JPS6162858A - Automatic flaw detector - Google Patents
Automatic flaw detectorInfo
- Publication number
- JPS6162858A JPS6162858A JP59186160A JP18616084A JPS6162858A JP S6162858 A JPS6162858 A JP S6162858A JP 59186160 A JP59186160 A JP 59186160A JP 18616084 A JP18616084 A JP 18616084A JP S6162858 A JPS6162858 A JP S6162858A
- Authority
- JP
- Japan
- Prior art keywords
- flaw detection
- orbit
- cylindrical object
- probe
- moving unit
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/26—Arrangements for orientation or scanning by relative movement of the head and the sensor
- G01N29/265—Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23Q—DETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
- B23Q9/00—Arrangements for supporting or guiding portable metal-working machines or apparatus
- B23Q9/0014—Portable machines provided with or cooperating with guide means supported directly by the workpiece during action
- B23Q9/0021—Portable machines provided with or cooperating with guide means supported directly by the workpiece during action the tool being guided in a circular path
Landscapes
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、たとえば配管のごとき円筒状物体の外周面を
走行して当該検査物体に生じたひび割れ、その他の欠陥
を自動的に探傷する自動探傷装置の改良に関するもので
ある。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an automatic flaw detection method that automatically detects cracks and other defects that occur in a cylindrical object such as piping by traveling along the outer peripheral surface of the object. This relates to improvements in equipment.
本発明の説明に先立ち、従来実用に供されている自動探
傷装置の全体構成を第8図にもとづいて説明する。Prior to explaining the present invention, the overall configuration of an automatic flaw detection apparatus that has been put into practical use will be explained based on FIG. 8.
第8図において、1は検査対象物である配管のごとき円
筒状物体、2は円筒状物体1の外周面に取り付けられた
軌道、3は軌道2上を走行する探傷本体移動ユニット、
4は円筒状物体1の軸方向に探触子5を移動さぜる探触
子移動ねじを示し、探傷本体移動ユニット3内には、当
該ユニット3を軌道2に沿って円筒状物体1の周方向(
X方向)に回転させるDCモータなどの駆動源6と、探
触子移動ねじ4を回転して探触子5を円筒状物体1の軸
方向(Y方向)に移動させる駆動源7とが内蔵されてい
る。In FIG. 8, 1 is a cylindrical object such as a pipe to be inspected, 2 is a track attached to the outer peripheral surface of the cylindrical object 1, 3 is a flaw detection main body moving unit that runs on the track 2,
Reference numeral 4 indicates a probe moving screw that moves the probe 5 in the axial direction of the cylindrical object 1. Inside the flaw detection main body moving unit 3, the unit 3 is moved along the trajectory 2 of the cylindrical object 1. Circumferential direction (
It has a built-in drive source 6 such as a DC motor that rotates the probe in the axial direction (X direction), and a drive source 7 that rotates the probe moving screw 4 and moves the probe 5 in the axial direction (Y direction) of the cylindrical object 1. has been done.
ところで、原子力発電プラント内には、各種層、途に応
じた配管が数多く布設されておシ、シたがってこれら各
種配管を探傷検査する頻麗も当然多 ゛く力る。By the way, in a nuclear power plant, there are many pipes installed for various layers and purposes, and therefore it is natural that a lot of effort is required to inspect these various pipes for flaws.
しかしながら、従来形自動探傷装置にあっては、第8図
に示すごとく、探傷本体移動ユニット3内に2基の駆動
源、すなわち当該ユニット3を軌道2に沿って円筒状物
体1の周方向(X方向)に走行させる駆動源6と、探触
子移動ねじ4を回転して探触子5を円筒状物体1の軸方
向(Y方向)に移動させる駆動源7とを内蔵しており、
探傷装置そのものの小形化に限度があるため、自動探傷
装置を適用し得る個所が制限され、この種検査に多くの
時間と労力とを必要としていた。However, in the conventional automatic flaw detection apparatus, as shown in FIG. It has a built-in drive source 6 that moves the probe 5 in the axial direction (Y direction) of the cylindrical object 1 by rotating the probe moving screw 4, and a drive source 7 that moves the probe 5 in the axial direction (Y direction) of the cylindrical object 1.
Since there is a limit to the miniaturization of the flaw detection device itself, the locations where the automatic flaw detection device can be applied are limited, and this type of inspection requires a lot of time and labor.
なお、原子力関係の調査報告例によれば、従来形自動探
傷装置の高さ寸法が40調短縮されれば、原子力発電プ
ラント内における自動探傷装置の適用率は、約10%向
上するといわれている。Furthermore, according to an example of a nuclear power-related research report, it is said that if the height of conventional automatic flaw detection equipment is reduced by 40 steps, the application rate of automatic flaw detection equipment in nuclear power plants will increase by approximately 10%. .
また、従来形自動探傷装置にあっては、第8図に図示を
省略したが、探傷本体移動ユニット3に内蔵された2基
の駆動源6と7とにそれぞれケーブルが接続されており
、これらのケーブルが探傷本体移動ユニット3の定行に
ともなって移動するため、ケーブル捌きに人手を必要と
していた。In addition, in the conventional automatic flaw detection device, although not shown in FIG. Since the cables move as the flaw detection main body moving unit 3 moves, manpower is required to sort the cables.
本発明は、以上の点を考慮してなされたものであって、
その目的とするところは、探傷装置の走行部を小形化し
て原子力発電プラント内における自動探傷装置の適用率
を従来よりも向上させることができ、しかも従来おこな
われていたごときケーブル捌きを全く必要とし々い、作
渠性にすぐれた自動探傷装置を提供しようとするもので
ある。The present invention has been made in consideration of the above points, and includes:
The purpose of this is to make the traveling part of the flaw detection equipment more compact, thereby increasing the application rate of automatic flaw detection equipment in nuclear power plants than before, and eliminating the need for cable sorting, which was done in the past. The aim is to provide an automatic flaw detection device with excellent drainage performance.
上記目的を達成するため、本発明は、円筒状物体の外周
面に取り付けられる軌道と、当該軌道に沿って円筒状物
体の周方向に回転する探傷本体移動ユニットと、探傷本
体移動ユニットに装着されて円筒状物体の軸方向に探触
子を移動させる探触子移動機構とを備えてなる自動探傷
装置において、上記軌道として、円筒状物体の外周面に
固定軌道を取り付けるとともに、当該固定軌道上に回転
軌道を取り付け、さらに上記回転軌道に探傷本体移動ユ
ニットを装着するとともに、回転軌道と探触子移動機構
との駆動源を回転軌道の系外に設置してなることを特徴
とするものである。In order to achieve the above object, the present invention provides a track attached to the outer peripheral surface of a cylindrical object, a flaw detection main body moving unit that rotates in the circumferential direction of the cylindrical object along the track, and a flaw detection main body moving unit that is attached to the flaw detection main body moving unit. In an automatic flaw detection device equipped with a probe moving mechanism that moves the probe in the axial direction of the cylindrical object, a fixed track is attached to the outer peripheral surface of the cylindrical object as the track, and a A rotary orbit is attached to the rotary orbit, and a flaw detection main body moving unit is attached to the rotary orbit, and a drive source for the rotary orbit and the probe moving mechanism is installed outside the system of the rotary orbit. be.
以下、本発明を、第1図力いし第3図の一実施例にもと
づいて胛明すると、第1図は本発明に係る自動探傷装置
の全体構成を示す一部切久斜視図である。Hereinafter, the present invention will be explained based on an embodiment of Figures 1 to 3. Figure 1 is a partially cutaway perspective view showing the overall configuration of an automatic flaw detection apparatus according to the present invention.
第1図において、1は検査対象物である配管のごとき円
筒状物体、8は円筒状物体1の外周面に耳ソシ付けらノ
また固定軌道、9は後述の構成によって固定軌道8上を
回転する回転軌道、10は円筒状物体1の軸方向に探触
子(図示省略)を移動させる探触子移動ねじを示し、探
触子移動ねじ1゜は、探傷本体移動ユニット11に装着
されている。In Fig. 1, 1 is a cylindrical object such as a pipe to be inspected, 8 is a fixed orbit with ears attached to the outer peripheral surface of the cylindrical object 1, and 9 rotates on a fixed orbit 8 with the configuration described later. 10 indicates a probe moving screw that moves the probe (not shown) in the axial direction of the cylindrical object 1, and the probe moving screw 1° is attached to the flaw detection main body moving unit 11. There is.
また、探傷本体移動ユニット11は、回転軌道9にねじ
止めされている。Further, the flaw detection main body moving unit 11 is screwed to the rotating orbit 9.
探傷本体移動ユニット11を拡大して示す第2図(平面
図)および第3図(一部縦断正面図)において、回転軌
道9は、固定軌道8に取り付けられたDCモータなどの
駆動源12によって駆動され、探傷本体移動ユニット1
1は、回転軌道9とともに円筒状物体1の周方向に回転
する。また、探傷本体移動ユニット11には、固定軌道
8に設けられたラック13とかみ合うビニオン14が装
着されておシ、探傷本体移動ユニット11が円筒探傷本
体移動ユニット11が円筒状物体1の周方向を移動する
距離は、尚該ユニット11に従動するビニオン14の回
転により、減速・割出し機構15によって割り出され、
探傷本体移動ユニット11が円筒状物体10周方向を一
定距脚iL#動すると、探触子移動ねじ10が回転して
図示を省略した探触子を円筒状物体1の軸方向に一定距
離移動させる。その走査軌跡を第7図(a)に符号t、
で示す。In FIG. 2 (plan view) and FIG. 3 (partially longitudinal front view) showing the flaw detection main body moving unit 11 in an enlarged manner, the rotating orbit 9 is driven by a drive source 12 such as a DC motor attached to the fixed orbit 8. Driven, flaw detection main body moving unit 1
1 rotates in the circumferential direction of the cylindrical object 1 along with the rotating orbit 9. Further, the flaw detection main body moving unit 11 is equipped with a binion 14 that engages with a rack 13 provided on the fixed track 8. The distance traveled is determined by the deceleration/indexing mechanism 15 by the rotation of the pinion 14 driven by the unit 11,
When the flaw detection main body moving unit 11 moves a constant distance iL# in the circumferential direction of the cylindrical object 10, the probe moving screw 10 rotates and moves the probe (not shown) a certain distance in the axial direction of the cylindrical object 1. let The scanning locus is shown in FIG. 7(a) with symbols t,
Indicated by
なお、上記実施例においては、駆動源12を固定軌道8
の端部に取り付けた場合について例示したが、これに代
えて、駆動源12を固定軌道8がら取り外して別設置と
し、この別設置された駆動源からの回転駆動力によシ、
第2図に一点鎖線で示すフレキシブルワイヤ機構16を
介して回転軌道9を回転させるようにしてもよく、さら
に駆動源12として、ステッピングモータあるいはエン
コーダを付設したモータなどを使用することに問題は々
い。In the above embodiment, the drive source 12 is connected to the fixed track 8.
Although the case where the drive source 12 is attached to the end of the fixed track 8 is illustrated as an example, instead of this, the drive source 12 can be removed from the fixed track 8 and installed separately, and the rotational driving force from the separately installed drive source can be used.
The rotary track 9 may be rotated via a flexible wire mechanism 16 shown by a chain line in FIG. stomach.
また、図示を省略したが、第1図ないし第3図の実施例
においては、探傷本体移動ユニット11が円筒状物体1
の周方向に在役移動しても、円筒状物体1の軸方向に移
動する探触子が常に一方向に移動して第7図(a)に示
す走査軌跡t1を得ることができるよう、探傷本体ユニ
ット11内に一方向クラッチが組み込まれている。Although not shown in the drawings, in the embodiments shown in FIGS. 1 to 3, the flaw detection main body moving unit 11
Even if the probe moves in the circumferential direction of the cylindrical object 1, the probe moving in the axial direction of the cylindrical object 1 can always move in one direction to obtain the scanning trajectory t1 shown in FIG. 7(a). A one-way clutch is built into the flaw detection main unit 11.
さらに、第1図ないし第3図に示す実施例によって得ら
れる探触子の走査軌跡t1は、第7図(a)に示すごと
きX−Y走査による軌跡であるが、第7図(b)に示す
とときY−X走査による軌跡t2を得ることのできる目
移探傷装置の一例を第4図ないし第6図に示す。Furthermore, the scanning trajectory t1 of the probe obtained by the embodiment shown in FIGS. 1 to 3 is a trajectory obtained by X-Y scanning as shown in FIG. 7(a), but as shown in FIG. 7(b). FIGS. 4 to 6 show an example of a displacement flaw detection device that can obtain the trajectory t2 by Y-X scanning when
探傷装置の全体構成を一部切欠斜視図として示す第4図
において、1は検査対象物である配管のごとき円筒状物
体、17は円筒状物体1の外周面に取り付けられた固定
軌道、18は後述の構成によって固定軌道17上を回転
する回転軌道、19は円筒状物体1の軸方向に探触子(
図示省略)を移動させる探触子移動ねじを示し、探触子
移動ねじ19は、探傷本体移動ユニット20に装着され
ている。なお、上記した探傷本体移動ユニット20は、
バンド21を介して固定順、道17の外周に装着されて
いる。In FIG. 4, which shows the overall configuration of the flaw detection device as a partially cutaway perspective view, 1 is a cylindrical object such as a pipe to be inspected, 17 is a fixed track attached to the outer peripheral surface of the cylindrical object 1, and 18 is a fixed track attached to the outer peripheral surface of the cylindrical object 1. A rotary orbit that rotates on a fixed orbit 17 with the configuration described later, 19 is a probe (
The probe moving screw 19 is attached to the flaw detection main body moving unit 20. In addition, the flaw detection main body moving unit 20 described above is
It is attached to the outer periphery of the road 17 in a fixed order via a band 21.
探傷本体移動ユニット20を拡大して示す第5図(平面
図)および薗6図(一部縦断正面図)において、回転軌
道18は、固定軌道17に取り付けられたDCモータな
どの駆動源22によって駆動される。また、探傷本体移
動ユニット20の一側には、固定軌道17に設けられた
ラック23とかみ合うピニオン24が装着されており、
探傷本体移動ユニット20の他側には、回転軌道18に
設けられたラック25とかみ合うピニオン26が装着さ
れている。第6図中、27および28は探傷本体移動ユ
ニット20の走行車輪を示している。In FIG. 5 (plan view) and FIG. 6 (partially longitudinal front view) showing an enlarged view of the flaw detection main body moving unit 20, the rotating orbit 18 is driven by a drive source 22 such as a DC motor attached to the fixed orbit 17. Driven. Furthermore, a pinion 24 that engages with a rack 23 provided on the fixed track 17 is attached to one side of the flaw detection main body moving unit 20.
A pinion 26 that meshes with a rack 25 provided on the rotating track 18 is mounted on the other side of the flaw detection main body moving unit 20 . In FIG. 6, reference numerals 27 and 28 indicate running wheels of the flaw detection main body moving unit 20.
しかして、探傷本体移動ユニツ)20に装着されている
ピニオン26をクラッチ29を介して当該ユニット20
にロックさせると、探傷本体移動ユニット20は、回転
軌道18とともに円筒状物体1の周方向に回転される。Therefore, the pinion 26 attached to the flaw detection body moving unit 20 is connected to the unit 20 via the clutch 29.
When locked, the flaw detection main body moving unit 20 is rotated in the circumferential direction of the cylindrical object 1 together with the rotation orbit 18 .
なお、このとき、固定軌道17のラック23とかみ合っ
ているピニオン24は、回転フリーの状態としておく。Note that at this time, the pinion 24 meshing with the rack 23 of the fixed track 17 is left in a free rotation state.
次に、ピニオン26を回転フリー、ピニオン24をクラ
ッチ29を介して探傷本体移動ユニット20にロックさ
せると、当該ユニット20は停止する。一方、ピニオン
26は、回転フリーの状態にあるため、回転軌道18の
回転にともなってその位置で回転し、ギヤ30ないし3
3を介して探触子移動ねじ19を回転させるものであっ
て、探触子移動ねじ19の回転によシ、図示を省略した
探触子が円筒状物体1の軸方向に移動する。なお、探触
子を円筒状物体1の軸方向に往復動させるためには、回
転軌道18の回転を正逆変化させるか、第4図および第
5図に符号34で示す回転方向変換クラッチを探傷本体
移動ユニット2o内に装着しておくことによシ、第7図
(b)に示すごときY−X走査による軌跡t2を得るこ
とができる。Next, when the pinion 26 is free to rotate and the pinion 24 is locked to the flaw detection main body moving unit 20 via the clutch 29, the unit 20 is stopped. On the other hand, since the pinion 26 is in a free rotation state, it rotates at that position as the rotation orbit 18 rotates, and the pinion 26 rotates at that position as the rotation orbit 18 rotates.
The probe moving screw 19 is rotated through the probe moving screw 19, and as the probe moving screw 19 rotates, a probe (not shown) moves in the axial direction of the cylindrical object 1. In order to reciprocate the probe in the axial direction of the cylindrical object 1, the rotation of the rotary track 18 can be changed in the forward and reverse directions, or a rotation direction conversion clutch shown at 34 in FIGS. 4 and 5 can be used. By installing it in the flaw detection main body moving unit 2o, it is possible to obtain a trajectory t2 by Y-X scanning as shown in FIG. 7(b).
本発明は以上のごときであり、本発明においては、円筒
状物体の外周面に固定軌道を取り付けるとともに、錨該
固定軌道上に回転軌道を取り付け、さらに上記回転軌道
に探傷本体移動ユニットを装着するとともに、回転軌道
と探触子移動機構との駆動源を回転軌道の系外に設置し
たことにより、上記回転軌道と探触子移動機構との駆動
源を回転軌道の系外に設置しても、検査対象物である円
筒状物体の探傷を支障なくおこない得るものであって、
その効果は下記のとおシである。The present invention is as described above, and in the present invention, a fixed track is attached to the outer peripheral surface of a cylindrical object, a rotating track is attached to the anchor on the fixed track, and a flaw detection main body moving unit is attached to the rotating track. In addition, by installing the drive source for the rotating orbit and the probe moving mechanism outside the rotating orbit system, it is possible to install the driving source for the rotating orbit and the probe moving mechanism outside the rotating orbit system. , which can perform flaw detection on a cylindrical object to be inspected without any trouble,
The effect is as follows.
すなわち、回転軌道と探触子移動機構との駆動源を回転
軌道の系外に設置することによシ、円筒状物体の外周を
走行する探傷装置の小形化をはかることかでき、実機に
照らして寸法計算をおこなったところ、探傷装置の大き
さを従来よシもIA程度小形化できることが確認され、
装置の高さ寸法の大幅短縮化も確認された。しかして、
本発明においては、特に、探傷装置の高さ寸法を大幅に
短縮でき・ることによシ、自動探傷装置を適用し得る個
所の制限が従来よりも緩和され、既述した原子力発電プ
ラント内における自動探傷装置の適用率を向上させるこ
とができるものであって、回転軌道とセパレートタイプ
とした駆動源は、探傷検査をおとなり現地のスペース状
況に応じて、適宜の場所に設置することができ、機動性
に富む。In other words, by installing the drive source for the rotating orbit and the probe moving mechanism outside the rotating orbit, it is possible to downsize the flaw detection device that travels around the periphery of a cylindrical object, and compared to the actual machine. When we calculated the dimensions, we confirmed that the size of the flaw detection device could be reduced to about IA compared to the conventional one.
A significant reduction in the height of the device was also confirmed. However,
In particular, in the present invention, the height dimension of the flaw detection device can be significantly shortened, so that the restrictions on the locations where the automatic flaw detection device can be applied are relaxed compared to the past, and the height dimension of the flaw detection device can be significantly reduced. This can improve the application rate of automatic flaw detection equipment, and the drive source with a rotating orbit and separate type can be installed at an appropriate location according to the on-site space situation after flaw detection. , highly maneuverable.
寸だ、本発明においては、駆動源が探傷本体移動ユニッ
トの走行にともなって移動することがないので、従来の
ように、駆動源に接続されているケーブルを人手によっ
て捌くといった作業を省略することができる。In fact, in the present invention, since the drive source does not move as the flaw detection body moving unit travels, the conventional work of manually handling the cable connected to the drive source can be omitted. I can do it.
さらに、図示実施例のごとく、回転軌道の駆動源と探触
子移動機構の駆動源とを、その双方の被駆動体に共通す
る1個の駆動源とすれば、探傷装置の制御系を簡素化す
ることができるばかりか、重量の軽減化をもはかり得、
電源も1つで事足りる。Furthermore, as in the illustrated embodiment, if the drive source for the rotating orbit and the drive source for the probe moving mechanism are one drive source that is common to both driven bodies, the control system of the flaw detection device can be simplified. Not only can it be made more compact, but it can also reduce its weight.
One power source is sufficient.
ここで、本発明の付随的効果を下記する。Here, the additional effects of the present invention will be described below.
(1)検査対象物である円筒状物体の外周を走行する走
行部から駆動源を取り外す構造としたことによシ、当該
駆動源の重量に相当する分だけ、駆動源の負荷を軽減す
ることができる。(1) By adopting a structure in which the drive source is removed from the traveling part that runs around the outer circumference of the cylindrical object to be inspected, the load on the drive source can be reduced by an amount equivalent to the weight of the drive source. I can do it.
(2)上記(1)の理由によυ、1台の探傷装置の駆動
源を他の探傷装置の駆動源としても共用することができ
、経済的である。(2) Due to the reason (1) above, the drive source of one flaw detection device can be shared as the drive source of other flaw detection devices, which is economical.
本発明は以上のごときであり、本発明によれば、探傷装
置の走行部を小形化として原子力発電プラント内におけ
る自動探傷装置の適用率を従来よりも向上させることが
でき、しかも従来おこなわれていたごときケーブル捌き
を全く必要としたい、作業性にすぐれた自動探傷装置を
得ることができる。The present invention is as described above.According to the present invention, it is possible to miniaturize the traveling part of the flaw detection device, thereby increasing the application rate of automatic flaw detection devices in nuclear power plants compared to the conventional method, and moreover, It is possible to obtain an automatic flaw detection device with excellent workability that does not require any cable sorting at all.
第1図ないし第3図は本発明に係る自動探傷装置の一実
施例を示し、第1図はその全体構成を示す一部切欠斜視
図、第2図は第1図の平面図、第3図は第1図の一部を
縦断して示す正面図、第4図ないし第6図は本発明に係
る自動探傷装置の他の実施例を示し、第4図はその全体
構成を示す一部切欠斜視図、第5図は第4図の平面図、
第6図は第4図の一部を縦断して示す正面図、第7図(
a)は第1図かいし第3図に示す自動探傷装置の走査軌
跡を三次元的に表わした図、第7図(b)は第4図ない
し第6図に示す自動探傷装置の走査軌跡を三次元的に表
わした図、第8図は従来形自動探傷装置の全体構成を示
す斜視図である。
1・・・円筒状物体、8・・・固定軌道、9・・・回転
軌道、10・・・探触子移動ねじ、11・・・探傷本体
移動ユニット、12・・・駆動源、13・・・ラック、
14・・・ピニオン、15・・・減速割出し機構、16
・・・フレキシブルワイヤ機構、17・・・固定軌道、
18・・・回転軌道、19・・・探触子移動ねじ、20
・・・探傷本体移動ユニット、21・・・バンド、22
・・・駆動源、23・・・ラック、24・・・ピニオン
、25・・・ラック、26・・・ピニオン、27および
28・・・走行車輪、29・・・クラッチ、30〜33
・・・ギヤ、34・・・回転方向変換クラッチ、t、お
よびt2・・・走査軌跡。1 to 3 show an embodiment of an automatic flaw detection device according to the present invention, FIG. 1 is a partially cutaway perspective view showing the overall configuration, FIG. 2 is a plan view of FIG. 1, and FIG. The figure is a front view showing a part of Fig. 1 in longitudinal section, Figs. 4 to 6 show other embodiments of the automatic flaw detection device according to the present invention, and Fig. 4 is a part showing the overall configuration. A cutaway perspective view, FIG. 5 is a plan view of FIG. 4,
Figure 6 is a front view showing a part of Figure 4 in longitudinal section, Figure 7 (
a) is a three-dimensional representation of the scanning trajectory of the automatic flaw detection device shown in FIGS. 1 to 3, and FIG. 7(b) is a three-dimensional representation of the scanning trajectory of the automatic flaw detection device shown in FIGS. 4 to 6. FIG. 8 is a perspective view showing the overall configuration of a conventional automatic flaw detection device. DESCRIPTION OF SYMBOLS 1... Cylindrical object, 8... Fixed orbit, 9... Rotating orbit, 10... Probe moving screw, 11... Flaw detection main body moving unit, 12... Drive source, 13... ··rack,
14... Pinion, 15... Deceleration indexing mechanism, 16
...Flexible wire mechanism, 17...Fixed track,
18... Rotating orbit, 19... Probe moving screw, 20
...Flaw detection main body moving unit, 21...Band, 22
... Drive source, 23... Rack, 24... Pinion, 25... Rack, 26... Pinion, 27 and 28... Traveling wheel, 29... Clutch, 30-33
...Gear, 34...Rotation direction conversion clutch, t, and t2...Scanning locus.
Claims (1)
軌道に沿って円筒状物体の周方向に回転する探傷本体移
動ユニットと、探傷本体移動ユニットに装着されて円筒
状物体の軸方向に探触子を移動させる探触子移動機構と
を備えてなる自動探傷装置において、上記軌道として、
円筒状物体の外周面に固定軌道を取り付けるとともに、
当該固定軌道上に回転軌道を取り付け、さらに上記回転
軌道に探傷本体移動ユニットを装着するとともに、回転
軌道と探触子移動機構との駆動源を回転軌道の系外に設
置してなることを特徴とする自動探傷装置。 2、特許請求の範囲第1項記載の発明において、回転軌
道の駆動源と探触子移動機構の駆動源とを、その双方の
被駆動体に共通する1個の駆動源とした自動探傷装置。[Claims] 1. A track attached to the outer circumferential surface of a cylindrical object, a flaw detection main body moving unit that rotates in the circumferential direction of the cylindrical object along the track, and a flaw detection main body moving unit that is attached to the flaw detection main body moving unit and has a cylindrical shape. In an automatic flaw detection device comprising a probe moving mechanism that moves the probe in the axial direction of the object, the trajectory is
Attach a fixed track to the outer circumferential surface of a cylindrical object, and
A rotary orbit is attached to the fixed orbit, a flaw detection body moving unit is further attached to the rotary orbit, and a drive source for the rotary orbit and the probe moving mechanism is installed outside the system of the rotary orbit. Automatic flaw detection equipment. 2. In the invention described in claim 1, an automatic flaw detection device in which the drive source for the rotating orbit and the drive source for the probe moving mechanism are one drive source common to both driven bodies. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59186160A JPS6162858A (en) | 1984-09-04 | 1984-09-04 | Automatic flaw detector |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59186160A JPS6162858A (en) | 1984-09-04 | 1984-09-04 | Automatic flaw detector |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6162858A true JPS6162858A (en) | 1986-03-31 |
Family
ID=16183430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59186160A Pending JPS6162858A (en) | 1984-09-04 | 1984-09-04 | Automatic flaw detector |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6162858A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63241348A (en) * | 1987-03-30 | 1988-10-06 | Hitachi Ltd | Inspection of deterioration for metal material |
WO2001000357A2 (en) * | 1999-06-24 | 2001-01-04 | Siemens Aktiengesellschaft | Method and advance device for effecting the advance movement of at least one tool support that rotates around a rotationally symmetrical part |
JP7241253B1 (en) * | 2023-02-03 | 2023-03-16 | 三菱重工パワー検査株式会社 | Ultrasonic flaw detector and ultrasonic flaw detection method |
-
1984
- 1984-09-04 JP JP59186160A patent/JPS6162858A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63241348A (en) * | 1987-03-30 | 1988-10-06 | Hitachi Ltd | Inspection of deterioration for metal material |
WO2001000357A2 (en) * | 1999-06-24 | 2001-01-04 | Siemens Aktiengesellschaft | Method and advance device for effecting the advance movement of at least one tool support that rotates around a rotationally symmetrical part |
WO2001000357A3 (en) * | 1999-06-24 | 2001-05-25 | Siemens Ag | Method and advance device for effecting the advance movement of at least one tool support that rotates around a rotationally symmetrical part |
JP7241253B1 (en) * | 2023-02-03 | 2023-03-16 | 三菱重工パワー検査株式会社 | Ultrasonic flaw detector and ultrasonic flaw detection method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106927317A (en) | A kind of automation Wiring apparatus safeguarded for buried pipeline | |
CA2462816A1 (en) | Autonomous robotic crawler for in-pipe inspection | |
WO2005057076A1 (en) | Autonomous robotic crawler for in-pipe inspection | |
CN103985424A (en) | Nuclear reactor pressure vessel nondestructive detection robot and detection method thereof | |
CN102513995A (en) | Cement storage tank cleaning manipulator | |
JP2834331B2 (en) | Crane traverse device that moves on wheels with rubber tires | |
CN203839056U (en) | Nondestructive testing robot for nuclear reactor pressure vessel | |
CN106223687A (en) | A kind of circular tower formula intelligent three-dimensional garage | |
JPS6162858A (en) | Automatic flaw detector | |
JPS58128955A (en) | Tunnel self-advancing car | |
JPH034861B2 (en) | ||
JPH07108485A (en) | Rotary joint of robot and the like | |
CN112025669A (en) | Pipe gallery inspection robot with adjustable wheelbase | |
JPS61152363A (en) | Manipulator head with grinder | |
CN207206036U (en) | A kind of burrs of die casting automatic detection and removal device | |
JPS61131891A (en) | Rotary joint mechanism | |
CN113733064B (en) | Pipeline welding supervision robot | |
CN106078442B (en) | A kind of pipe is interior to be ground cutter device | |
JP2941868B2 (en) | Pipe running device | |
CN221075727U (en) | Aerial working robot for pipeline detection | |
CN113048323A (en) | Wheel-leg type robot capable of crawling on inner wall of reducing pipeline | |
CN206066155U (en) | Grinding cutter sweep in a kind of pipe | |
JPH01186484A (en) | Inside-pipe self-traveling device | |
JPH073766Y2 (en) | Extended train | |
CN116299720B (en) | PCCP broken wire multichannel electromagnetic detection equipment |