JPS62139803A - Production of ferromagnetic metallic powder - Google Patents
Production of ferromagnetic metallic powderInfo
- Publication number
- JPS62139803A JPS62139803A JP27988885A JP27988885A JPS62139803A JP S62139803 A JPS62139803 A JP S62139803A JP 27988885 A JP27988885 A JP 27988885A JP 27988885 A JP27988885 A JP 27988885A JP S62139803 A JPS62139803 A JP S62139803A
- Authority
- JP
- Japan
- Prior art keywords
- particles
- soln
- salt
- soluble
- added
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compounds Of Iron (AREA)
- Manufacture Of Metal Powder And Suspensions Thereof (AREA)
Abstract
Description
【発明の詳細な説明】
(a)産業上の利用分野
本発明は磁気記録用磁性材料として用いられる強磁性金
属粉の製造方法に関する。DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a method for producing ferromagnetic metal powder used as a magnetic material for magnetic recording.
(I])従来の技術
磁気記録は磁気テープ、磁気ドラム、磁気ディスクなど
の磁性媒体を磁性ヘッドのギャップ磁束により、ヒステ
リシスを利用して磁化し、磁性体上に残留磁気の変化と
して記録する方式で、多(の特徴を有するため録音、録
画に止まらず、電子計!、磯の記憶装置などの分野で広
く使用されている。(I) Conventional technology Magnetic recording is a method in which a magnetic medium such as a magnetic tape, magnetic drum, or magnetic disk is magnetized using hysteresis by the gap magnetic flux of a magnetic head, and is recorded as changes in residual magnetism on the magnetic material. Because of its multi-characteristics, it is widely used not only in audio recording, but also in electronic meters, rock storage devices, and other fields.
従来、この磁気記録に用いられる材料としては、針状の
r Fezesやコバルト添加型のr−Fe203、
更に、針状のFe5O4やコバルト添加型FezO−等
の酸化鉄系磁性材料が挙げられる。Conventionally, materials used for this magnetic recording include acicular r-Fezes, cobalt-doped r-Fe203,
Furthermore, iron oxide-based magnetic materials such as acicular Fe5O4 and cobalt-doped FezO- may be mentioned.
しかしながら最近の磁気記録媒体の小型軽量化、高密度
化、高出力化及び再生出力の安定化等の品質、特性の向
上の要請は着しく、この要請に応えるにはこれらの酸化
鉄系磁性材料では性能不足であり、このため鉄あるいは
鉄を主成分とする強磁性金属粉の研究が盛んに行なわれ
ている。However, in recent years, there has been a growing demand for improved quality and characteristics of magnetic recording media, such as smaller size, lighter weight, higher density, higher output, and more stable playback output, and these iron oxide magnetic materials are needed to meet these demands. Therefore, research on iron or ferromagnetic metal powders containing iron as a main component is being actively conducted.
かかる要請下、強磁性金属粉の製造方法について種々の
提案がなされている。具体的には、例えば
■オキシ水酸化鉄又はオキシ水酸化鉄にCo、Mn%N
i等の金属をドープしたものを水に懸濁し、該懸濁物と
Zn及び/又はCrの水酸化物を共沈処理した後、該処
理物を乾燥し還元するものである(特公昭56−396
82号公報)。In response to such demands, various proposals have been made regarding methods for producing ferromagnetic metal powder. Specifically, for example, ■Co, Mn%N to iron oxyhydroxide or iron oxyhydroxide
A material doped with metals such as i is suspended in water, the suspension and Zn and/or Cr hydroxide are coprecipitated, and then the treated product is dried and reduced (Japanese Patent Publication No. 1983). -396
Publication No. 82).
■鉄塩あるいは鉄塩とコバルト塩の混合塩を水銀電解法
によって電解することにより鉄あるいは鉄−コバルト合
金を析出させ、次いで、水銀を除去するものである。(2) Iron or iron-cobalt alloy is precipitated by electrolyzing iron salt or a mixed salt of iron salt and cobalt salt by mercury electrolysis, and then mercury is removed.
■鉄カルボニル、ニッケルカルボニル等の金属カルボニ
ルを分解して鉄やニッケル等の金属粉を得るものである
。■It decomposes metal carbonyls such as iron carbonyl and nickel carbonyl to obtain metal powders such as iron and nickel.
(e)発明が解決しようとする問題点
しかしながら、上記■の方法では充分な磁気特性が得ら
れていない。(e) Problems to be Solved by the Invention However, the above method (2) does not provide sufficient magnetic properties.
即ち、特公昭56−39682号公報には、得られた金
属粉の保持力(He)や飽和磁束密度(δS)が示され
ているが、金属粉に期待される値から判断すると、必ず
しも充分なものとはいい難い。That is, although the coercive force (He) and saturation magnetic flux density (δS) of the obtained metal powder are shown in Japanese Patent Publication No. 56-39682, judging from the values expected for metal powder, they are not necessarily sufficient. It's hard to say that it's a thing.
又、上記■の方法では、水銀を何らかの方法で除去する
必要があり、この作業がかなり厄介で実用上間mがある
。In addition, in the above method (2), it is necessary to remove mercury by some method, and this work is quite troublesome and takes a long time in practical use.
更に、上記■の方法では、金属カルボニルは毒性が強く
、その取扱いに相当の注意を要する上、がなり高価であ
る。Furthermore, in the method (2) above, the metal carbonyl is highly toxic and requires considerable care in handling, and is also expensive.
(d)問題点を解決するだめの手段
本発明者らは上記問題点を解決すべく、強磁性金属粉に
ついて多年に亙って検討を重ねてきた。(d) Means to Solve the Problems In order to solve the above-mentioned problems, the present inventors have repeatedly studied ferromagnetic metal powder for many years.
この結果、磁気特性の優れた金属粉を得るには金属粉の
形状が針状で空孔がなく、しかも粒度幅が狭く、破片粒
子や塊状粒子等の歪んだ粒子を含まないことが重要であ
り、しかも、この粒子の↑はオキシ酸化鉄等の脱水、還
元の際に生じ、又、この粒子の歪の発生や空孔の発生は
オキシ酸化鉄等の金属酸化物を界面活性剤で被覆し、こ
れを脱水、還元することにより防止されることを見い出
し、本発明を完成するに至ったものである。As a result, in order to obtain metal powder with excellent magnetic properties, it is important that the shape of the metal powder is acicular and free of pores, that the particle size range is narrow, and that it does not contain distorted particles such as fragments or lump particles. Moreover, the ↑ of these particles occurs during dehydration and reduction of iron oxyoxide, etc., and the generation of distortion and pores in these particles is caused by coating metal oxides such as iron oxyoxide with a surfactant. However, they discovered that this can be prevented by dehydrating and reducing it, leading to the completion of the present invention.
即ち、本発明は、可溶性第一鉄塩及び/又は可溶性第二
鉄塩、あるいは可溶性第一鉄塩及び/又は可溶性第二鉄
塩と2価の可溶性金属塩を含む水溶液に塩基性水溶液を
加えて、これらの金属に対応する水和金属酸化物の透徹
粒子を調製し、これに界面活性剤を加えて透徹粒子を一
旦凝集させ、次いで、この凝集物を洗浄、乾燥し、この
乾燥物を還元性ガスの存在下でp元することを特徴とす
るものである。That is, the present invention involves adding a basic aqueous solution to an aqueous solution containing a soluble ferrous salt and/or a soluble ferric salt, or a soluble ferrous salt and/or a soluble ferric salt, and a divalent soluble metal salt. Then, transparent particles of hydrated metal oxides corresponding to these metals are prepared, a surfactant is added thereto to cause the transparent particles to aggregate, and then this aggregate is washed and dried, and this dried product is It is characterized by converting the p element in the presence of a reducing gas.
以下、本発明の詳細な説明する。The present invention will be explained in detail below.
本発明においては、先ず、可溶性第一鉄塩及び/又は可
溶性第二鉄塩、あるいは可溶性第一鉄塩及び/又は可溶
性第二鉄塩と2価の可溶性金属塩を含む水溶液に塩基性
水溶液を加えて、これらの金属に対応する水和金属酸化
物の透徹粒子を調製する工程Aを実施する。In the present invention, first, a basic aqueous solution is added to an aqueous solution containing a soluble ferrous salt and/or a soluble ferric salt, or a soluble ferrous salt and/or a soluble ferric salt and a divalent soluble metal salt. In addition, step A of preparing transparent particles of hydrated metal oxides corresponding to these metals is carried out.
本発明に用いられる可溶性第一鉄塩としでは、水あるい
は温水に可溶な第一鉄塩であれば特に限定されるもので
はなく、具体的には、例えば塩化第一鉄、過塩素酸第一
鉄[F e(C104)2 ・6 H20]、臭化第一
鉄、ヨウ化第−鉄、硫酸第一鉄、硝酸第一鉄、チオシア
ン酸第−鉄、酢酸第一鉄、硫酸アンモニウム第一鉄、硫
酸カリウム第一鉄等が挙げられる。The soluble ferrous salt used in the present invention is not particularly limited as long as it is soluble in water or hot water. Ferrous [Fe(C104)2 ・6 H20], ferrous bromide, ferrous iodide, ferrous sulfate, ferrous nitrate, ferrous thiocyanate, ferrous acetate, ferrous ammonium sulfate Examples include iron, ferrous potassium sulfate, and the like.
又、本発明に用いられる可溶性第二鉄塩とじでは、水あ
るいは温水に可溶な第二鉄塩であれば特に限定されるも
のではなく、具体的には、例えば7ツ化第二鉄、塩化第
二鉄、過塩素酸第二鉄、臭化第二鉄、硫酸第二鉄、硝酸
第二鉄、チオシアン酸第二鉄、シュウ酸第二鉄、硫酸ア
ンモニウム第二鉄、硫酸カリウム第二鉄等が挙げられる
。In addition, the soluble ferric salt binder used in the present invention is not particularly limited as long as it is a ferric salt that is soluble in water or hot water, and specifically, for example, ferric heptadide, Ferric chloride, ferric perchlorate, ferric bromide, ferric sulfate, ferric nitrate, ferric thiocyanate, ferric oxalate, ferric ammonium sulfate, ferric potassium sulfate etc.
更に、本発明において、2価の可溶性金属塩とは、Go
%Ni、Mn%Cd、Cu、Zn、Ba等の可溶性の無
機塩や有機塩、例えば、これらの金属のハロゲン化物、
過塩素酸塩、硫酸塩、硝酸塩、シュウ酸塩、酢酸塩等の
うち水あるいは温水に可溶性の塩をいい、これらの18
1又は2種以上を含んでいてもよいのである。Furthermore, in the present invention, the divalent soluble metal salt is Go
Soluble inorganic salts and organic salts such as %Ni, Mn%Cd, Cu, Zn, Ba, etc., such as halides of these metals,
Refers to salts that are soluble in water or hot water among perchlorates, sulfates, nitrates, oxalates, acetates, etc., and these 18
It may contain one or more types.
そして、この場合、この2価の可溶性金属塩の添加量は
用いる金属塩の81類により異なるが、得られる強磁性
金属粉の各種磁気特性を損なわない範囲に止どめる必要
がある。一般にはFeとM(2価の金属)の全体に対し
てMが1〜50原子%の割合にするのが望ましい。In this case, the amount of the divalent soluble metal salt added varies depending on the type 81 metal salt used, but it must be kept within a range that does not impair the various magnetic properties of the resulting ferromagnetic metal powder. Generally, it is desirable that M be in a proportion of 1 to 50 atomic % based on the total of Fe and M (divalent metal).
又、上記の塩基性水溶液としては、例えば水酸化ナトリ
ウム、水酸化カリウム等のアルカリ金属水酸化物の水溶
液、炭酸ナトリウム、炭酸カリウム等の炭酸塩水溶液、
炭酸水素す) 17ウム、炭酸水素カリウム、炭酸水素
アンモニウム等の炭酸水素塩の水溶液、アンモニア水等
が挙げられる。Examples of the above basic aqueous solutions include aqueous solutions of alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; aqueous solutions of carbonates such as sodium carbonate and potassium carbonate;
Examples include aqueous solutions of hydrogen carbonates such as 17um hydrogen carbonate, potassium hydrogen carbonate, and ammonium hydrogen carbonate, aqueous ammonia, and the like.
そして、上記可溶性第一鉄塩等の金属塩水溶液の濃度と
しては、0.1〜5mo12/1の範囲とするのが好ま
しく 、5 ff1ol/ (lを超えると、濁が生じ
たり或は粒度分布が拡大する恐れがあるから好ましくな
い。一方0.1 +no1/ 1未満では、濃度が薄く
なり過ぎて量産性に欠け、極めて不経済であるから好ま
しくない。The concentration of the metal salt aqueous solution such as the above-mentioned soluble ferrous salt is preferably in the range of 0.1 to 5 mo12/1, and if it exceeds 5 ff1 ol/(l), turbidity or particle size distribution may occur. On the other hand, if it is less than 0.1 + no 1/1, the concentration becomes too thin, resulting in a lack of mass productivity and being extremely uneconomical.
又、上記塩基性水溶液の濃度としては、0.5−5 +
no1/ lとするのが好ましく、5 mol/ 1を
超えると濃度が高過ぎて後述のpitの調整が困難とな
り、一方0 、5 mol/ 1未満になると逆に濃度
が薄くなり過ぎて液量が多くなりすぎるから好ましくな
い。In addition, the concentration of the basic aqueous solution is 0.5-5 +
It is preferable to set the concentration to no. 1/l. If it exceeds 5 mol/l, the concentration will be too high and it will be difficult to adjust the pit described below. On the other hand, if it is less than 0.5 mol/l, the concentration will become too thin and the liquid volume will decrease. This is not desirable because there are too many.
この金属塩水溶液と塩基性水溶液とを反応させて、その
金属に対応する水和金属酸化物の超微粒子を調製するに
あたり、pH3,5以上の範囲で行うのが好ましく、p
H3,5未満では針状の水和金属酸化物の超微粒子を得
難い。When reacting this metal salt aqueous solution with a basic aqueous solution to prepare ultrafine particles of a hydrated metal oxide corresponding to the metal, the reaction is preferably carried out at a pH of 3.5 or higher;
If H is less than 3.5, it is difficult to obtain acicular ultrafine particles of hydrated metal oxide.
そして、この工程Aで得られた水和金属酸化物の超微粒
子の粒子径や形状はそのまま金属酸化物粒子の大きさや
形状となり、従って、この工程Aで超微粒子を調製する
にあたり、その反応温度や熟成条件が重要となる。The particle size and shape of the ultrafine particles of hydrated metal oxide obtained in this step A become the size and shape of the metal oxide particles as they are, and therefore, when preparing the ultrafine particles in this step A, the reaction temperature and aging conditions are important.
反応温度としては室温から150℃の範囲が好ましい。The reaction temperature is preferably in the range from room temperature to 150°C.
又、熟成時間としては温度によっても異なるが、経済性
の観点から5時間から50時間の範囲とするのが好まし
い。Further, although the aging time varies depending on the temperature, it is preferably in the range of 5 hours to 50 hours from the economic point of view.
そして、可溶性第一鉄塩として硫酸第一鉄を用い、この
水溶液からQ Fe0OHを経てγ−Fe2O3を調
整する場合には、熟成の際に空気を吹込むのが好ましく
、又、双晶状粒子の発生を防ぐため、アルカリ性溶液か
らα−F eo OHを生成させるのが望ましい。When ferrous sulfate is used as the soluble ferrous salt and γ-Fe2O3 is prepared from this aqueous solution via Q Fe0OH, it is preferable to blow air during ripening, and In order to prevent the generation of α-FeoOH, it is desirable to generate α-FeoOH from an alkaline solution.
本発明においては、次に、上記工程Aで得られた溶液に
、界面活性剤を加えて、水和金属酸化物の′Hi微粒子
を一旦凝集させる工程Bを実施する。In the present invention, step B is then carried out in which a surfactant is added to the solution obtained in step A above to once aggregate the 'Hi fine particles of hydrated metal oxide.
即ち、本発明の特徴は、上記工程Aで得られた溶液に直
接界面活性剤を加えて水和金属酸化物の透徹粒子を一旦
凝集させる点にある。That is, the feature of the present invention is that a surfactant is directly added to the solution obtained in the above step A to once aggregate the transparent particles of hydrated metal oxide.
水和金属酸化物の超微粒子の表面を界面活性剤で被覆す
ることにより、この超微粒子の脱水過程で当該粒子内に
空孔が生じず、しかも、超微粒子の加熱、乾燥の際にお
ける焼結が生じないのである。By coating the surface of the ultrafine particles of hydrated metal oxide with a surfactant, pores are not generated within the particles during the dehydration process of the ultrafine particles, and moreover, sintering occurs during heating and drying of the ultrafine particles. does not occur.
本発明に用いられる界面活性剤としては、例えばドデシ
ル硫酸ナトリウム、ドデシルベンゼンスルホン酸ナトリ
ウム、カプロン酸ナトリウム、カプリル酸ナトリウム、
ラウリン酸ナトリウム、オレイン酸ナトリウム、アルキ
ルナフタリンスルホン酸ナトリウム、或は、リン酸エス
テル塩型の陰イオン界面活性剤、例えば、高級アルコー
ルリン酸モノエステルノナトリウム塩、高級アルコール
リン酸ジエステルナトリウム塩等の陰イオン界面活性剤
、オレイン酸、す/−ル酸、リルイン酸、ラウリン酸、
パルミチン酸、ミリスチン酸、ステアリン酸等の脂肪酸
、低重合度ポリカルボン酸の塩、例えば低重合度ポリア
クリル酸ソーダ、低重合度ポリアクリル酸ブチル、低重
合度ポリメタアクリル酸ソーダ、更に、下記一般式
%式%)
で示されるスルホン化ポリスチレン等の界面活性剤等が
挙げられ、これらのうち特にオレイン酸、リノール酸、
す/レイン酸、ラウリン酸、パルミチン酸、ミリスチン
酸、ステアリン酸等の脂肪酸を用いると、酸化物の超微
粒子を還元する際に簡111に除去されるから好ましい
。Examples of the surfactant used in the present invention include sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, sodium caproate, sodium caprylate,
Sodium laurate, sodium oleate, sodium alkylnaphthalene sulfonate, or phosphate ester salt type anionic surfactants, such as higher alcohol phosphate monoester monoester salt, higher alcohol phosphate diester sodium salt, etc. Anionic surfactant, oleic acid, sulfuric acid, rillic acid, lauric acid,
Fatty acids such as palmitic acid, myristic acid, stearic acid, salts of low polymerization degree polycarboxylic acids, such as low polymerization degree sodium polyacrylate, low polymerization degree butyl polyacrylate, low polymerization degree polysodium methacrylate, and the following: Examples include surfactants such as sulfonated polystyrene represented by the general formula (%), among which oleic acid, linoleic acid,
It is preferable to use fatty acids such as oleic acid, lauric acid, palmitic acid, myristic acid, and stearic acid because they can be easily removed when reducing ultrafine oxide particles.
この工程已において、界面活性剤の添加量は、水和金属
酸化物の種類や量、用いる界面活性剤の種類によって異
なるので適宜決定されるが、要するに水和金属酸化物の
超微粒子が凝集するまで添加すればよいのである。In this process, the amount of surfactant added varies depending on the type and amount of hydrated metal oxide and the type of surfactant used, so it is determined appropriately, but in short, ultrafine particles of hydrated metal oxide aggregate. It is sufficient to add up to
本発明においては、上記工程Bで得られた2疑果物を瀘
過して洗浄する工程Cを実施する。In the present invention, Step C is performed in which the two suspicious fruits obtained in Step B are filtered and washed.
上記凝集物を瀘過して洗浄することにより、以下に述べ
る長所を有するのである。Filtering and washing the aggregates has the following advantages.
(イ)先ず、生産性が大幅に向上し、大量生産を実現し
て経済的に水和金属酸化物の超微粒子を得ることができ
る。(a) First, productivity is greatly improved, mass production can be realized, and ultrafine particles of hydrated metal oxide can be obtained economically.
即ち、濾過と洗浄を繰り返しつつ、水和金属酸化物の超
微粒子を洗浄するのであるから洗浄効果が極めて良好で
pHを容易に中性にすることができると共に純度の高い
水和金属酸化物の超微粒子が得られるのである。In other words, the ultrafine particles of the hydrated metal oxide are washed by repeating filtration and washing, so the cleaning effect is very good, the pH can be easily neutralized, and the hydrated metal oxide has a high purity. Ultrafine particles can be obtained.
そして、上記工程Bで得られた凝集物はスポンジ状で濾
過の際の水の流れが非常に良く、従ってこの凝集物の洗
浄、濾過が極めて良好になしうるのである。The aggregate obtained in step B above is spongy and has a very good flow of water during filtration, so that the aggregate can be washed and filtered extremely well.
(ロ)配向吸着している過剰の界面活性剤を簡単に除去
できるため、金属酸化物の超微粒子の含有率を高くする
ことができる。(b) Since the excess surfactant that is oriented and adsorbed can be easily removed, the content of ultrafine metal oxide particles can be increased.
そして、濾過の方法としては、特に限定されるものでは
なく、従来公知の方法、例えば、吸引濾過、自然濾過、
加圧濾過等、各種の方法を採用しう る 。The filtration method is not particularly limited, and conventionally known methods such as suction filtration, natural filtration,
Various methods can be used, such as pressure filtration.
本発明においては、上記工程Cで得られた金属酸化物の
超微粒子を常圧或は真空中で熱処理して脱水することに
より金属酸化物の超微粒子を得る工程りを実施する。In the present invention, the step of obtaining ultrafine metal oxide particles is carried out by subjecting the ultrafine metal oxide particles obtained in step C above to heat treatment under normal pressure or vacuum to dehydrate them.
この乾燥方法としては、特に限定されるものではなく、
大気中で加熱、乾燥してもよく、真2乾燥、不活性〃ス
中での加熱乾燥させてもよいが、乾燥温度としては水和
金属酸化物の水分を除去し、しかも金属酸化物粒子に吸
着している界面活性剤が分解しない程度の温度である。This drying method is not particularly limited,
The drying may be carried out by heating and drying in the air, or by heating and drying in an inert bath. The temperature is such that the surfactant adsorbed on the surface does not decompose.
従って、この乾燥温度としては、乾燥方法、水和金属酸
化物や界面活性剤の1ffl類によって異なるが、通常
350℃以下の温度である。Therefore, the drying temperature varies depending on the drying method, the hydrated metal oxide, and the type of surfactant used, but is usually 350° C. or lower.
この加熱、乾燥の際に、界面活性剤が超微粒子内に空孔
が生ずるのを防止するのである。During this heating and drying, the surfactant prevents the formation of pores within the ultrafine particles.
本発明においては、最後に、上記工程りで得られた乾燥
物を還元性〃スの存在下で還元して強磁性の金属粉を得
る工程Eを実施する。In the present invention, finally, a step E is carried out in which the dried product obtained in the above step is reduced in the presence of a reducing gas to obtain a ferromagnetic metal powder.
本発明に用いられる還元性ガスとしては、水素、アンモ
ニア、−酸化炭素等が挙げられ、これらは単独酸、いは
2種以上併泪してもよいのである。又還元反応の温度と
しては250〜600”Cが好ましく、特に350〜5
00℃の範囲が望ましい。Examples of the reducing gas used in the present invention include hydrogen, ammonia, and carbon oxide, and these may be used alone or in combination of two or more. The temperature of the reduction reaction is preferably 250 to 600"C, particularly 350 to 5"C.
A range of 00°C is desirable.
温度が250℃未満になると金属酸化物の超微粒子が金
属まで還元されない恐れがあり、逆に600℃を題える
と金属酸化物超微粒子が還元されて生成した金属超微粒
子が焼結する場合があり、いずにも好ましくない。If the temperature is less than 250°C, there is a risk that the ultrafine metal oxide particles may not be reduced to the metal, and conversely, if the temperature is lower than 600°C, the ultrafine metal oxide particles may be reduced and the resulting ultrafine metal particles may be sintered. Yes, I don't like it in any way.
この場合、本発明者らの実験結果によると、界面活性剤
を用いないものは、温度400℃程度でも還元、生成し
た金属粉が焼結するが、界面活性剤を用いたものは温度
600℃を超えないと焼結は認められなかった。In this case, according to the experimental results of the present inventors, the metal powder that is reduced and generated is sintered even at a temperature of about 400°C when a surfactant is not used, but when a surfactant is used, the metal powder is sintered at a temperature of 600°C. No sintering was observed unless the temperature exceeded .
なお、得られた金属粒子が活性で空気中で酸化される恐
れがある場合には、該金属超微粒子に空気0.Sv/v
%、窒素99.5v/v%の混合がスを通じたり、或い
は該金属超微粒子をトルエン等の有機溶媒に分散させ、
これに空気を吹き込む等の方法により、この金属超微粒
子の表面に緻密な酸化皮膜を形成してもよいのである。In addition, if the obtained metal particles are active and may be oxidized in the air, the ultrafine metal particles may be immersed in air. Sv/v
%, nitrogen 99.5 v/v% is passed through a bath, or the ultrafine metal particles are dispersed in an organic solvent such as toluene,
A dense oxide film may be formed on the surface of the ultrafine metal particles by, for example, blowing air into the particles.
又、金属酸化物をアンモニア或いはアンモニアを含む還
元性ガスで還元した場合には、金属粒子の表面に窒化物
が形成され、耐酸化性が向上することが認められた。Furthermore, it has been found that when metal oxides are reduced with ammonia or a reducing gas containing ammonia, nitrides are formed on the surfaces of metal particles, improving oxidation resistance.
上記各工程を経ることにより、保持力(Hc)、飽和磁
束密度(δS)等の磁気特性が優れ、粒度分布が均一で
、しかも分散性、充填性に優れる強磁性金属粉を得るこ
とができる。By going through each of the above steps, it is possible to obtain a ferromagnetic metal powder that has excellent magnetic properties such as coercive force (Hc) and saturation magnetic flux density (δS), has a uniform particle size distribution, and has excellent dispersibility and filling properties. .
(e)作用
本発明において、水和金属酸化物のM微粒子の乾燥の際
に空孔が発生したり或いは乾燥した金属酸化物の還元の
際に粒子の焼結が防止される理由は明確ではないが、界
面活性剤が水の蒸散を調整し、これによって空孔の発生
を阻止する一方、界面活性剤が粒子間に介在することに
より粒子同志の焼結が阻止されるものと推考される。(e) Effect In the present invention, it is not clear why pores are generated during drying of M fine particles of hydrated metal oxide or sintering of particles is prevented during reduction of dried metal oxide. However, it is assumed that the surfactant regulates the evaporation of water and thereby prevents the generation of pores, while the presence of the surfactant between the particles prevents the particles from sintering together. .
又、この界面活性剤は金R酸化物超微粒子を還元すると
き、又は強磁性金属超微粒子の表面酸化処理の際に蒸発
、分解したり或は溶出して除去されるのである。Further, this surfactant is removed by evaporation, decomposition, or elution when reducing the gold R oxide ultrafine particles or during surface oxidation treatment of the ferromagnetic metal ultrafine particles.
(f)実施例
以下、本発明を実施例により更に詳細に説明するが、本
発明はこれに限定されるものではなり1゜実施例1
1 vno(1/ lの塩化第二鉄水溶液21に2mo
l/lの水酸化ナトリウム水溶液1.051!を加えて
水和酸化鉄のM微粒子を31製し、これを温度40°C
で16時間熟成した後、0 、 2 mol/ 1のラ
ウリン酸水溶液を加えて水和酸化鉄の超微粒子を凝W!
させる。このものを濾過し、凝集物をo、oi〜0゜0
2 mol/ (lのアンモニア水で洗浄、濾過を繰り
返してpiを6.5〜7.0に調整したのち、更に温度
60〜70℃の温水241にで5回洗浄、濾過を行う。(f) Examples Hereinafter, the present invention will be explained in more detail with reference to Examples, but the present invention is not limited thereto. 2mo
l/l aqueous sodium hydroxide solution 1.051! was added to make 31 M fine particles of hydrated iron oxide, which were heated at a temperature of 40°C.
After aging for 16 hours, 0.2 mol/1 lauric acid aqueous solution was added to coagulate the ultrafine particles of hydrated iron oxide.
let Filter this and remove the aggregates from o, oi ~ 0°0
After repeating washing and filtration with 2 mol/(l) of ammonia water to adjust pi to 6.5 to 7.0, washing and filtration are further performed 5 times with hot water 241 at a temperature of 60 to 70°C.
次いでこの凝集物を温度270℃にて2時間加熱、乾燥
した後、この乾燥物を水素気流中で温度450℃で10
時間還元して強磁性鉄粉を得た。得られた強磁性鉄粉の
磁気特性を第1表に示す。Next, this aggregate was heated and dried at a temperature of 270°C for 2 hours, and then the dried product was heated in a hydrogen stream at a temperature of 450°C for 10 hours.
Ferromagnetic iron powder was obtained by time reduction. The magnetic properties of the obtained ferromagnetic iron powder are shown in Table 1.
実施例2
1 +no1/ 1の硫酸第一鉄水溶液2Nと2 mo
ff/ 2の水酸化す) +7ウム水溶液1.5pで水
和酸化第一鉄の超微粒子を調製し、これに、温度・tO
oCで空気を15時間吹き込んで針状のα−FeOOH
f:得・た。次いで、これに0 、 2 mol/ (
lのドデシルベンゼンスルホン酸ナトリウム水溶液を加
えて針状のα−FeOOHを凝集させる。Example 2 1 + no 1/1 ferrous sulfate aqueous solution 2N and 2 mo
Ultrafine particles of hydrated ferrous oxide were prepared in 1.5 p of a +7 um aqueous solution, and the particles were added to the
Acicular α-FeOOH was formed by blowing air at oC for 15 hours.
f: Got it. Next, add 0, 2 mol/(
1 of an aqueous solution of sodium dodecylbenzenesulfonate is added to aggregate the acicular α-FeOOH.
以下、実施例1と同様に濾過、洗浄、乾燥、還元を行い
強磁性鉄粉を得た。Thereafter, ferromagnetic iron powder was obtained by filtration, washing, drying, and reduction in the same manner as in Example 1.
得られた強磁性鉄粉をトルエン中に分散し、空気を吹込
んで強磁性鉄粉の表面を部分酸化して緻密な酸化皮膜を
形成した。The obtained ferromagnetic iron powder was dispersed in toluene, and air was blown into it to partially oxidize the surface of the ferromagnetic iron powder to form a dense oxide film.
この強磁性鉄粉の磁気特性を第1表に示す。The magnetic properties of this ferromagnetic iron powder are shown in Table 1.
実施例3
0 、5 mo1/ 1の塩化第二鉄水溶液250b+
Nl:0゜5IIIO1/1の水酸化ナトリウム水溶液
800+a1を加えて水和酸化鉄の超微粒子を調製し、
これをオートクレーブ中で温度150°Cで5時間水熱
処理した後、温度35°Cに下げ、次いで、1 mol
/ 1のラウリン酸を加えて上記超微粒子を一旦凝集さ
せ、以下、還元性〃スとして、7ンモニアSOv/v%
、水素50v/ν%の混合がスを用いた以外は、実施例
1と同様に濾過、洗浄、乾燥、還元を行い強磁性鉄粉を
得た。Example 3 0,5 mo1/1 ferric chloride aqueous solution 250b+
Add 800+a1 of a sodium hydroxide aqueous solution of Nl:0°5IIIO1/1 to prepare ultrafine particles of hydrated iron oxide,
This was hydrothermally treated in an autoclave at a temperature of 150°C for 5 hours, then lowered to 35°C, and then 1 mol
/ 1 lauric acid was added to once aggregate the above ultrafine particles, and hereinafter, 7 ammonia SOv/v% was added as a reducing agent.
Ferromagnetic iron powder was obtained by filtration, washing, drying, and reduction in the same manner as in Example 1, except that a mixed gas containing 50 v/v% of hydrogen was used.
このように還元性が又としてアンモニアを用いると、表
面に酸化物が形成され、これによって耐酸化性が向上す
る。When ammonia is used as a reducing agent in this way, an oxide is formed on the surface, thereby improving oxidation resistance.
得られた強磁性鉄粉の磁気特性を第1表に示す。The magnetic properties of the obtained ferromagnetic iron powder are shown in Table 1.
実施例4
1 tool/ 1の塩化第二鉄水溶液1.51と1t
nol/lの塩化コバルト水溶液11とから成る混合溶
液に3mol/1の水酸化ナトリウム水溶液2.51を
加えて水和酸化鉄−水和酸化コバルトの複合超微粒子を
調製し、これを温度40℃で15時間熟成した後、0
、 5 tool/ eのラウリン酸水溶液を加えて上
記複合超微粒子を一旦凝集させ、以下、実施例1と同様
にして強磁性のFeCo粉を得た。Example 4 1 tool/1 ferric chloride aqueous solution 1.51 and 1 t
A hydrated iron oxide-hydrated cobalt oxide composite ultrafine particle was prepared by adding 2.51 of a 3 mol/1 sodium hydroxide aqueous solution to a mixed solution consisting of a nol/l cobalt chloride aqueous solution 11, and heated at a temperature of 40°C. After aging for 15 hours in
, 5 tools/e of a lauric acid aqueous solution was added to once aggregate the composite ultrafine particles, and then in the same manner as in Example 1, ferromagnetic FeCo powder was obtained.
得られた強磁性のFe−Co粉の磁′X1、Y性を第1
表に示す。The magnetic properties of the obtained ferromagnetic Fe-Co powder are
Shown in the table.
実施例5
0 、 9 won/ lの硫酸第二鉄水溶filRと
0.1tnol/l2の硫酸ニッケル水溶液11の混合
溶液に2tool/flの水酸化す) リウム水溶液2
.5eを加えて水和酸化鉄−水酸化ニッケル複合超微粒
子を調製し、以下、実施例4と同様にして強磁性のFc
−N i粉を得た。Example 5 A mixed solution of 0,9 won/l of ferric sulfate aqueous solution filR and 0.1 tnol/l2 of nickel sulfate aqueous solution 11 was added with 2 tools/fl of hydroxide.
.. 5e was added to prepare hydrated iron oxide-nickel hydroxide composite ultrafine particles, and then ferromagnetic Fc
-Ni powder was obtained.
得られた強磁性のFe Ni粉の磁気特性を第1表に
示す。The magnetic properties of the obtained ferromagnetic Fe Ni powder are shown in Table 1.
比較例1
実施例1において、界面活性剤を用いないものを試料と
した。Comparative Example 1 A sample in which no surfactant was used in Example 1 was used.
比較例2
実施例2において、界面活性剤を用いないものを試料と
した。Comparative Example 2 In Example 2, a sample was prepared in which no surfactant was used.
(以下歌口)
第1表
各実施例及び各比較例(以下、各試料という)20部(
″mm郡部以下同じ)をポリウレタン系樹脂5部とトル
エン15fflSから成るバイングー溶液中に投入し、
ボールミルで8時間混合、分散後、更に、これにボ11
ウレタン系樹脂12部、トルエン50部を加えて2時間
混合した。この際、各試料が均一に分散しているものを
○、少しでも凝集物があるものを×とした。(hereinafter referred to as Utaguchi) Table 1 20 copies of each example and each comparative example (hereinafter referred to as each sample) (
'' mm (the same applies hereafter) into a bangu solution consisting of 5 parts of polyurethane resin and 15 fflS of toluene,
After mixing and dispersing in a ball mill for 8 hours,
12 parts of urethane resin and 50 parts of toluene were added and mixed for 2 hours. At this time, when each sample was uniformly dispersed, it was marked as ○, and when there was even a small amount of aggregates, it was marked as ×.
注2 −面 各試料をBET法で測定した。Note 2 - side Each sample was measured by the BET method.
本発明に係る強磁性金属粉の製造方法は上述の通りであ
るが、上記実施例以外の強磁性金属粉も、本発明に係る
方法で製造することができる。Although the method for producing ferromagnetic metal powder according to the present invention is as described above, ferromagnetic metal powders other than those in the above examples can also be produced by the method according to the present invention.
(g)発明の効果
本発明の強磁性金属粉の製造方法は、上記構成を有し、
保持力、飽和磁束密度等の磁気特性が優れ、分散性が良
好で、しかも粒度幅が狭い強磁入金、属粉を簡単に製造
しうる効果を有するのである。(g) Effect of the invention The method for producing ferromagnetic metal powder of the present invention has the above configuration,
It has the effect of easily producing ferromagnetic metal and metal powder with excellent magnetic properties such as coercive force and saturation magnetic flux density, good dispersibility, and narrow particle size range.
Claims (1)
いは可溶性第一鉄塩及び/又は可溶性第二鉄塩と2価の
可溶性金属塩を含む水溶液に塩基性水溶液を加えて、こ
れらの金属に対応する水和金属酸化物の超微粒子を調製
し、これに界面活性剤を加えて超微粒子を一旦凝集させ
、次いで、この凝集物を洗浄、乾燥し、この乾燥物を還
元性ガスの存在下で還元することを特徴とする強磁性金
属粉の製造方法。(1) Adding a basic aqueous solution to an aqueous solution containing a soluble ferrous salt and/or a soluble ferric salt, or a soluble ferrous salt and/or a soluble ferric salt and a divalent soluble metal salt; Ultrafine particles of hydrated metal oxide corresponding to the metal are prepared, a surfactant is added to the ultrafine particles to cause the ultrafine particles to aggregate, the aggregate is then washed and dried, and the dried material is exposed to a reducing gas. A method for producing ferromagnetic metal powder, characterized by reducing the powder in the presence of.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27988885A JPS62139803A (en) | 1985-12-12 | 1985-12-12 | Production of ferromagnetic metallic powder |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP27988885A JPS62139803A (en) | 1985-12-12 | 1985-12-12 | Production of ferromagnetic metallic powder |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62139803A true JPS62139803A (en) | 1987-06-23 |
Family
ID=17617323
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP27988885A Pending JPS62139803A (en) | 1985-12-12 | 1985-12-12 | Production of ferromagnetic metallic powder |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62139803A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0397877A1 (en) * | 1988-11-25 | 1990-11-22 | Institut Metallurgii Imeni A.A.Baikova Akademii Nauk Sssr | Method for making dispersed metal powders |
JPH0533068A (en) * | 1991-07-24 | 1993-02-09 | Tsurumi Soda Kk | Method for removing halogen radical in material to be treated |
JP2008030975A (en) * | 2006-07-26 | 2008-02-14 | Miyazaki Tlo:Kk | Substance-adsorptive magnetite and its manufacturing method |
JP2010053409A (en) * | 2008-08-28 | 2010-03-11 | Sumitomo Electric Ind Ltd | Method for producing metal powder, metal powder, electrically conductive paste, and multilayer ceramic capacitor |
JP2013067865A (en) * | 2012-11-12 | 2013-04-18 | Sumitomo Electric Ind Ltd | Metal powder, electroconductive paste and multilayer ceramic capacitor |
RU2483841C1 (en) * | 2012-06-04 | 2013-06-10 | Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" | Method of producing cobalt nano-sized powders |
-
1985
- 1985-12-12 JP JP27988885A patent/JPS62139803A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0397877A1 (en) * | 1988-11-25 | 1990-11-22 | Institut Metallurgii Imeni A.A.Baikova Akademii Nauk Sssr | Method for making dispersed metal powders |
JPH0533068A (en) * | 1991-07-24 | 1993-02-09 | Tsurumi Soda Kk | Method for removing halogen radical in material to be treated |
JP2008030975A (en) * | 2006-07-26 | 2008-02-14 | Miyazaki Tlo:Kk | Substance-adsorptive magnetite and its manufacturing method |
JP2010053409A (en) * | 2008-08-28 | 2010-03-11 | Sumitomo Electric Ind Ltd | Method for producing metal powder, metal powder, electrically conductive paste, and multilayer ceramic capacitor |
RU2483841C1 (en) * | 2012-06-04 | 2013-06-10 | Федеральное Государственное Автономное Образовательное Учреждение Высшего Профессионального Образования "Сибирский Федеральный Университет" | Method of producing cobalt nano-sized powders |
JP2013067865A (en) * | 2012-11-12 | 2013-04-18 | Sumitomo Electric Ind Ltd | Metal powder, electroconductive paste and multilayer ceramic capacitor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4384892A (en) | Production of magnetic powder | |
US4447264A (en) | Production of magnetic powder | |
JPS62139803A (en) | Production of ferromagnetic metallic powder | |
US5911905A (en) | Processes for producing hydrated iron oxide and ferromagnetic iron oxide | |
US4913890A (en) | Preparation of acicular α-Fe2 O3 | |
US4497654A (en) | Ferromagnetic metallic powders useful for magnetic recording and processes for producing said metallic powders | |
JP4378763B2 (en) | Method for producing compound particle powder containing iron as its main component | |
JP2885253B2 (en) | Method of producing spindle-shaped goethite particles | |
JPS6349722B2 (en) | ||
JP3087778B2 (en) | Method for producing acicular goethite particle powder | |
JP3303896B2 (en) | Spindle-shaped iron-based metal magnetic particle powder and method for producing the same | |
JP3011221B2 (en) | Method for producing acicular goethite particle powder | |
JP3087780B2 (en) | Method for producing acicular goethite particle powder | |
JP3087777B2 (en) | Method for producing acicular goethite particle powder | |
JPS59107503A (en) | Method of manufacturing magnetic powders with iron as main constituent for magnetic recording | |
JPH0635326B2 (en) | Method for producing particles containing iron carbide | |
JPS5853045B2 (en) | Manufacturing method of magnetic powder | |
JP2612461B2 (en) | Plate-like maghemite particle powder and method for producing the same | |
JPH0312125B2 (en) | ||
JP3141907B2 (en) | Method for producing spindle-shaped iron-based metal magnetic particle powder | |
JPS62138333A (en) | Preparation of superfine particles of ferromagnetic magnetite | |
JP2935291B2 (en) | Method for producing acicular goethite particle powder | |
JP3003777B2 (en) | Method for producing spindle-shaped magnetic iron oxide particles | |
JPS5855203B2 (en) | Method for producing iron-cobalt alloy ferromagnetic powder | |
JPH038083B2 (en) |