上させるためクロメ
ート被覆量を減少させると耐食性が劣化し、耐食性向上
のためクロメート被覆量を増加させると逆に7−ム溶接
性が劣化するというように、均一被覆厚を持ったクロメ
ート被覆では薄Snメッキ鋼板のシーム溶接性、耐食性
両方をバランス良く確保することは1雌であった。そこ
で本発明者等は前述したようにクロメート被覆分布を不
均一とし、シーム浴接時の通電起点となる部分ではクロ
メート被覆を薄くして通電状態を安定させることで7−
ム溶接性を向上させ、又耐食性は局部的にクロメート被
覆が厚い部分で確保するという思想を実現し、本発明の
完成に到ったのである。Therefore, the inventors conducted further intensive studies and solved the problem by not only making the Sn plating layer have local irregularities, but also depositing the chromate coating so that it had a distribution opposite to that of the Sn plating layer. It is. That is, since the chromate coating layer is a type of insulating coating, it obstructs stable current flow during seam welding, and also has the effect of improving the resistance of the thin Sn-plated steel sheet, such as seam welding adhesion and corrosion under coating. Therefore, if the amount of chromate coating is reduced to improve the seam weldability of a thin Sn-plated steel sheet, the corrosion resistance will deteriorate, and if the amount of chromate coating is increased to improve the corrosion resistance, the seven-layer weldability will deteriorate. A chromate coating with a uniform coating thickness was able to ensure a good balance between seam weldability and corrosion resistance of thin Sn-plated steel sheets. Therefore, as mentioned above, the present inventors made the chromate coating distribution non-uniform and made the chromate coating thinner at the part where the current flow starts during seam bath contact to stabilize the current conduction state.
The present invention was achieved by realizing the idea of improving chromate weldability and ensuring corrosion resistance locally in areas where the chromate coating is thick.
次に本発明によるメッキ層構造を従来のものと対比して
それぞれ第1図1,12.3図に示す。なお各図共Sn
メッキ厚が0.11μmの場合のイメージ図である。第
1図は本発明例であシ、第2図は均一なSnメッキ層、
クロメート被覆を有する比較例、第3図は局所的凹凸を
持つSnメッキ層を有するが、均一なりロメート被覆を
有する比較例である。各図中1は合金Sn畜、2は金属
Sn層、3はクロメート被覆層、4は素地鋼を示す。溶
接時の通電は第1図、第3図の場合凸状を呈するSn部
で擾先的に起こると考えられるが、第2図に示す例では
通電起点となるべき部分がなく何らかの理由でクロメー
ト被覆が破壊され次部分等に集中して溶接電流が流れる
傾向と考えられるため、スプラッシュ等溶接欠陥が発生
し易くなると推定できる。従ってシーム溶接性からは第
1図、第3図に示すメッキ層構造が有利となるが、本発
明例第1図のようにシーム溶接時の通電起点となるSn
メッキ層凸部でクロメート被覆が薄くそして耐食性上弱
点となるSnメッキ層凹部でクロメート被覆が厚い方が
先に述べた理由から第3図従来例と比較すればシーム溶
接性、又耐食性上から有利になることは容易に理解でき
る。Next, the plating layer structure according to the present invention is shown in FIGS. 1 and 12.3, respectively, in comparison with the conventional one. In addition, each figure Sn
It is an image diagram when the plating thickness is 0.11 μm. Figure 1 shows an example of the present invention, Figure 2 shows a uniform Sn plating layer,
Comparative Example with Chromate Coating, FIG. 3 shows a Comparative Example with a Sn plating layer with local irregularities but with a uniform chromate coating. In each figure, 1 indicates the alloy Sn, 2 indicates the metal Sn layer, 3 indicates the chromate coating layer, and 4 indicates the base steel. In the case of Figures 1 and 3, the current conduction during welding is thought to occur at the tip of the Sn part that has a convex shape, but in the example shown in Figure 2, there is no part that should be the starting point of current conduction, and for some reason the chromate It is thought that the coating is destroyed and the welding current tends to flow concentrated in the next part, so it can be assumed that welding defects such as splash are more likely to occur. Therefore, the plating layer structure shown in FIGS. 1 and 3 is advantageous in terms of seam weldability, but as shown in FIG.
The chromate coating is thinner in the convex parts of the plating layer, and the chromate coating is thicker in the concave parts of the Sn plating layer, which is a weak point in terms of corrosion resistance.For the reasons mentioned above, Fig. 3 is advantageous in terms of seam weldability and corrosion resistance compared to the conventional example. It is easy to understand that.
次に本発明に於ける望ましいメッキ層構造、特に望まし
いクロメート被覆分布について説明する。Next, a desirable plating layer structure in the present invention, particularly a desirable chromate coating distribution, will be explained.
本発明では任意の位置のクロメート被覆厚が、その部分
のSnメッキ厚と逆比例関係を持つことが必須となるが
、このような微小領域のSnメッキ厚、クロメート厚は
螢光X線分析等では定量できないため、ビーム径を1μ
程度て絞ったEPMA (エレクトロンfロープマイク
ロアナリシス法)等で定量する必要がある。この場合S
n及びFe上でのCrパックグランド及び素地鋼中に含
まれるCrの影響等を全て補正する必要があるが、本発
明に於けるSn及びCrの対応関係の例を第4図に示す
。この場合縦軸、横軸は前述補正後のSn及びCrのE
PMA K eJ強度であるが、図中に示すSnメッキ
;1凸部のCr+iHは凹部のCriの約半分程度であ
る。この関係を定量化するため、Snメッキ層が潰も厚
い凸部のSn情、Cr、lを基孕値1として任意部分に
於けるSn量Cr’HをそれぞれX+yと表わすと統計
的回帰計算によって
y = −ax + b
の関係を持つ、ここでa、bは正の定数であるが、本発
明では望ましくは須きaが
一5≦a≦−0,1
の範囲であれば良く、切片すは必然的に1.1≦b≦5
の範囲を持つ。例えば第4図をこの方法で書き換えると
、2g5図のようになり、その傾きaはa=−0,82
となる。In the present invention, it is essential that the chromate coating thickness at a given position has an inversely proportional relationship with the Sn plating thickness at that part, but the Sn plating thickness and chromate thickness in such a minute area can be determined by fluorescent X-ray analysis, etc. Since it is not possible to quantify with
It is necessary to quantify it using a method such as EPMA (electron f-rope microanalysis method). In this case S
Although it is necessary to correct all the influences of Cr contained in the Cr pack ground and base steel on Sn and Fe, an example of the correspondence relationship between Sn and Cr in the present invention is shown in FIG. In this case, the vertical and horizontal axes are the E of Sn and Cr after the above correction.
Regarding the PMA K eJ strength, the Sn plating shown in the figure; Cr+iH of one convex part is about half of Cri of the concave part. In order to quantify this relationship, we use statistical regression calculation to express the Sn amount Cr'H in an arbitrary part as X + y, assuming that the Sn content, Cr, and l of the convex part where the Sn plating layer is very thick are the base values of 1. has the relationship y = -ax + b, where a and b are positive constants, but in the present invention it is preferable that a be in the range 15≦a≦-0,1; The intercept is necessarily 1.1≦b≦5
has a range of For example, if Figure 4 is rewritten using this method, it will become like Figure 2g5, and the slope a is a=-0,82
becomes.
このような表現を行った時、aが−0,1以上であると
本発明の効果がほとんどなく、又−5以下であるとSn
メッキ層凹部のクロメート被覆厚が増大し過ぎて溶接性
が低下する。When expressed in this way, if a is -0.1 or more, the present invention has almost no effect, and if a is -5 or less, Sn
The thickness of the chromate coating in the concave portions of the plating layer increases too much, resulting in poor weldability.
以上本発明の特徴点である薄Snメッキ鋼板に於ける望
ましいメッキ形態について説明したが、本発明メッキ鋼
板を得る際に使用するA板に先に述べたNi系前処理原
板又はNl系拡散処理原板を使用すれば、す70一時や
製ffr全焼時に生成する合金Sn層中に微着のN1が
浸入することで合金S1号が緻密化し、耐食性がさらに
向上すると共に、加熱時のFe−Sn合金化も抑制され
るためより多くのフリーSnl!を・残留せしめること
ができる。The desirable plating form of the thin Sn-plated steel sheet, which is a feature of the present invention, has been explained above. The plate A used to obtain the plated steel sheet of the present invention is subjected to the Ni-based pretreatment original plate or the Nl-based diffusion treatment described above. If the original plate is used, finely deposited N1 will infiltrate into the Sn alloy layer generated during the S70 process and FFR burning process, which will make the alloy S1 denser and further improve its corrosion resistance. Alloying is also suppressed, so more free Snl! can be caused to remain.
次に本発明容器用薄Snメッキ鋼板の限定理由7!!遣
方法について説明する。Next, reason 7 for limiting the thin Sn-plated steel sheet for containers of the present invention! ! I will explain how to send it.
本発明は通常の方法で表面清浄化した鋼板に、好ましく
はN1メノギ被覆、又はNi K Fe、P、Zn。The present invention is applied to a steel plate whose surface has been cleaned by a conventional method, preferably coated with N1 agate or Ni K Fe, P, or Zn.
Cu、Crの一種以上を含有したN1合金メッキ被覆を
1強こすが、この被覆方法については特に限定条件を設
定するものではなく公知の手法が適用できる。A coating of N1 alloy plating containing at least one of Cu and Cr is applied once, but there are no particular limitations on this coating method, and any known method can be applied.
そしてNi又はNi合金メッキ被覆した状態のままでも
よいし、あるいはこれらNiメッキ被覆、N1合金メッ
キ被覆を適切な加熱処理で鋼板表面と拡散反応させても
よい。The Ni or Ni alloy plated coating may be left as it is, or the Ni plating coating or the N1 alloy plating coating may be subjected to an appropriate heat treatment to cause a diffusion reaction with the steel sheet surface.
加熱処理手段を利用する場合、特に加熱手段は限定しな
いが鋼板の焼鈍工程の利用が合理的であシ、N1又はN
1合金を全て鋼板と拡散させても、一部を未合金のまま
残留させても良い。なおNi合金の元素Fe、Zn、C
o、Cr、PはいずれもN1と合金化して加熱後フIJ
−8nを残留せしめる効果がある。When using heat treatment means, the heating means is not particularly limited, but it is reasonable to use a steel plate annealing process, N1 or N
All of one alloy may be diffused into the steel sheet, or a portion may remain unalloyed. Note that the elements Fe, Zn, and C of the Ni alloy
O, Cr, and P are all alloyed with N1 and then heated to form an IJ
This has the effect of causing -8n to remain.
次にSnメッキ被覆を施こすが、Snメッキ被覆手段と
して、電気メツキ法が合理的であるが、特にこれに限定
するものではない。そして本発明でSnメッキ層は1〜
30μmの凸部間隙を有するミクロ的凹凸を持ち、凹部
のメッキ厚が0.07μm以下、凸部のメッキ厚が0.
20μm以上、かつ平均厚さが0.17μm以下と規定
したのは、まず本発明効果が螢光X線分析等による平均
Snメッキ厚が0.17μm以下で顕著となるからであ
り、特に平均Snメッキ厚が0.12μm以下では本発
明は非常に有効である。Next, Sn plating is applied. Electroplating is a reasonable method for Sn plating, but it is not particularly limited to this method. In the present invention, the Sn plating layer is 1~
It has microscopic irregularities with a gap of 30 μm between the convex portions, the plating thickness of the concave portions is 0.07 μm or less, and the plating thickness of the convex portions is 0.07 μm or less.
The reason for specifying that the average Sn plating thickness is 20 μm or more and 0.17 μm or less is that the effect of the present invention becomes remarkable when the average Sn plating thickness is 0.17 μm or less as determined by fluorescent X-ray analysis, etc. The present invention is very effective when the plating thickness is 0.12 μm or less.
そしてSnメッキ層凹部のメッキ厚が0.07μm以下
、凸部のメッキ厚が0.20μm以上と規定したのはこ
れ以上のSnメッキ層凹凸がないと、前述したようなS
nメッキ層に凹凸を持たせる意義が消失し、第2図に示
した平滑なSnメッキ分布を持つ場合とその特性が事実
上同一になるばかりか、本発明のポイントとなる特徴的
なりロメート被覆分布を達成することが困難となるから
である。なお本発明に於ける平均Snメッキ厚は0.0
3μm以上が望ましく、これ以下では特に凸部のメッキ
厚が確保できないからである。本発明に於いてはSnメ
ッキ層凹部では局所的にSn昔が事実上Oで合金Sn層
が露出する場合も当然台まれる。そしてこのよりなSn
メッキ層分布を達成するための手段は本発明では特に限
定するものではなく、Snメッキ時の電解条件、例えば
電流密度の調整、又Snメッキ浴組成の変更例えば光沢
添加剤添加lの調整、さらに特願昭60−242749
号で本発明者等が開示したようにSnメッキ処理後のり
フロー処理条件を適切に調整する方法でも良いが、実生
産を考慮すれば作業性、安定性の点からりフロー処理条
件、例えばリフロー前の7ラツクス条件、又リフロ一時
の加熱条件、冷却条件の調整により実施することが好ま
しい。The plating thickness of the concave portions of the Sn plating layer was specified to be 0.07 μm or less, and the plating thickness of the convex portions was 0.20 μm or more, because if there were no more unevenness in the Sn plating layer, the S
Not only does the significance of providing unevenness in the n-plated layer disappear, and its properties are virtually the same as those with the smooth Sn plating distribution shown in Figure 2, but also the characteristics of the romate coating, which is the key point of the present invention, are eliminated. This is because it becomes difficult to achieve distribution. Note that the average Sn plating thickness in the present invention is 0.0
The thickness is desirably 3 μm or more, because if it is less than 3 μm, the plating thickness cannot be ensured, especially on the convex portions. In the present invention, naturally, in the concave portion of the Sn plating layer, if the Sn alloy layer is exposed because the Sn layer is actually O and the Sn alloy layer is exposed locally, this also occurs. And this more Sn
Means for achieving the plating layer distribution are not particularly limited in the present invention, and may include adjusting the electrolytic conditions during Sn plating, such as adjusting the current density, changing the Sn plating bath composition, such as adjusting the addition of brightness additives, and Patent application 1986-242749
As disclosed by the inventors in the above issue, it is possible to appropriately adjust the reflow treatment conditions after the Sn plating process, but considering actual production, it is necessary to adjust the flow treatment conditions in terms of workability and stability, such as reflow treatment. It is preferable to carry out this by adjusting the previous 7 lux conditions, heating conditions and cooling conditions during reflow.
又、凹凸を有するSnメッキ層の凸部の間隙を1〜30
41mに限定したのは、凸部間隙が1μ未満と近接して
いると、事実上メッキ層が連続して本発明の特徴である
クロメート被覆層の分布が一面にSnメッキ層を覆い、
シーム溶接性を阻害する。−万、凸部の間隙が30μm
沼に離れて散在すると、例え製缶全焼時極部的に残留フ
IJ−8n層が残っても、全体として残留フIJ−8n
層が少なく、やはり7−ム溶接性劣化は避けられない。In addition, the gap between the convex parts of the Sn plating layer with concavities and convexities is set to 1 to 30
The reason for limiting the length to 41 m is that when the protrusion gap is less than 1 μm and the protrusions are close to each other, the plating layer is virtually continuous and the distribution of the chromate coating layer, which is a feature of the present invention, covers the Sn plating layer all over.
Impairs seam weldability. - 10,000, the gap between the convex parts is 30μm
If the IJ-8n layer is scattered far apart in the swamp, even if the residual IJ-8n layer remains in some areas during the complete burning of the can, the residual IJ-8n layer will remain as a whole.
Since the number of layers is small, deterioration in 7-m weldability is unavoidable.
なお本発明では鋼板表裏でSnメッキ被覆量を変えた差
厚メッキとすることもでき、又、I770−処理の方法
は一般的な抵抗加熱法、高周波誘導加熱法が利用でき、
その雰囲気として不活性がス中での無酸化リフローとし
ても良い。In addition, in the present invention, it is also possible to perform differential thickness plating by changing the amount of Sn plating on the front and back sides of the steel sheet, and as the I770 treatment method, general resistance heating method and high frequency induction heating method can be used.
Non-oxidizing reflow may be performed in an inert gas atmosphere.
次に最表面の不動態化処理としてクロメート処理等を施
こすが、クロメート処理を施す前に例えば炭酸ソーダ等
中での陰極還元処理を行ない、Snメッキ被覆表面のS
nd化膜を予め除去しても良い。Next, a chromate treatment is performed as a passivation treatment on the outermost surface, but before the chromate treatment, a cathodic reduction treatment in, for example, soda carbonate is performed, and the S of the Sn plating coated surface is
The nd film may be removed in advance.
クロメート処理方法は本発明のポイントであるクロメー
ト被覆分布を得るため重要であるが、本発明ではその方
法は特に限定しない。しかし最も好ましい処理は無水ク
ロム酸中に硫酸、塩酸又は珪7ツ化ソーダ、フッ化アン
モニウム等のフッ化物を添加した処理浴中で陰極電解処
理を行う手法であシ、無水クロム酸贋度又添加するアニ
オン量を適切に調整し、さらに陰極電流密度を適切に選
択すれば良い。具体的には無水クロム酸4度は10〜1
009/L、添加アニオンはけ合計して0.2〜3g/
l、陰極%LR,密度は5〜80人/dm’程度が好ま
しく、陰極電解処理完了後読処理浴中に浸漬される時間
を適切に調整すれば良い。そして被覆するクロメート被
覆量であるが、局所的な被覆量はEPMA等で測定可能
であるが、螢光X線等による平均的なりロメート被覆量
は本発明では金属クロム換算で5〜30m9/m′の範
囲が好ましい。5 m97m’以下では本発明を適用し
ても耐食性が不足する。Although the chromate treatment method is important in order to obtain the chromate coating distribution which is the key point of the present invention, the method is not particularly limited in the present invention. However, the most preferable treatment is to perform cathodic electrolysis treatment in a treatment bath in which sulfuric acid, hydrochloric acid, or a fluoride such as sodium silicate or ammonium fluoride is added to chromic anhydride. What is necessary is to appropriately adjust the amount of anions to be added and further appropriately select the cathode current density. Specifically, chromic anhydride 4 degree is 10 to 1
009/L, total added anion brushing 0.2-3g/
The cathode %LR and density are preferably about 5 to 80 persons/dm', and the time for immersion in the reading treatment bath after completion of the cathode electrolytic treatment may be appropriately adjusted. Regarding the amount of chromate covered, the local amount of coverage can be measured using EPMA, etc., but the average amount of chromate covered by fluorescent X-rays etc. is 5 to 30 m9/m in terms of metallic chromium in the present invention. ' is preferable. If the thickness is less than 5 m97 m', corrosion resistance will be insufficient even if the present invention is applied.
又301Q/m2以上では溶接性が低下する。なお従来
はクロメート被覆量が25〜30 m97m”程度の場
合シーム溶接時の通電が妨害され、シーム溶接性が低下
するため適用が困難であっ念が、本発明では前述した理
由でシーム溶接時の通電ポイントとなるSnメッキ層凸
部のクロメート被覆厚が薄くなるため適用可能とな夛、
クロメート被覆厚へのシーム溶接性上からの制約が緩和
されるので、耐食性向上にはさらに有利となる。なお公
知の如く、本発明のクロメート被覆層は、熱アルカリ不
溶クロム層と熱アルカリ可溶クロム層から形成されるが
、両者の含有割合は特に限定するものではないが、望ま
しくは凹部で熱アルカリ不溶クロム層の比率が多い方が
よい。Moreover, if it exceeds 301Q/m2, weldability will deteriorate. Conventionally, when the amount of chromate coating was about 25 to 30m97m, it was difficult to apply because the current flow during seam welding was obstructed and the seam weldability deteriorated. This method is applicable because the thickness of the chromate coating on the convex parts of the Sn plating layer, which is the point of conduction, is thinner.
Since restrictions on seam weldability regarding the thickness of the chromate coating are relaxed, it is further advantageous for improving corrosion resistance. As is well known, the chromate coating layer of the present invention is formed of a hot alkali-insoluble chromium layer and a hot alkali-soluble chromium layer, and although the content ratio of both is not particularly limited, it is preferable that the chromate coating layer is formed of a hot alkali-insoluble chromium layer and a hot alkali-soluble chromium layer. The higher the ratio of the insoluble chromium layer, the better.
次に本発明を実施例によって説明する。Next, the present invention will be explained by examples.
実施例−1
通常の方法で表面清浄化した鋼板両面に1に示す条件で
Snを片面当り平均厚さ0.07〜0.14μm電気メ
ツキし、水洗後各種フラックス中に浸漬し乾燥するフラ
ックス処理を施すか、もしくはフラックス処理を省略し
た後、引き続き抵抗加熱法でSnメッキj−を種々条件
でリフロー処理した。そしてHに示すクロメート処理浴
中で各種条件で陰極覗解処理し、金属クロム換算で片面
当りの平均被覆f12〜25 m97m’のクロメート
被覆層を形成し、供試料とした。Example-1 Flux treatment in which Sn is electroplated to an average thickness of 0.07 to 0.14 μm per side under the conditions shown in 1 on both sides of a steel plate whose surface has been surface-cleaned by a normal method, and after washing with water, it is immersed in various fluxes and dried. , or after omitting the flux treatment, the Sn plating J- was subsequently subjected to reflow treatment using a resistance heating method under various conditions. Then, cathode peeping treatment was carried out under various conditions in the chromate treatment bath shown in H to form a chromate coating layer with an average coverage of f12 to 25 m97 m' per side in terms of metal chromium, and this was used as a sample.
なおこのクロメート被覆層は濃度20〜80g/l、温
度90 ’0以上のNaOH中に鋼板を浸漬した際溶解
するクロム(熱アルカリ可溶クロム)と、この条件では
溶解しないクロム(熱アルカリ不溶クロム)から構成さ
れ、平均被覆量は金属クロム換算でそれぞれ7〜19
’I’9/rn’、3〜15 ”17/m’であった。This chromate coating layer consists of chromium that dissolves when the steel plate is immersed in NaOH at a concentration of 20 to 80 g/l and a temperature of 90'0 or higher (thermal alkali soluble chromium), and chromium that does not dissolve under these conditions (thermal alkali insoluble chromium). ), and the average coating amount is 7 to 19, respectively, in terms of metallic chromium.
'I'9/rn', 3-15 '17/m'.
浴温:40〜50″C
陰極″ILm密度:2〜30人/d1rLり浴温:40
〜60℃
陰極4流密度:5〜90人/dmQ
実施例−2
実施例1に於いてSnメッキを■に示す条件で実施し、
又7ラツクス処理は行わず、水洗、乾・朶のみとした実
施例であり、その他項目は実施例1と同じ。Bath temperature: 40-50"C Cathode" ILm density: 2-30 people/d1rL bath temperature: 40
~60℃ Cathode 4 flow density: 5 to 90 people/dmQ Example-2 In Example 1, Sn plating was carried out under the conditions shown in ■,
Also, this is an example in which the 7-lux treatment was not performed, and only water washing, drying, and rinsing were performed, and the other items were the same as in Example 1.
浴温65℃
陰極電流密度: 48 A/dm’
実施例−3
実施例1において表面清浄化した鋼板両面にffに示す
条件でNiを片面当り 15 m9/7rL’1M気メ
ッキした後Snメッキした実施例であり、その他条件は
実施例1と同じ。Bath temperature 65°C Cathode current density: 48 A/dm' Example-3 Both sides of the steel plate whose surface was cleaned in Example 1 were air-plated with Ni at 15 m9/7rL'1M per side under the conditions shown in ff, and then Sn plated. This is an example, and other conditions are the same as in Example 1.
浴温:50゛C
陰極電流密度:5人/d□1
実施例−4
実施例3に於いて1vで示したNiメッキ被覆に替えて
Vに示す条件でNi−Fe合金メッキ被覆(合金メッキ
中のFe含有率: 80 wt % )をNl 1で片
面当り30 m9/rn2被覆した実施例でその他項目
は実、・鬼例3と同じ。Bath temperature: 50゛C Cathode current density: 5 people/d□1 Example-4 In place of the Ni plating shown at 1V in Example 3, Ni-Fe alloy plating was applied under the conditions shown in V (alloy plating The other items are the same as Example 3.
浴温:50℃
陰極直流密度:10A/dぜ
実施例−5
表面清浄化した銅板両面に実施例30■に示す条件でN
iを片面当り50 m97m’電気メッキした後、NH
Xガス(5%H2−95チN2)雰囲気中で720’Q
、15secの条件で焼鈍し、該V種層を素地鋼板に拡
散させた。しかる後2チの調質圧延を行ない、引き続き
通常の工程で脱脂、横洗処理を施した。Bath temperature: 50°C Cathode DC density: 10 A/dze Example-5 N was applied to both surfaces of the surface-cleaned copper plate under the conditions shown in Example 30■.
After electroplating 50 m97 m' per side, NH
720'Q in X gas (5%H2-95CHN2) atmosphere
, 15 seconds to diffuse the V type layer into the base steel sheet. Thereafter, two rounds of temper rolling were carried out, followed by degreasing and side washing in the usual process.
続けてSnメッキ被覆、7ラツクス処理、リフロー処理
、電解クロメート処理、塗油な施したが、この工程は全
て実施例3と同様に実施した。Subsequently, Sn plating coating, 7lux treatment, reflow treatment, electrolytic chromate treatment, and oiling were performed, but all of these steps were carried out in the same manner as in Example 3.
実施例−6
実施例1に於いてリフロー処理後■に示す条件でリフロ
一時に生成した5n41化皮膜を還元除去後クロメート
処理を於した実施例で、その他項目は実施例1と同じ。Example 6 This is an example in which the 5n41 film formed during reflow was reduced and removed under the conditions shown in (2) after the reflow treatment in Example 1, and then chromate treatment was performed, and the other items were the same as in Example 1.
浴温35℃
除硬電流密度2゜5人/dm’
そして以上と共に従来例として片面当シのSnメッキ被
覆厚0.38μmの#25ぶシきを使用して下記(A)
〜(D)の評価試験を実施しその結果を第1表に示す。Bath temperature: 35℃, hardening current density: 2゜5 people/dm' And in addition to the above, as a conventional example, using a #25 bushing with a single-sided Sn plating coating thickness of 0.38μm, the following (A) is used.
The evaluation tests of ~(D) were conducted and the results are shown in Table 1.
(A)顕微鏡観察
得られたメッキ鋼板はその表面状況を走査型電子顕微鏡
(以下SEM)で観察した。SEM観察は主に1000
倍で実施し、異なる位置で少なくとも5視野以上観察し
たが、Snメッキ層に明瞭な凹凸が認められる場合には
凸部の間隙を1視野中で3点以上測定し、これらの平均
値で示し念。なお明瞭な凹凸が認められない時は「凹凸
認められず」と表示した。(A) Microscopic observation The surface condition of the obtained plated steel plate was observed using a scanning electron microscope (hereinafter referred to as SEM). SEM observation is mainly 1000
Observation was carried out at 5x magnification and at least 5 fields of view were observed at different positions, but if clear unevenness was observed in the Sn plating layer, the gap between the projections was measured at 3 or more points in 1 field of view, and the average value of these is shown. Just in case. In addition, when no clear unevenness was observed, it was indicated as "No unevenness observed."
(B) EPMA測定
(A)項に示した方法でSnメッキ層の分布状況を調査
した後、Snメッキ層上のクロメート被覆量をビーム径
を1μとしたEPMA (エレクトロングローブマイク
ロアナリシス法)を用いて調査した。(A)項の観察に
よってSnメッキ層に明瞭な凹凸が認められる場合には
、任意場所の、 2000倍の視野中で凹部、凸部共そ
れぞれ3点板上apmによるSn及びCrの特性X線強
度(cps)を測定し、又(A)項の観察で明瞭な凹凸
が認められない場合には2000倍の視野中の任意の6
点以上に於いて同様に測定した。そしてこの測定を異な
る位置で少なくとも5視野以上行い、前述した第4図、
第5図の例に示す手法で1系数aを求めた。(B) EPMA measurement After investigating the distribution of the Sn plating layer using the method shown in section (A), the amount of chromate covered on the Sn plating layer was measured using EPMA (electron globe microanalysis method) with a beam diameter of 1μ. We investigated. If clear unevenness is observed in the Sn plating layer by the observation in item (A), characteristic X-rays of Sn and Cr should be taken using 3-point APM on a 3-point plate for both concave and convex areas in a 2000x field of view at any location. Measure the intensity (cps), and if no clear unevenness is observed in the observation in item (A), measure any 6 points in the 2000x field of view.
Measurements were made in the same manner above the point. Then, this measurement was carried out in at least 5 fields of view at different positions, and the above-mentioned Fig. 4,
The 1 series number a was determined using the method shown in the example of FIG.
又Snメッキ層凹部、凸部のSnメッキ被覆厚はここで
測定したSnの特性X、′fa強度を、標準試料から求
めた検量線と比較することで求めた。Further, the Sn plating thickness of the concave and convex portions of the Sn plating layer was determined by comparing the Sn characteristics X and 'fa intensity measured here with a calibration curve determined from a standard sample.
(C)シーム溶接性テスト
各試片を缶胴に成形した後、製缶用シーム溶接機を使用
して、缶胴接合部のラップ幅Q、 4 +11 。(C) Seam weldability test After each specimen was formed into a can body, a seam welding machine for can manufacturing was used to determine the lap width Q, 4 + 11 of the can body joint.
加圧力4sktit、M倍速度45 mpmの条件で、
溶接2次電流を変化させることによって調査した。Under the conditions of pressurizing force of 4 sktit and M double speed of 45 mpm,
The investigation was conducted by changing the welding secondary current.
そして評価は良好な溶接が可能な溶接2次電流範囲で表
示した。The evaluation was expressed in the welding secondary current range that allowed good welding.
適正溶接2次電流の下限値は溶接部の強度の下限で、父
上限値はスグラッシー発生の上限で決定したが溶接部の
強度は衝撃テスト及び溶接部にV形のノツチを入れベン
チで引きさく引きさきテストにより判定し、シーム溶接
部の外観は目視で赦りの有無等より判定した。なおシー
ム溶接性テストに供した試片は全て眠気エアーオーブン
中で210℃、20分の全焼を行った。The lower limit value of the appropriate secondary welding current was determined by the lower limit of the strength of the welded part, and the upper limit value was determined by the upper limit of slushy generation. The appearance of the seam weld was determined by visual inspection based on the presence or absence of looseness. All of the specimens used in the seam weldability test were completely burnt at 210° C. for 20 minutes in a sleepy air oven.
CD)耐塗膜下請性テスト
各試片に製缶用エポキシ−フェノール塗料を片面当’)
55 m9/dm”ロールコートし、205 ’Oで
10分間焼付し、さらに190 ”Oで10分間追焼処
理した。そしてカッターナイフを用いて塗膜にスクラッ
チを入れ、エフセン試験機で5111mのエフセン加工
を施し供試サンプルとした。供試サンプルは5%NaC
1を用いた塩水噴1工を1時間行った後25°C1相対
湿度85チの恒温、恒湿試験機中に14日間保定し、ス
クラッチ部から発錆状況を目視評価し念。判定は◎糸錆
発生なし、0発生小、Δやや大、X大とした。CD) Paint resistance subcontractability test Each specimen was coated with epoxy-phenol paint for can manufacturing on one side.
55 m9/dm'' roll coating, baking at 205'O for 10 minutes, and additionally baking at 190''O for 10 minutes. Then, a scratch was made on the coating film using a cutter knife, and Efsen processing of 5111 m was performed using an Efsen testing machine to prepare a test sample. The test sample is 5% NaC
After performing one hour of salt water spraying using No. 1, it was kept in a constant temperature and humidity tester at 25°C and relative humidity of 85°C for 14 days, and the state of rust was visually evaluated from the scratched area. The evaluation was as follows: ◎ No thread rust occurred, 0 small occurrence, Δ slightly large, and X large.
以上テスト結果を第1表にまとめて示すが、本発明限定
範囲を満足するものは全てシーム溶接性、耐塗膜下請性
共良好で、特にSnメツ−?前KNj系前処理を施した
素材は良好であるのに対し、本発明限定範囲外の比較例
はいずれも劣っている。The above test results are summarized in Table 1. All of the test results that satisfied the scope of the present invention had good seam weldability and coating resistance, and in particular, Sn-mets-? The materials subjected to KNj-based pretreatment are good, whereas the comparative examples outside the scope of the present invention are all poor.
本発明は、クロメート被覆層が凹凸を有し、下層のSn
メッキ層と逆比例関係【ある構成であるため、薄Snメ
ッキ層の従来の欠点を補填した、耐食性及びシーム溶接
性に優れた容器材料となる。In the present invention, the chromate coating layer has irregularities, and the lower layer Sn
Because it has an inversely proportional relationship with the plating layer, it becomes a container material with excellent corrosion resistance and seam weldability, which compensates for the conventional drawbacks of the thin Sn plating layer.
第1図、第2図、第3図は各々鋼板表面に形成されるS
nメッキ層及びクロメート被覆層の断面構成を示す概念
図で第1図は本発明例、第2図及び第3図は比較例であ
る。第4図及び第5図は本発明のSnメッキ層とクロメ
ート被覆層との関係を説明する特性図である。
1・・・合金Sn層 2・・・金属Sn層3・・
・クロメート被覆層4・・・素地1第4図
第5図
5n量沈:y−
手続補正書
昭和乙1年3月7日
特許庁長官ヤ覆范1 殿 1〜)、。
1、事件の表示
昭和61年特許願第1乙4−q1号
115件との関係 出 願 人
4、代理人
補 正 書
本願明細書中下記事環を補正いたします。
記
1、第24頁「第1表」を次の如く訂正する。
手続補正書
昭和11年←月/をFigures 1, 2, and 3 show S formed on the surface of the steel plate, respectively.
FIG. 1 is a conceptual diagram showing the cross-sectional structure of the n-plated layer and the chromate coating layer, and FIG. 1 is an example of the present invention, and FIGS. 2 and 3 are comparative examples. FIGS. 4 and 5 are characteristic diagrams illustrating the relationship between the Sn plating layer and the chromate coating layer of the present invention. 1... Alloy Sn layer 2... Metal Sn layer 3...
・Chromate coating layer 4...Substrate 1 Figure 4 Figure 5 Figure 5n Amount of precipitation: y- Procedural amendment dated March 7, 1939, by the Commissioner of the Japan Patent Office. 1. Indication of the case Relationship with Patent Application No. 1 Otsu 4-q1 115 filed in 1986 Applicant 4: Amendment by Agent We will amend the following statements in the specification of the present application. Note 1, page 24, “Table 1” is corrected as follows. Procedural amendment 1933 ← Month/
Claims (1)
0μmで、凹部のメッキ厚が0.07μm以下、凸部の
メッキ厚が0.20μm以上でかつ平均厚さ0.17μ
m以下の凹凸部を有するSnメッキ層、そしてクロメー
ト被覆層から構成されるメッキ鋼板に於いて、クロメー
ト被覆厚がその部分のSnメッキ厚と逆比例関係にある
クロメート被覆分布を持った耐食性、溶接性に優れた容
器用薄Snメッキ鋼板。 2、鋼板として、予めNi又はNiにFe、P、Zn、
Cu、Crの一種又は二種以上を含有するNi合金を被
覆後、そのまま、あるいは熱拡散処理で鋼板表面に一部
又は全てを拡散処理した鋼板を用いたことを特徴とする
特許請求の範囲第1項記載の耐食性、溶接性に優れた容
器用薄Snメッキ鋼板。[Claims] 1. In order from the steel plate surface, the alloy Sn layer, the gap between the convex parts is 1 to 3
0 μm, the plating thickness on the concave parts is 0.07 μm or less, the plating thickness on the convex parts is 0.20 μm or more, and the average thickness is 0.17 μm.
In a plated steel sheet consisting of a Sn plating layer with irregularities of less than m and a chromate coating layer, corrosion resistance and welding are achieved with a chromate coating distribution in which the chromate coating thickness is inversely proportional to the Sn plating thickness in that part. Thin Sn-plated steel sheet for containers with excellent properties. 2. As a steel plate, Ni or Ni is coated with Fe, P, Zn,
Claim No. 1, characterized in that a steel plate is used, which is coated with a Ni alloy containing one or more of Cu and Cr, either as it is, or whose surface is partially or completely diffused by thermal diffusion treatment. The thin Sn-plated steel sheet for containers having excellent corrosion resistance and weldability as described in item 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1647186A JPS62174397A (en) | 1986-01-28 | 1986-01-28 | Thin sn plated steel sheet for container having excellent corrosion resistance and weldability |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1647186A JPS62174397A (en) | 1986-01-28 | 1986-01-28 | Thin sn plated steel sheet for container having excellent corrosion resistance and weldability |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS62174397A true JPS62174397A (en) | 1987-07-31 |
JPH0246679B2 JPH0246679B2 (en) | 1990-10-16 |
Family
ID=11917177
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1647186A Granted JPS62174397A (en) | 1986-01-28 | 1986-01-28 | Thin sn plated steel sheet for container having excellent corrosion resistance and weldability |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62174397A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05177764A (en) * | 1991-12-27 | 1993-07-20 | Nkk Corp | Laminated steel plate for welded can and production thereof |
US7182208B2 (en) | 2002-12-20 | 2007-02-27 | Agilent Technologies, Inc. | Instrument rack with direct exhaustion |
US7752858B2 (en) | 2002-11-25 | 2010-07-13 | American Power Conversion Corporation | Exhaust air removal system |
US7862410B2 (en) | 2006-01-20 | 2011-01-04 | American Power Conversion Corporation | Air removal unit |
US7878888B2 (en) | 2003-05-13 | 2011-02-01 | American Power Conversion Corporation | Rack enclosure |
JP2011252182A (en) * | 2010-05-31 | 2011-12-15 | Nippon Steel Corp | Surface treated steel sheet and method for manufacturing the same |
US8087979B2 (en) | 2003-05-13 | 2012-01-03 | American Power Conversion Corporation | Rack enclosure |
EP2993257A4 (en) * | 2013-04-30 | 2016-12-14 | Nippon Steel & Sumitomo Metal Corp | Ni-PLATED STEEL SHEET, AND METHOD FOR PRODUCING Ni-PLATED STEEL SHEET |
US11076507B2 (en) | 2007-05-15 | 2021-07-27 | Schneider Electric It Corporation | Methods and systems for managing facility power and cooling |
CN115175466A (en) * | 2022-07-04 | 2022-10-11 | 江苏富乐华半导体科技股份有限公司 | Welding method for improving electroplating tin-nickel alloy on surface of ceramic copper-clad substrate |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60208494A (en) * | 1984-03-31 | 1985-10-21 | Kawasaki Steel Corp | Surface-treated steel sheet for seam welding can having excellent weldability |
JPS60258499A (en) * | 1984-06-04 | 1985-12-20 | Kawasaki Steel Corp | Manufacture of surface-treated steel plate for resistance welding |
-
1986
- 1986-01-28 JP JP1647186A patent/JPS62174397A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60208494A (en) * | 1984-03-31 | 1985-10-21 | Kawasaki Steel Corp | Surface-treated steel sheet for seam welding can having excellent weldability |
JPS60258499A (en) * | 1984-06-04 | 1985-12-20 | Kawasaki Steel Corp | Manufacture of surface-treated steel plate for resistance welding |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05177764A (en) * | 1991-12-27 | 1993-07-20 | Nkk Corp | Laminated steel plate for welded can and production thereof |
US7752858B2 (en) | 2002-11-25 | 2010-07-13 | American Power Conversion Corporation | Exhaust air removal system |
US8544289B2 (en) | 2002-11-25 | 2013-10-01 | Schneider Electric It Corporation | Exhaust air removal system |
US7182208B2 (en) | 2002-12-20 | 2007-02-27 | Agilent Technologies, Inc. | Instrument rack with direct exhaustion |
US8087979B2 (en) | 2003-05-13 | 2012-01-03 | American Power Conversion Corporation | Rack enclosure |
US7878888B2 (en) | 2003-05-13 | 2011-02-01 | American Power Conversion Corporation | Rack enclosure |
US7862410B2 (en) | 2006-01-20 | 2011-01-04 | American Power Conversion Corporation | Air removal unit |
US11076507B2 (en) | 2007-05-15 | 2021-07-27 | Schneider Electric It Corporation | Methods and systems for managing facility power and cooling |
US11503744B2 (en) | 2007-05-15 | 2022-11-15 | Schneider Electric It Corporation | Methods and systems for managing facility power and cooling |
JP2011252182A (en) * | 2010-05-31 | 2011-12-15 | Nippon Steel Corp | Surface treated steel sheet and method for manufacturing the same |
EP2993257A4 (en) * | 2013-04-30 | 2016-12-14 | Nippon Steel & Sumitomo Metal Corp | Ni-PLATED STEEL SHEET, AND METHOD FOR PRODUCING Ni-PLATED STEEL SHEET |
US10190231B2 (en) | 2013-04-30 | 2019-01-29 | Nippon Steel & Sumitomo Metal Corporation | Ni-plated steel sheet, and method for producing Ni-plated steel sheet |
CN115175466A (en) * | 2022-07-04 | 2022-10-11 | 江苏富乐华半导体科技股份有限公司 | Welding method for improving electroplating tin-nickel alloy on surface of ceramic copper-clad substrate |
CN115175466B (en) * | 2022-07-04 | 2023-06-06 | 江苏富乐华半导体科技股份有限公司 | Welding method for improving electroplated tin-nickel alloy on surface of ceramic copper-clad substrate |
Also Published As
Publication number | Publication date |
---|---|
JPH0246679B2 (en) | 1990-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63290292A (en) | Production of thinly tinned steel sheet having superior rust resistance and weldability | |
US5344550A (en) | Process for producing surface-treated steel sheet superior in weldability and paint-adhesion | |
JPS62174397A (en) | Thin sn plated steel sheet for container having excellent corrosion resistance and weldability | |
JPS5825758B2 (en) | Steel plate for welded painted cans | |
JPS62103390A (en) | Production of thin sn-plated steel sheet for can making | |
JPS63499A (en) | Surface treated steel sheet for vessel | |
JPS6250554B2 (en) | ||
JPS63186860A (en) | Manufacture of surface-treated steel sheet excellent in rust resistance and weldability | |
JPH079074B2 (en) | Surface-treated steel sheet for electronic device parts | |
JPH0826477B2 (en) | Manufacturing method of Sn-based multi-layered steel sheet with excellent paint adhesion | |
JPH0196397A (en) | Production of chromium-plated steel sheet for welded can having excellent corrosion resistance | |
JP2583297B2 (en) | Ultra-thin welding can material with excellent seam weldability, paint adhesion and post-paint corrosion resistance | |
JPH0431039B2 (en) | ||
JP3124233B2 (en) | Surface-treated steel sheet for welded cans having excellent rust resistance and corrosion resistance under coating film, and method for producing the same | |
JPS6353288A (en) | Low-cost surface treated steel sheet having superior weldability | |
JP3224457B2 (en) | Material for welding cans with excellent high-speed seam weldability, corrosion resistance, heat resistance and paint adhesion | |
JPS6013098A (en) | Production of surface treated steel sheet for seam welded can | |
JPH06293996A (en) | Stock for welded can excellent in high speed seam weldability, corrosion resistance, heat resistance and adhesion of paint | |
JP2827709B2 (en) | Surface treated steel sheet with multiple plating layers, excellent in filiform rust resistance, corrosion resistance and weldability | |
JP3670805B2 (en) | Manufacturing method of surface-treated steel sheet with excellent seam weldability, paint adhesion, and appearance | |
JP2959024B2 (en) | Ni-plated steel sheet for can and method for producing the same | |
JP2522075B2 (en) | Ultra-thin Sn-plated steel sheet for can and method for producing the same | |
JPH05106091A (en) | Material for welded can excellent in seam weldability and adhesive strength of paint | |
JP2959026B2 (en) | Ultra-thin Sn-plated steel sheet for welding can and method for producing the same | |
JPS61272395A (en) | Manufacture of thinly tinned steel sheet having superior weldability and corrosion resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |