JPS62116736A - Production of electrode for vacuum valve circuit breaker - Google Patents
Production of electrode for vacuum valve circuit breakerInfo
- Publication number
- JPS62116736A JPS62116736A JP25657385A JP25657385A JPS62116736A JP S62116736 A JPS62116736 A JP S62116736A JP 25657385 A JP25657385 A JP 25657385A JP 25657385 A JP25657385 A JP 25657385A JP S62116736 A JPS62116736 A JP S62116736A
- Authority
- JP
- Japan
- Prior art keywords
- molten metal
- particles
- copper
- electrode
- metal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01H—ELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
- H01H1/00—Contacts
- H01H1/02—Contacts characterised by the material thereof
- H01H1/0203—Contacts characterised by the material thereof specially adapted for vacuum switches
Landscapes
- Manufacture Of Alloys Or Alloy Compounds (AREA)
- High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
- Conductive Materials (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、真空遮断器用電極の製造方法に関するもので
ある。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for manufacturing an electrode for a vacuum circuit breaker.
従来から真空遮断器用電極としては、導電性が良いこと
がらCuをベースとした合金が多く用いられている。例
えばCu−Pb系、Cu−B1系、あるいは高耐電圧性
をもたせたCu−Co−B1またはpb系の溶製合金が
ある。Conventionally, Cu-based alloys have been widely used as electrodes for vacuum circuit breakers because of their good conductivity. For example, there are Cu-Pb-based, Cu-B1-based, and Cu-Co-B1 or PB-based ingot alloys with high voltage resistance.
上記材料において、Bi、Pb等の低融点金属の添加の
目的は、一般には電接面の溶着を防ぐことにある。従来
の多くの電極材にはこうした添加元素が加えられたCu
ベース合金が用いられてきている。しかし、Bi、Pb
などを添加しない電極材料もいくつかある。例えば、特
開昭54−73284に開示されている電極接点WC−
Ag、あるいは特公昭45−35101に開示されてい
るCr−Cu系の火花ギャップ用の電極などは低融点金
属を含有せずともかなり良好な耐溶着特性を有し、最近
になって真空遮断器用として用いられつつある。上記接
点のうち、Cr −Cu及びWC−Ag系の場合は、マ
トリックスとなるCr及びWCが高い融点を有するため
比較的溶着しにくいことにある。しかしながら、上記材
料においてはそれぞれに欠点を有する1例えば、WC−
Ag系においては、アーク遮断時に電極面の一部が高温
にさらされると、多量の熱電子を放射しやすく、このた
め絶縁回復特性ならびに遮断能力が低下する。したがっ
て、あまり大容量用には適用できないという欠点がある
。一方、Cr−Cu系においては、Cr自体が酸素(o
2)との親和力が非常に大きくこのため、Crの圧粉体
は、通常、還元性雰囲気中の高い温度で焼結、溶浸など
が行われる。しかし、それでも、Cr粉末を焼結した場
合には酸化物残渣が存在しなすい。この結果、電極とし
て、さらに高温のアークにさらされると、上記酸化物が
分解され、酸素を放出し、このために遮断不能になる場
合がある。これらの酸化物残渣をできるだけなくすため
に種々の方策がとられる0例えば特開昭50−5587
0に開示されているように、Cr焼結体の粒子間に残り
やすいCr酸化物を、あらかじめCu粉末を混合、圧粉
しておき、それをCuの融点以上、100℃を超えない
温度で液相焼結し、その後熱間鍛造により緻密化する方
法。In the above-mentioned materials, the purpose of adding low melting point metals such as Bi and Pb is generally to prevent welding of the electrically connected surfaces. Many conventional electrode materials contain Cu to which these additive elements have been added.
Base alloys have been used. However, Bi, Pb
There are also some electrode materials that do not contain additives. For example, the electrode contact WC- disclosed in JP-A-54-73284
Ag or Cr-Cu based spark gap electrodes disclosed in Japanese Patent Publication No. 45-35101 have fairly good welding resistance even without containing low melting point metals, and have recently been used for vacuum circuit breakers. It is being used as a. Among the above-mentioned contacts, Cr-Cu and WC-Ag type contacts are relatively difficult to weld because Cr and WC, which form the matrix, have a high melting point. However, each of the above materials has its own drawbacks. For example, WC-
In Ag-based electrodes, when a part of the electrode surface is exposed to high temperature during arc interruption, a large amount of thermoelectrons are likely to be emitted, resulting in a decrease in insulation recovery characteristics and interruption ability. Therefore, it has the disadvantage that it cannot be applied to large capacity applications. On the other hand, in the Cr-Cu system, Cr itself is oxygen (o
2), and therefore, Cr compacts are usually sintered, infiltrated, etc. at high temperatures in a reducing atmosphere. However, oxide residues are still likely to exist when Cr powder is sintered. As a result, when the electrode is exposed to a higher temperature arc, the oxide decomposes and releases oxygen, which may make it impossible to shut off. Various measures are taken to eliminate these oxide residues as much as possible.
As disclosed in No. 0, Cr oxides that tend to remain between the particles of a Cr sintered body are mixed with Cu powder and pressed into powder in advance, and then heated at a temperature higher than the melting point of Cu and not exceeding 100°C. A method of liquid phase sintering and then densification by hot forging.
あるいは酸化物が遮断時に分解した場合にその分解ガス
を吸着させるためのゲッター用の第3元素(Ti、Zr
など)を添加する方法などが挙げられる。前者の液相焼
結による酸化物を除去する方法としては、ドイツ連邦共
和国特許出願公開第1640039号公報にも開示され
ているように、Cr焼結マトリックスをCuの溶湯を浸
透させる溶浸工程によって酸化物を分解、除去する方法
が述べられている。以上のような従来技諸において、と
りわけCuを溶浸する方法は酸化物を分解、除去するこ
とに効果がある。しかしながら、完全に除去することは
困難で1部分的には酸化物スラグが焼結マトリックスの
空孔をふさぐことがあり、Cuの浸透をさまたげる結果
となり、未溶浸の欠陥空孔が形成されることがある。こ
の欠陥空孔にはガスが吸蔵されやすく、電極とした場合
、遮断操作のくり返しにより著しいガスの放出源となり
、遮断能力を下げてしまうことが多い。この点でCr焼
結マトリックスをなおいっそう清浄化する前処理を加え
る必要があった。Alternatively, if the oxide decomposes during shut-off, a third element (Ti, Zr
etc.). The former method of removing oxides by liquid-phase sintering involves an infiltration process in which molten Cu is infiltrated into a Cr sintered matrix, as disclosed in German Patent Application No. 1640039. A method for decomposing and removing oxides is described. Among the conventional techniques described above, the method of infiltrating Cu is particularly effective in decomposing and removing oxides. However, it is difficult to completely remove the oxide slag, and the oxide slag may partially block the pores in the sintered matrix, which hinders the penetration of Cu, resulting in the formation of uninfiltrated defect pores. Sometimes. Gas is likely to be occluded in these defective pores, and when used as an electrode, they often become a source of significant gas release due to repeated shutoff operations, reducing the shutoff ability. At this point, it was necessary to add a pretreatment to further clean the Cr sintered matrix.
以上のようにCr焼結マトリックスをいかに清浄化し、
Cuを高密度に溶浸してやるかが非常に重要な課題であ
る。As mentioned above, how to clean the Cr sintered matrix,
A very important issue is how to infiltrate Cu at a high density.
本発明の目的は、Cu又はCu合金中に真空遮断器用電
極として有効な金属粒子を均一に分散した鋳造合金を用
いることによって、粉末冶金手法で製造される電極材の
欠点をなくした大容量真空遮断器用電極の製造法を提供
することにある。The object of the present invention is to provide a large-capacity vacuum that eliminates the drawbacks of electrode materials manufactured by powder metallurgy by using a cast alloy in which metal particles effective as a vacuum circuit breaker electrode are uniformly dispersed in Cu or a Cu alloy. An object of the present invention is to provide a method for manufacturing a circuit breaker electrode.
発明の背景にも記したように最近の大量真空遮断器電極
のほとんどの多くは粉末冶金的手法により製造されてい
る。例えば、Cr粉末を金型成形した後に、非酸化性雰
囲気中、高温度で焼結したマトリックス中の空孔部へC
uの溶湯を浸透させる工程によって電極素材が製造され
る。これらの問題点としては、第1にプレスを用いた複
雑な工程を用すること、第2に連続空孔を有する焼結技
術、第3にCr粉末表面あるいは空孔内部の酸化物に起
因する遮断能力の低下といった多くの解決すべき問題が
ある。As mentioned in the Background of the Invention, most recent mass vacuum circuit breaker electrodes are manufactured by powder metallurgy. For example, after Cr powder is molded into a mold, C is poured into the voids in a matrix sintered at high temperatures in a non-oxidizing atmosphere.
The electrode material is manufactured by the step of permeating the molten metal u. These problems include: firstly, the use of a complicated process using a press; secondly, the sintering technology has continuous pores; and thirdly, the problem is caused by oxides on the Cr powder surface or inside the pores. There are many problems to be solved, such as a decrease in blocking ability.
本発明者らは、従来技術である粉末冶金的手法にかわる
方法として鋳造により同様の組成の電極が製造すること
ができれば前記した問題点を解決でき、遮断能力も向上
するものと考え、種々検討した結果、Cu又はCu合金
中に金属粒子が均一に分散された真空遮断器用電極の製
造法において、Cu又はCu合金溶湯中にあらかじめ溶
湯と金属粒子との濡れを生じさせる元素の少なくとも1
種類を含ませてから金属粒子を溶湯中へ浸透分散させた
後、溶湯を加圧しつつ凝固させることにより前記問題点
を解決した真空遮断器用電極を製造することができた。The present inventors believe that if an electrode with a similar composition can be manufactured by casting as an alternative to the conventional powder metallurgy method, the above-mentioned problems can be solved and the interrupting ability can be improved, and various studies have been carried out. As a result, in a method for manufacturing a vacuum circuit breaker electrode in which metal particles are uniformly dispersed in Cu or Cu alloy, at least one of the elements that causes wetting between the molten metal and the metal particles in Cu or Cu alloy molten metal is used.
After impregnating and dispersing the metal particles into the molten metal, the molten metal was solidified while being pressurized, thereby making it possible to manufacture an electrode for a vacuum circuit breaker that solved the above-mentioned problems.
本発明は、Cu又はCu合金溶湯中へ金属粒子を浸透さ
せるプロセスと金属粒子あるいは合金粒子を分散させた
溶湯を凝固させるプロセスから成る。The present invention comprises a process of infiltrating metal particles into a molten Cu or Cu alloy, and a process of solidifying the molten metal in which the metal particles or alloy particles are dispersed.
まずCu又はCu合金の溶湯中へ金属粒弊を浸透分散さ
せる方法であるが、通常の鋳造方法では、金属又は合金
溶湯中は金属粒子あるいは合金粒子を添加投入しても溶
湯表面上へ浮上分離したり、溶湯の底に沈降したりして
溶湯中へ浸透分散することができない、そこで浸透方法
について種々検討した結果、溶湯表面上への浮上分離や
沈降、あるいは粒子同志の凝集を抑制するには溶湯と粒
子間の界面のぬれ性を向上させることが重要なポイント
であることがわかった。つまり、Cu又はCu合金の溶
湯中へあらかじめTi、Cr、ZryV、Nbから選ば
れた少なくとも一種類を含ませた後に金属粒子を溶湯表
面から投入添加する溶湯中へ浸透分散することがわかっ
た。また、金属粒子を分散浸透させたCu又はCu合金
溶湯を凝固させ、再溶解、再再溶解を繰り返えしても溶
湯中の金属粒子は溶湯表面上に浮上分離あるいは沈降す
ることなく溶湯中にとどまることが明らかになった。First, metal particles are infiltrated and dispersed into the molten metal of Cu or Cu alloy, but in the normal casting method, even if metal particles or alloy particles are added to the molten metal or alloy, they float up and separate on the surface of the molten metal. Particles cannot be dispersed into the molten metal because they settle to the bottom of the molten metal and cannot penetrate and disperse into the molten metal.As a result of various studies on infiltration methods, we found that it is possible to suppress flotation and sedimentation on the surface of the molten metal, or agglomeration of particles among themselves. It was found that the important point is to improve the wettability of the interface between the molten metal and the particles. In other words, it has been found that at least one selected from Ti, Cr, ZryV, and Nb is included in advance into a molten metal of Cu or Cu alloy, and then metal particles are introduced from the surface of the molten metal and penetrated into the molten metal to be added. In addition, even if the Cu or Cu alloy molten metal in which metal particles are dispersed and permeated is solidified, remelted, and remelted repeatedly, the metal particles in the molten metal do not float to the surface of the molten metal or settle. It became clear that it would remain.
本発明で検討した金属粒子は、Cr、Go。The metal particles considered in the present invention are Cr and Go.
Mo、W、Ta、Feとその合金粒子である。これら金
属あるいは合金粒子を、あらかじめTi。These are Mo, W, Ta, Fe, and alloy particles thereof. These metal or alloy particles are made of Ti in advance.
Cr、Zr、V、Nbから選ばれた少なくとも一種類を
含むCu又はCu合金の溶湯中へ投入添加した結果、い
ずれの金属あるいは合金粒子とも溶湯表面上へ浮上分離
あるいは沈降することなく溶湯中へ浸透分散することを
確認した。As a result of adding Cu or Cu alloy containing at least one selected from Cr, Zr, V, and Nb into the molten metal, none of the metal or alloy particles float to the surface of the molten metal or settle into the molten metal. It was confirmed that it penetrated and dispersed.
本発明においてCu又はCu合金溶湯中は浸透分散でき
る金属粒子の大きさは、Cu又はCu合金鋳塊中の金属
粒子分布状態に決定され、T a 。In the present invention, the size of the metal particles that can be permeated and dispersed in the Cu or Cu alloy molten metal is determined by the metal particle distribution state in the Cu or Cu alloy ingot, and T a .
W粒子の場合は5〜200.um、Cr、Co。In the case of W particles, it is 5 to 200. um, Cr, Co.
Mo、Feの場合は5〜500μmの範囲であれば良い
ことがわかった。つまり、いずれの金属粒子でも粒子径
が5μm以下の場合、溶湯中へ浸透分散することができ
る。しかし鋳塊中に分布する金属粒子は凝集し、粒子−
ケーケは分散することができない、一方、Ta、Wの粒
子径が200μm以上になると鋳塊中に分布する粒子は
鋳塊底部へ沈降する傾向になる。また、Cr、Co。In the case of Mo and Fe, it was found that the range of 5 to 500 μm is sufficient. In other words, if any metal particles have a particle size of 5 μm or less, they can be penetrated and dispersed into the molten metal. However, the metal particles distributed in the ingot aggregate and the particles -
Cakes cannot be dispersed. On the other hand, when the particle size of Ta and W exceeds 200 μm, the particles distributed in the ingot tend to settle to the bottom of the ingot. Also, Cr, Co.
Mo、Feの粒径が500μm以上になると電極の接触
時に金属粒子同志の接触が多くなり遮断特性を低下させ
ることがわかった。It has been found that when the particle size of Mo or Fe is 500 μm or more, contact between metal particles increases when the electrodes come into contact, resulting in a decrease in the blocking properties.
溶湯中へ浸透分散できる金属粒子の量は粒子径により変
化する0例えば、粒径5μmの粒子を体積比で30%以
上投入分散すると溶湯の流動性が悪く鋳造することがで
きない。これに対し粒径500μmでは体積比45%ま
で投入分散しても鋳造することがわかった。The amount of metal particles that can be permeated and dispersed into the molten metal varies depending on the particle size. For example, if particles with a particle size of 5 μm are added and dispersed in a volume ratio of 30% or more, the fluidity of the molten metal will be poor and casting will not be possible. On the other hand, it was found that when the particle size was 500 μm, casting could be performed even if the particles were charged and dispersed to a volume ratio of 45%.
一方、金属あるいは合金粒子を溶湯中に浸透分散させる
ためのTi、Cr、Zr、V、Nb等の添加量は粒子の
添加量1〜45体積比において0.05〜3.0at1
0の範囲であれば十分で、粒子が均一に分散した鋳塊が
得られる。添加量が3 a t / 0以上になると添
加元素がマトリックスと反応して金属間化合物がマトリ
ックス中に生成して粗大化する傾向になり遮断性能を低
下させる因子となる。On the other hand, the amount of Ti, Cr, Zr, V, Nb, etc. added for penetrating and dispersing metal or alloy particles into the molten metal is 0.05 to 3.0at1 at a volume ratio of 1 to 45 particles.
A range of 0 is sufficient and an ingot in which particles are uniformly dispersed can be obtained. When the amount added is 3 at/0 or more, the added element reacts with the matrix, and an intermetallic compound tends to be generated in the matrix and become coarse, which becomes a factor that reduces the blocking performance.
金属あるいは合金粒子を分散する素地の組成は一般的な
鋳造法と同様にA g HP b y B ig T
e H5a等の金属元素を合金化することも可能である
。The composition of the matrix in which metal or alloy particles are dispersed is the same as in general casting methods.
It is also possible to alloy metal elements such as e H5a.
次に金属あるいは合金粒子を浸透分散させた溶湯を凝固
させる方法であるが、一般の鋳造法同様に別に用意した
金型に鋳込み鋳造することができる。しかし、浸透分散
した溶湯を加圧しながら凝固させることにより、鋳塊の
健全性、粒子の均一分散性はより向上する。加圧鋳造方
法は、金属あるいは合金粒子を浸透分散した溶湯を別に
用意した300〜500℃に予熱した金型に鋳込み、た
だちに金型上部よりプランジャーを用いて200〜20
00kg/dの圧力で加圧しつつ凝固させる。金型の予
熱が300℃以下であると金型の接触する溶湯の冷却速
度が大きいために加圧の効果が発揮されない。また50
0℃以上であると溶湯の冷却速度が遅くなり加圧の効果
が発揮されない。一方、溶湯に加圧する圧力は200k
g/J以下であると、溶湯の冷却速度が遅くなり加圧の
効果がない。また2000kg、/J以上になってもそ
の効果は200〜2000kg/cdと同様であること
を確認している。The next step is to solidify the molten metal in which metal or alloy particles have been permeated and dispersed, and the molten metal can be cast into a separately prepared mold in the same way as in general casting methods. However, by solidifying the permeated and dispersed molten metal while applying pressure, the soundness of the ingot and the uniform dispersibility of particles are further improved. In the pressure casting method, a molten metal in which metal or alloy particles have been permeated and dispersed is poured into a separately prepared mold that has been preheated to 300 to 500°C.
Solidify while pressurizing at a pressure of 00 kg/d. If the preheating of the mold is 300° C. or lower, the cooling rate of the molten metal in contact with the mold will be high, so that the effect of pressurization will not be exhibited. 50 again
If the temperature is 0°C or higher, the cooling rate of the molten metal will be slow and the effect of pressurization will not be exhibited. On the other hand, the pressure applied to the molten metal is 200k
If it is less than g/J, the cooling rate of the molten metal becomes slow and there is no pressurizing effect. Furthermore, it has been confirmed that even if the weight exceeds 2000 kg/J, the effect is the same as that of 200 to 2000 kg/cd.
以下1本発明の実施例について説明する。 An embodiment of the present invention will be described below.
実施例1
黒鉛るつぼ中で2033 gのCu溶解し、1150℃
に保持した。アルミナ保護管を用いて溶湯を攪拌し。Example 1 2033 g of Cu was dissolved in a graphite crucible at 1150°C.
was held at Stir the molten metal using an alumina protection tube.
渦の中央部へ粒径40μmのCr粒子56.7 gを
流し込むように投入添加し、Cr粒子の溶湯中への浸透
分散性を検討した。その結果、投入添加したCr粒子は
溶湯表面上浮上分離し、溶湯中へは浸透分散しなかった
。同様にGoyW、Mo。56.7 g of Cr particles with a particle size of 40 μm were poured into the center of the vortex to study the permeability and dispersion of the Cr particles into the molten metal. As a result, the added Cr particles floated and separated on the surface of the molten metal and did not penetrate and disperse into the molten metal. Similarly, GoyW, Mo.
Ta、Feの各粒子及びその合金粒子について検討した
結果、いずれの粒子も溶湯中へは浸透分散しなかった。As a result of examining Ta and Fe particles and their alloy particles, none of the particles penetrated and dispersed into the molten metal.
以上のように通常の鋳造法では各種粒子は溶湯中へ浸透
分散できないことがわかる。As described above, it can be seen that various particles cannot penetrate and disperse into the molten metal using normal casting methods.
実施例2
黒鉛るつぼ中で2044 gのCu−0,5Ti 合金
を溶解し、1150℃に保持した。実施例1と同様の方
法でCr、Co+ w、Mo、Ta、Feの各粒子及び
その合金粒子の浸透分散性について検討した結果、いず
れの粒子も溶湯中へ浸透分散し、Ti元素の添加が侵透
分散性に有効であることがわかった。同様にした浸透分
散性の及ぼす添加元素の影響について検討した。その結
果Cr、Zr。Example 2 2044 g of Cu-0,5Ti alloy was melted in a graphite crucible and maintained at 1150°C. As a result of examining the permeability and dispersion of each particle of Cr, Co+w, Mo, Ta, and Fe particles and their alloy particles in the same manner as in Example 1, all particles permeated and dispersed into the molten metal, and the addition of Ti element was found to be ineffective. It was found to be effective for osmotic dispersion. In a similar manner, the influence of added elements on penetration dispersibility was investigated. As a result, Cr and Zr.
V、Nbをそれぞれ0.5wt10程度添加した溶湯で
あればCr、Cow w、Mo、Ta、Feの各粒子及
びその合金粒子は浸透分散することがわかった。It has been found that in a molten metal to which about 0.5wt10 of each of V and Nb is added, particles of Cr, Cow, Mo, Ta, Fe and their alloy particles permeate and disperse.
実施例3
黒鉛るつぼ中で1890 gのCu 0.5Ti 合
金を溶解し、1150℃に保持した。 1150℃に保
持したC u −0、5T i 溶湯中へアルミナ保
護管を用し1て溶湯を攪拌し、渦の中央部へ粒径40μ
mのCr粒子210gを流し込むように投入添加し、溶
湯中へ浸透分散させた1次にCr粒子分散溶湯を別途用
意した300℃に予熱した50X2QX200 Qの金
型に溶湯を攪拌しながら鋳込み、ただちにプランジャー
を用いて600 kg/cdの加圧で加圧しつつ凝固さ
せ、鋳塊を得た。Cr粒子分散鋳塊のミクロ組織を観察
した結果、Cr粒子は素地中に均一に分散し、鋳造欠陥
等はほとんど見あたらない。Example 3 1890 g of Cu 0.5Ti alloy was melted in a graphite crucible and kept at 1150°C. Using an alumina protection tube, the molten metal was stirred into the C u -0,5T i molten metal held at 1150°C, and particles with a diameter of 40 μ were introduced into the center of the vortex.
210g of Cr particles were poured into the molten metal and dispersed into the molten metal.The molten metal was poured into a separately prepared 50X2QX200Q mold preheated to 300℃ while stirring, and immediately poured into the molten metal. It was solidified while being pressurized at 600 kg/cd using a plunger to obtain an ingot. As a result of observing the microstructure of the Cr particle-dispersed ingot, the Cr particles were uniformly dispersed in the base material, and almost no casting defects were found.
実施例4
実施例3と同様の方法で、Cr粒子の分散量を種々本え
た各種Cu −Cr粒子分散鋳造鋼合金鋳塊を溶製し、
それぞれの電流遮断性能及び耐電圧特性を調べた結果を
第1図に示す。なお従来材の真空溶浸のみの材料を10
0%とした場合の本発明材のそれぞれの性能比較値であ
る。試験方法は、周波数約50 Hzで高電圧(600
〜700V)をかけ遮断電流を行500Aステップで増
加させながら遮断し、この遮断途上において遮断不能と
なる電流の限界値を求め、従来材のその値と比較したも
のである。Example 4 Various Cu-Cr particle dispersed cast steel alloy ingots with various amounts of Cr particles dispersed were produced in the same manner as in Example 3,
Figure 1 shows the results of examining the current interrupting performance and withstand voltage characteristics of each. In addition, the conventional material made only by vacuum infiltration was reduced to 10%.
These are performance comparison values for each of the materials of the present invention when it is set to 0%. The test method uses high voltage (600 Hz) at a frequency of approximately 50 Hz.
~700V) was applied, the current was increased in steps of 500A, and the limit value of the current at which the current could no longer be interrupted was determined and compared with that of the conventional material.
尚1本発明は「真空遮断器用電極の製造法」としている
が1本質的には金属粒子分散鋳造合金の製造法である。Although the present invention is described as a "method for manufacturing an electrode for a vacuum circuit breaker," it is essentially a method for manufacturing a metal particle dispersed casting alloy.
マトリックスと金属粒子の組合せにより機能性材料とし
て見なおせるものと考えられる。例えば軽量耐摩耗材料
等があげられる。It is thought that the combination of matrix and metal particles can be reconsidered as a functional material. Examples include lightweight wear-resistant materials.
本発明による電極によれば、一般的な鋳造方法で製造で
きるので、粉末冶金手法に較べ経済的でかつ欠陥の少な
い電極ができるので高性能電極ができる6また、鋳造法
であるためにマトリックス組成は任意に変えることがで
きる。According to the electrode according to the present invention, since it can be manufactured by a general casting method, it is more economical and has fewer defects than powder metallurgy, resulting in a high-performance electrode.6 Also, because it is a casting method, the matrix composition can be changed arbitrarily.
第1図は本発明の真空遮断器用電極の製造法により製造
したCr粒子分散鋳造合金の電気的性能比較値説明図で
ある01.− 、
代理人 弁理士 小川勝馬 1、FIG. 1 is an explanatory diagram of electrical performance comparison values of Cr particle dispersed cast alloys manufactured by the method for manufacturing electrodes for vacuum circuit breakers of the present invention. −, Agent: Patent Attorney Katsuma Ogawa 1.
Claims (1)
400℃以上あるいは銅と固溶しない金属粒子を均一に
分散させた真空遮断器用電極の製造法において、銅又は
銅合金溶湯と金属粒子との濡れを生じさせる元素、チタ
ン、クロム、ジルコニウム、バナジウム、ニオブから選
ばれた少なくとも一種類を銅又は銅合金溶湯中へ含ませ
てから金属粒子を溶湯中へ浸透分散し、溶湯を加圧しつ
つ凝固させることを特徴とする真空遮断器用電極の製造
法。1. In a method for manufacturing a vacuum circuit breaker electrode in which metal particles having a melting point difference of 400°C or more with copper or not solidly soluble with copper are uniformly dispersed in a copper or copper alloy matrix, copper or copper alloy molten metal and metal particles are uniformly dispersed. At least one element selected from the group consisting of titanium, chromium, zirconium, vanadium, and niobium, which causes wetting with the particles, is included in the molten copper or copper alloy, and then the metal particles are penetrated and dispersed into the molten metal, and the molten metal is added. A method for manufacturing an electrode for a vacuum circuit breaker, which is characterized by solidifying while pressing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25657385A JPS62116736A (en) | 1985-11-18 | 1985-11-18 | Production of electrode for vacuum valve circuit breaker |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP25657385A JPS62116736A (en) | 1985-11-18 | 1985-11-18 | Production of electrode for vacuum valve circuit breaker |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62116736A true JPS62116736A (en) | 1987-05-28 |
Family
ID=17294513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP25657385A Pending JPS62116736A (en) | 1985-11-18 | 1985-11-18 | Production of electrode for vacuum valve circuit breaker |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62116736A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04206411A (en) * | 1990-11-30 | 1992-07-28 | Hitachi Ltd | Electrode material for vacuum circuit breaker and vacuum circuit breaker |
JP2006032036A (en) * | 2004-07-14 | 2006-02-02 | Toshiba Corp | Contact material for vacuum valve |
US9090910B2 (en) | 2008-07-16 | 2015-07-28 | Kbi Biopharma, Inc. | Methods and systems for manipulating particles using a fluidized bed |
-
1985
- 1985-11-18 JP JP25657385A patent/JPS62116736A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04206411A (en) * | 1990-11-30 | 1992-07-28 | Hitachi Ltd | Electrode material for vacuum circuit breaker and vacuum circuit breaker |
JP2006032036A (en) * | 2004-07-14 | 2006-02-02 | Toshiba Corp | Contact material for vacuum valve |
US9090910B2 (en) | 2008-07-16 | 2015-07-28 | Kbi Biopharma, Inc. | Methods and systems for manipulating particles using a fluidized bed |
US9279133B2 (en) | 2008-07-16 | 2016-03-08 | Ksep Systems, Llc | Methods and systems for manipulating particles using a fluidized bed |
US10208283B2 (en) | 2008-07-16 | 2019-02-19 | Sartorius Stedim North America Inc. | Methods and systems for manipulating particles using a fluidized bed |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3957453A (en) | Sintered metal powder electric contact material | |
US5480472A (en) | Method for forming an electrical contact material | |
JP5826219B2 (en) | Method for making a metal article having other additive components without melting | |
EP0115292B1 (en) | Process for manufacturing copper-chromium alloys by melting, for use as contact material in vacuum power switches | |
EP0079755B1 (en) | Copper base spinodal alloy strip and process for its preparation | |
US6350294B1 (en) | Powder-metallurgically produced composite material and method for its production | |
US4168162A (en) | Infiltrating powder composition | |
JP3428416B2 (en) | Vacuum circuit breaker, vacuum valve and electric contact used therefor, and manufacturing method | |
JPS62116736A (en) | Production of electrode for vacuum valve circuit breaker | |
JP3168630B2 (en) | Manufacturing method of electrode material | |
CN114892064B (en) | FeCrCuVCo high-entropy alloy and preparation method thereof | |
CN108603248B (en) | Method for producing carbon composite material, and carbon composite material | |
CN113061778B (en) | In-situ amorphous particle reinforced copper alloy material | |
JP3113639B2 (en) | Manufacturing method of alloy powder | |
CN100462458C (en) | Molten body quick quenching copper chromium titanium zirconium cobalt contact head material | |
JP2749165B2 (en) | TiA-based composite material and method for producing the same | |
JPS6353252B2 (en) | ||
US3203781A (en) | Method of producing dispersion-hardened metal alloys | |
JP2653461B2 (en) | Manufacturing method of contact material for vacuum valve | |
CN113061774B (en) | Endogenous amorphous phase in-situ reinforced silver alloy material | |
JPH0458130B2 (en) | ||
JP4064917B2 (en) | Al-based alloy with excellent heat resistance and wear resistance | |
JP3106609B2 (en) | Manufacturing method of electrode material | |
JPH05101751A (en) | Manufacture of electrode material | |
JP2639812B2 (en) | Magnetic alloy powder for sintering |