JPS6138616A - Gas purifying apparatus - Google Patents

Gas purifying apparatus

Info

Publication number
JPS6138616A
JPS6138616A JP16100084A JP16100084A JPS6138616A JP S6138616 A JPS6138616 A JP S6138616A JP 16100084 A JP16100084 A JP 16100084A JP 16100084 A JP16100084 A JP 16100084A JP S6138616 A JPS6138616 A JP S6138616A
Authority
JP
Japan
Prior art keywords
gas
adsorption
cylinder
container
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16100084A
Other languages
Japanese (ja)
Other versions
JPH0432685B2 (en
Inventor
Fushinobu Asano
浅野 節信
Mitsuru Toyama
満 外山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON PAIONIKUSU KK
Japan Pionics Ltd
Original Assignee
NIPPON PAIONIKUSU KK
Japan Pionics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON PAIONIKUSU KK, Japan Pionics Ltd filed Critical NIPPON PAIONIKUSU KK
Priority to JP16100084A priority Critical patent/JPS6138616A/en
Publication of JPS6138616A publication Critical patent/JPS6138616A/en
Publication of JPH0432685B2 publication Critical patent/JPH0432685B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To diminish the energy loss in a gas purifying apparatus of a refrigeration adsorption method by constituting the apparatus of a double structure consisting of the internal and external cylinders, and incorporating both an adsorption cylinder into the internal cylinder and a sheathed heater into the adsorption cylinder. CONSTITUTION:A gaseous raw material is introduced into a feed pipe of the gaseous raw material and cooled via a heat exchanger 13 plus a hose 18 and flowed into the adsorption cylinder 9 which is incorporated in the inside of the internal cylindrical vessel to remove the impure gases and discharged from a drawing-out pipe 15 as the purified gas through the heat exchanger. At this time, liquid nitrogen is fed into the inside of the internal cylindrical vessel from a feed pipe 16 for liquid nitrogen to cool the adsorption cylinder. In case of regenerating the adsorbent, liquid nitrogen is drawn out of the internal cylindrical vessel though a drawing-out pipe 17 for liquid nitrogen and furthermore the vessel is evacuated with a vacuum pump and electricity is conducted to a sheathed heater 5 to heat the adsorbent and the impure gases are desorbed and removed by flowing the regeneration gas reversely to the case of the purification.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は水素ガスまたはヘリウムガス中に含まれる窒素
ガス、−酸化炭素ガス、メタンガスなどの不純ガスを深
冷吸着法によって除去するガス精製装置に関し、さらに
詳しくは吸着、筒に内蔵されたシーズヒーターによる直
接加熱によって、吸着剤の再生が行われるガス精製装置
に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a gas purification device that removes impurity gases such as nitrogen gas, -carbon oxide gas, and methane gas contained in hydrogen gas or helium gas by cryogenic adsorption method. More specifically, the present invention relates to a gas purification device in which adsorbent is regenerated by adsorption and direct heating by a sheathed heater built into a cylinder.

近年、半導体産業、原子力産業などにおける水素ガス、
ヘリウムガスなどの需要が増大して来たが、これらの分
野で使用されるガスは極め  −て高純度であることが
要求される。
In recent years, hydrogen gas in the semiconductor industry, nuclear industry, etc.
The demand for helium gas and the like has increased, and the gases used in these fields are required to have extremely high purity.

〔従来技術〕[Prior art]

このため窒素ガス、−酸化炭素ガス、メタンガスなどの
不純ガスを含む水素ガスまたはヘリウムガスを精製して
高純度ガスを得るための手段の一つとして深冷吸着法を
利用した種々のガス精製装置が用いられており、たとえ
ば特開昭54−42370、特開昭55−7565など
がある。これらの装置は主に吸着筒、液体窒素容器、断
熱容器および熱交換器などによって構成され、深冷によ
るガスの吸着精製と、加熱による吸着剤の再生とが交互
に繰返して行われる。
For this reason, various gas purification devices using cryogenic adsorption are used as a means of purifying hydrogen gas or helium gas containing impurity gases such as nitrogen gas, carbon oxide gas, and methane gas to obtain high-purity gas. are used, for example, JP-A-54-42370 and JP-A-55-7565. These devices are mainly composed of an adsorption column, a liquid nitrogen container, a heat insulating container, a heat exchanger, and the like, and adsorption purification of gas by deep cooling and regeneration of adsorbent by heating are repeatedly performed alternately.

すなわち、ガスの精製時には液体窒素で冷却されている
吸着筒内に不純ガスを含む水素ガスまたはヘリウムガス
を流すことにより、不純ガスが吸着剤に吸着され高純度
の精製ガスが取り出される。また、吸着剤の再生時には
液体窒素を抜き出した後、加熱された空気、窒素などで
吸着筒を外側から加熱しながら再生用ガス(精製ガス)
を吸着筒内に流すことにより、一旦吸着された不純ガス
が脱着除去される。
That is, during gas purification, by flowing hydrogen gas or helium gas containing impure gas into an adsorption column cooled with liquid nitrogen, the impure gas is adsorbed by the adsorbent and highly purified purified gas is extracted. In addition, when regenerating the adsorbent, after extracting the liquid nitrogen, the adsorption cylinder is heated from the outside with heated air, nitrogen, etc., and the regeneration gas (purified gas) is generated.
By flowing the gas into the adsorption cylinder, the impure gas that has been adsorbed is desorbed and removed.

〔解決しようとする問題点〕[Problem to be solved]

しかしながら、再製時にこのような加熱ガスを用いる従
来の装置ではガスを加熱する場合の加熱効率が極めて低
いこと、加熱ガスによって吸着筒を外側から加熱するた
め伝熱効率が低いこと、および加熱ガスを循環するため
のブロワ−配管およびこれらの保温などが必要であるこ
となど種々の欠点があった。また、露出されたニクロム
線などを使用した電気ヒーターで吸着剤を直接加熱する
ことは、吸着剤が局部加熱される惧れがあること、吸着
筒が真空断熱容器内。
However, in conventional equipment that uses such heated gas during remanufacturing, the heating efficiency when heating the gas is extremely low, the heat transfer efficiency is low because the adsorption column is heated from the outside by the heated gas, and the heating gas is circulated. There were various drawbacks, such as the need for blower piping and insulation for these. In addition, directly heating the adsorbent with an electric heater using exposed nichrome wire may cause the adsorbent to be locally heated, and the adsorption tube must be inside a vacuum insulated container.

に収容された場合には真空層を貫通し、かつ極低温にさ
らされることからリード線の外部への取り出しおよびそ
の材質選定が困難なこと、ヒーターの絶縁性が悪く、シ
かも寿命が短いことなど種々の問題があり、実用化でき
なかった。
If the heater is housed in a vacuum chamber, it penetrates the vacuum layer and is exposed to extremely low temperatures, making it difficult to take the lead wire out and select the material for it, and the insulation of the heater is poor, resulting in a short lifespan. There were various problems such as that, and it could not be put into practical use.

〔問題点を解決するための手段〕[Means for solving problems]

本M明者らは従来装置の欠点を改善し、ガスの精製と吸
着剤の再生サイクルにおける冷却および加熱に要するエ
ネルギーの損失を著しく減少させることができ、しかも
小型化されたガス精製装置を得るべく吸着剤の電気加熱
による再生に着目し、鋭意研究を続けた結果本発明に到
達した。
The inventors of the present invention have improved the drawbacks of conventional devices, and have provided a gas purification device that is capable of significantly reducing the loss of energy required for cooling and heating in the gas purification and adsorbent regeneration cycles, and that is also miniaturized. As a result of intensive research, we focused on regeneration of adsorbent by electric heating and arrived at the present invention.

すなわち、本発明は深冷吸着法によるガス精製装置にお
いて、外筒容器および内筒容器によって2重構造とされ
、該内筒容器には1ま、たは複数の吸着筒が収容され、
該吸着筒の少くとも1つにはシーズヒーターが内蔵され
たことを特徴とするガス精製装置である。
That is, the present invention provides a gas purification apparatus using a cryogenic adsorption method, which has a double structure including an outer cylindrical container and an inner cylindrical container, and one or more adsorption cylinders are accommodated in the inner cylindrical container,
The gas purification apparatus is characterized in that at least one of the adsorption cylinders has a sheathed heater built-in.

本発明において使用される吸着筒の形状には特に制限は
ないが円筒形であることが好ましい。
The shape of the adsorption cylinder used in the present invention is not particularly limited, but it is preferably cylindrical.

これらの吸着筒は単独で用いられてもよく、また複数の
吸着筒が配管で直列に連結されて用いられてもよい。
These adsorption cylinders may be used alone, or a plurality of adsorption cylinders may be connected in series through piping.

本i?1羽において吸着筒に充填される吸着剤としては
活性炭、モレキュラーシーブおよびゼオライトなどがあ
るが、不純ガスに対する吸着性能の良さから、就中活性
炭が好ましい。
Book i? Examples of the adsorbent to be filled in the adsorption column in one blade include activated carbon, molecular sieve, and zeolite, and activated carbon is particularly preferred because of its good adsorption performance for impure gases.

1 本発明において吸着筒に内蔵されるヒーターは、い
わゆるシーズヒーターであればよく、たとえばニッケル
・クロム線などの電熱線が金属シース内に収納され、シ
ース内空間部には高純度の酸化マグネシウムなどの無機
絶縁粉末が強固に充填され、端子部はシリコン系シール
剤あるいはエポキシ樹脂などで完全にシールされたヒー
ター(いわゆるマイクロヒーターも包含される。以下同
様)である。このようなシーズヒ−−ター以外の電熱ヒ
ーターでは吸着剤の局部加熱、真空放電、絶縁不良、電
熱線の断線などが生じ易く、実用に耐える装置を得るこ
とはできない。
1 In the present invention, the heater built into the adsorption cylinder may be a so-called sheathed heater, for example, a heating wire such as a nickel-chromium wire is housed in a metal sheath, and a space inside the sheath is filled with high-purity magnesium oxide or the like. It is a heater (including a so-called micro-heater; hereinafter the same) that is tightly filled with inorganic insulating powder and whose terminal portion is completely sealed with a silicone sealant or epoxy resin. With electric heaters other than such sheathed heaters, local heating of the adsorbent, vacuum discharge, poor insulation, disconnection of heating wires, etc. are likely to occur, and it is impossible to obtain a device that can withstand practical use.

またシーズヒーターの端子部から装置外部へ導かれるリ
ード線も金属細管内でシーズヒーターにおけると同様な
無機−緻粉末によって固定され、かつ、金属細管ととも
に折曲げ可能な柔軟性を具備したものが用いられる。
In addition, the lead wires that are led from the terminals of the sheathed heater to the outside of the device are fixed within metal tubes with inorganic fine powder similar to those used in sheathed heaters, and are flexible enough to be bent along with the metal tubes. It will be done.

吸着筒に内蔵、されるシーズヒーターの数は吸着筒の大
きさ、要求されろ加熱量などによって異なり、−概に特
定はできないが、円筒状の吸着筒についてその円径がた
とえば100B以下では1〜3本である。なお、複数の
吸着筒が配管によって直列に連結されている場合には通
常は再生用ガスの少くとも最上流側に位置する吸着筒に
シーズヒーターが内蔵される。勿論他の吸着筒にもシー
ズヒーターを内蔵さiることもできる。また吸着剤の局
部加熱をさらに防止し、吸着剤全体に対する伝熱効率を
高めるために吸着筒内部に放熱板を設けることが好まし
い。放熱板はシーズヒーターの熱を吸着剤に効率よく伝
えるものであればその形状および数には特に制限はない
が、たとえば複数枚の長方形の金属板を用い、それぞれ
の一方の長辺はシーズヒーターまたはヒーター鞘に接し
、各放熱板は放射状に設けられてもよい。また中央にシ
ーズヒーターまたはヒーターの鞘を通すための孔の他、
カスを自由に通過させるための孔が適宜数穿設された複
数枚の金属円板をそれぞれ水平にし、吸着筒内で上下方
向に間隔をあけて設けられてもよい。
The number of sheathed heaters built into an adsorption cylinder varies depending on the size of the adsorption cylinder, the amount of heating required, etc. - Although it cannot be generally specified, if the diameter of a cylindrical adsorption cylinder is 100B or less, for example, 1 ~3 pieces. In addition, when a plurality of adsorption cylinders are connected in series by piping, a sheathed heater is usually built in the adsorption cylinder located at least on the most upstream side of the regeneration gas. Of course, it is also possible to incorporate a sheathed heater in other adsorption cylinders. Further, in order to further prevent local heating of the adsorbent and increase heat transfer efficiency to the entire adsorbent, it is preferable to provide a heat sink inside the adsorption cylinder. There are no particular restrictions on the shape or number of heat sinks as long as they can efficiently transmit the heat from the sheathed heater to the adsorbent, but for example, if multiple rectangular metal plates are used, one long side of each is connected to the sheath heater. Alternatively, the heat sinks may be provided radially in contact with the heater sheath. In addition to the hole in the center for passing a sheathed heater or heater sheath,
A plurality of metal disks each having an appropriate number of holes for allowing the waste to freely pass therethrough may be placed horizontally and spaced apart in the vertical direction within the suction cylinder.

本発明において吸着筒は真空断熱によって外界と遮断さ
れているが、外筒容器および内筒容器によって2重構造
とされ、外筒容器の内周面と内筒容器の外周面との間は
全周にわたって空間有し、この空間は真空状態を保つこ
とができるよう気密構造とされている。外筒容器および
内筒容器は筒状であればその形状には特に制限はないが
、円筒状であることが好ましい。外筒容器の内周面と内
筒容器の外周面で挾まれた空間は装置の運転時には常に
真空状態とされる。
In the present invention, the adsorption cylinder is isolated from the outside world by vacuum insulation, but it has a double structure with an outer cylinder container and an inner cylinder container, and the space between the inner peripheral surface of the outer cylinder container and the outer peripheral surface of the inner cylinder container is completely There is a space around the periphery, and this space has an airtight structure to maintain a vacuum state. There is no particular restriction on the shape of the outer cylindrical container and the inner cylindrical container as long as they are cylindrical, but cylindrical shapes are preferred. The space sandwiched between the inner peripheral surface of the outer cylindrical container and the outer peripheral surface of the inner cylindrical container is always kept in a vacuum state during operation of the apparatus.

内筒容器内には1または複数の吸着筒が収容されており
、吸着筒はガスの精製時には内筒容器内に供給された液
体窒素(以下 LN2  と記す)によって外側から冷
却される。また、吸着剤の再生時には内筒容器からLN
2  が抜き出され、吸着筒内に再生用ガスを流しなが
ら、吸着筒に内蔵されたシーズヒーターにiり吸着剤を
加熱することによって、吸着されていた不純ガスが脱着
除去されるが、この再生時には内筒容器内をも真空状態
に保つことが好ましい。
One or more adsorption cylinders are housed in the inner cylindrical container, and the adsorption cylinders are cooled from the outside by liquid nitrogen (hereinafter referred to as LN2) supplied into the inner cylindrical container during gas purification. Also, when regenerating the adsorbent, LN is removed from the inner cylinder container.
2 is extracted, and while flowing regeneration gas into the adsorption cylinder, the adsorbent is heated by a sheathed heater built into the adsorption cylinder, thereby desorbing and removing the adsorbed impurity gas. During regeneration, it is preferable to maintain the inside of the inner cylindrical container in a vacuum state as well.

本発明において精製時および再生時の熱効率をさらに高
めるために吸着筒に供給されるガスと吸着筒から出るガ
スとの熱交換器を設けることが好ましい。熱交換器を設
ける場所には特に制限はなく、たとえば、(1)内筒容
器のLN2 液面の上方空間部、(2)外筒容器の内周
面と円筒容器の外周面との間の空間部、および(3)外
筒容器の外部、が挙げられる。これらq中でも(2)が
好ましい。さらに内筒容器内において原料ガスの冷却効
率を高めるため、吸着筒への原料ガス供給管の一部を蛇
管または冷却フィン付配管などの予冷管とすることもで
きる。
In the present invention, it is preferable to provide a heat exchanger between the gas supplied to the adsorption column and the gas exiting from the adsorption column in order to further improve thermal efficiency during purification and regeneration. There is no particular restriction on the location where the heat exchanger is installed; for example, (1) the space above the LN2 liquid level in the inner cylindrical container, (2) the space between the inner peripheral surface of the outer cylindrical container and the outer peripheral surface of the cylindrical container. and (3) the outside of the outer cylindrical container. Among these q, (2) is preferable. Furthermore, in order to improve the cooling efficiency of the raw material gas in the inner cylinder container, a part of the raw material gas supply pipe to the adsorption cylinder can be made into a pre-cooling pipe such as a serpentine pipe or a pipe with cooling fins.

次に図面によって本発明をさらに具体的に説明する。Next, the present invention will be explained in more detail with reference to the drawings.

第1図(へ)および(ロ)はそれぞれシーズヒーターが
内蔵された吸着筒の縦断面図およ−び横断端面図であり
、第2図(至)および(ロ)はそれぞれ第゛1図とは異
る態様の吸着筒の縦断面図および横断端面図である。
Figures 1 (f) and (b) are a longitudinal sectional view and a transverse end sectional view, respectively, of an adsorption cylinder with a built-in sheathed heater, and Figures 2 (to) and (b) are the same as those shown in Figure 1. FIG. 2 is a longitudinal sectional view and a transverse end sectional view of an adsorption cylinder in a different aspect from the one shown in FIG.

第1図においてガスの入口1および出口2を有する円筒
状の容器本体3の内部に、金属細管で保護されたリード
線4が接続された棒状のシーズヒーター5がその発熱部
が吸着剤6の充填層に埋まるように容器本体3と同心的
に設けられ、シーズヒーター5は容器本体3の上端7に
おいて容器本体6と溶接により気密に固定されている。
In FIG. 1, inside a cylindrical container body 3 having a gas inlet 1 and an outlet 2, there is a rod-shaped sheathed heater 5 connected to a lead wire 4 protected by a metal capillary tube. The sheathed heater 5 is provided concentrically with the container body 3 so as to be buried in the filling layer, and the sheathed heater 5 is airtightly fixed to the container body 6 at the upper end 7 of the container body 3 by welding.

シーズヒーター5の側面周囲には複数枚の長方形の放熱
板8.・・・、8がそれぞれ1方の長辺をシーズヒータ
ー5に接し、他方の長辺が容器本体の内周面に向けて放
射状に配置せしめられ、残る空間部には吸着剤6が充填
されて吸着筒とされている。
A plurality of rectangular heat sinks 8 are arranged around the sides of the sheathed heater 5. ..., 8 are arranged such that one long side is in contact with the sheathed heater 5 and the other long side is arranged radially toward the inner peripheral surface of the container body, and the remaining space is filled with the adsorbent 6. It is used as an adsorption cylinder.

第2図においてガス人口1および出口2を有する円筒状
の容器本体3の内部に直接シーズヒーター5を設ける代
りに、シーズヒータ=5が着脱自在に収納され、かつ一
端が閉じられた円筒状のヒーター鞘10が容器本体3と
同心的に設けられ、ヒーター鞘10は容器本体3の上端
7において容器本体3と溶接により気密に固定され、ヒ
ーター鞘10の仰向周囲に放熱板8゜・・、8が放射状
に配置せしめられている他は第1図で示されたと同様な
吸着筒である。
In Fig. 2, instead of directly providing the sheathed heater 5 inside the cylindrical container body 3 having the gas population 1 and the outlet 2, the sheathed heater 5 is housed in a removably cylindrical container with one end closed. A heater sheath 10 is provided concentrically with the container body 3, and the heater sheath 10 is airtightly fixed to the container body 3 at the upper end 7 of the container body 3 by welding, and a heat sink 8°... , 8 are arranged radially, but the adsorption cylinder is similar to that shown in FIG. 1.

第3図は単一の吸着筒が用いられた本発明のガス精製装
置の原理を示すための縦断面図であり、第4図は複数の
吸着筒が用いられた本発明のガス精製装置の原理を示す
ための縦断面図であり、第5図は第4図において内筒容
器および外筒容器が円筒状とされたガス精製装置の横断
端面図である。  。
FIG. 3 is a longitudinal sectional view showing the principle of the gas purification apparatus of the present invention using a single adsorption column, and FIG. 4 is a longitudinal sectional view of the gas purification apparatus of the present invention using a plurality of adsorption columns. FIG. 5 is a longitudinal cross-sectional view for illustrating the principle, and FIG. 5 is a cross-sectional end view of the gas purification apparatus in which the inner cylinder container and the outer cylinder container are cylindrical in shape in FIG. 4. .

第6図において内筒容器11の内部には第1図または第
2図で示されたと同様な吸着筒9が収容され、内筒容器
11は外筒容器12内に収納さ九、かつ内筒容器11の
外周面と外筒容器12の内周面で挾まれた空間には円筒
状の熱交換器13が設けられている。原料ガス供給管1
4および精製ガス抜出管15はそれぞれ装置外部から外
筒容器12の壁を貫通し、熱交換器13を介し、さらに
内筒容器11の壁を貫通して吸着筒9の入口1および出
口2と接続せしめられている。またLN2供給管16お
よびLN2抜出管17はそれぞれ外筒容器12の壁を貫
通して内筒容器11に接続せしめられている。これらの
配管はいずれも貫通部において溶接および管継手によっ
て気密に固定されている。なお、原料ガス供給管14は
内筒容器11内においてその一部が蛇管18とされてい
る。金属細管で保護されたリード線4は内筒容器11お
よび外筒容器12それぞれの壁を順次貫通して外部へ導
かれ、それぞれの貫通部においてa手19および20に
よって気密に固定されている。ガスの精製工4八2ヶ5
,16カ15.□。1.。
In FIG. 6, an adsorption tube 9 similar to that shown in FIG. 1 or 2 is housed inside the inner tube container 11, and the inner tube container 11 is housed in the outer tube container 12. A cylindrical heat exchanger 13 is provided in a space sandwiched between the outer peripheral surface of the container 11 and the inner peripheral surface of the outer cylindrical container 12. Raw material gas supply pipe 1
4 and the purified gas extraction pipe 15 pass through the wall of the outer cylinder container 12 from the outside of the apparatus, pass through the heat exchanger 13, and further penetrate the wall of the inner cylinder container 11 to reach the inlet 1 and outlet 2 of the adsorption cylinder 9. It is connected to Further, the LN2 supply pipe 16 and the LN2 extraction pipe 17 each penetrate the wall of the outer cylindrical container 12 and are connected to the inner cylindrical container 11. All of these pipes are airtightly fixed at their penetration parts by welding and pipe fittings. Note that a part of the raw material gas supply pipe 14 is formed into a flexible pipe 18 inside the inner cylindrical container 11 . The lead wire 4 protected by a metal capillary tube is guided to the outside by successively passing through the walls of the inner cylindrical container 11 and the outer cylindrical container 12, and is hermetically fixed by a-handles 19 and 20 at each penetrating portion. Gas refiner 482 5
,16ka15. □. 1. .

内部にLN2  が供給され、吸着筒9.はこのLN2
に浸されて外側から冷却される。原料ガスは原料ガス供
給管14により熱交換器16および蛇管18を順次経由
して冷却され、吸着筒9の内部に供給され、不純ガスが
吸着除去され、精製ガスとして熱交換器16を経由して
精製ガス抜出管15より外部に出る。吸着剤の再生時に
は内筒容器11からLN2  抜出管17によってLN
2  が抜出され、さらに真空ポンプ(図示されていな
い)により、内筒容器11内部が真空とされ、シーズヒ
ーター5に通電して吸着剤を加熱しながら再生用ガス(
精製ガス)が精製時とは逆の経路で流されることにより
吸着されて゛いた不純ガスは脱着除去される。
LN2 is supplied inside the adsorption cylinder 9. This LN2
immersed in water and cooled from the outside. The raw material gas is cooled by the raw material gas supply pipe 14 through a heat exchanger 16 and a flexible pipe 18 in order, and then supplied to the inside of the adsorption column 9, where impurity gas is adsorbed and removed, and purified gas is passed through the heat exchanger 16. The purified gas exits from the exhaust pipe 15. When regenerating the adsorbent, LN2 is extracted from the inner cylinder container 11 and LN is extracted from the extraction pipe 17.
2 is extracted, and the inside of the inner cylinder container 11 is evacuated by a vacuum pump (not shown), and the regeneration gas (
By flowing the purified gas through a path opposite to that used during purification, the adsorbed impurity gas is desorbed and removed.

第4図においてシーズヒーター5が内蔵されている吸着
筒9が4筒およびシーズヒーター5が内蔵されていない
吸着筒9“が3筒それぞれ交互に連絡配管21.・・、
21で直列に連結されて用いられた以外は第3図で示さ
れたと同様な構造のガス精製装置である。
In Fig. 4, there are four adsorption cylinders 9 with a built-in sheathed heater 5 and three adsorption cylinders 9'' without a built-in sheathed heater 5, each alternately connected to a connecting pipe 21...
This gas purification apparatus has the same structure as that shown in FIG. 3, except that the gas purification apparatus 21 is connected in series.

ガスの精製時にはLN2  供給管16から内筒容器1
1の内部にLN2  が供給され、吸着筒9゜91#・
・・、9’、9がそれぞれこのLNz  に浸されて外
側から冷却される。原料ガスは原料ガス供給管14によ
り熱交換9#16および蛇管18を順次経由して冷却さ
れ、吸着筒9.9’、・・・ン9119それぞれの連結
の順にその内部を通過せしめられることにより不純ガス
が吸着除去され、精製ガスとして熱交換器13を経由し
て精製ガス抜出管15から外部に排出される。吸着剤の
再生時には内筒容器11からLN2  抜出管17によ
ってLN2  を抜出し、さらに真空ポンプ(図示され
ていない)により、内筒容器11内部を真空とし、シー
ズヒーター5.・・・、5に通電して再生用ガス(精製
ガス)を精製時とは逆の経路で流すことにより吸着され
ていた不純ガスは脱着除去される。
When refining gas, LN2 is supplied from the supply pipe 16 to the inner cylinder container 1.
LN2 is supplied to the inside of 1, and the adsorption cylinder 9°91#.
..., 9', and 9 are each immersed in this LNz and cooled from the outside. The raw material gas is cooled by the raw material gas supply pipe 14 through the heat exchanger 9#16 and the flexible pipe 18, and is passed through the adsorption cylinders 9, 9', . . . 9119 in the order in which they are connected. The impure gas is adsorbed and removed, and the purified gas is discharged to the outside from the purified gas extraction pipe 15 via the heat exchanger 13. When regenerating the adsorbent, LN2 is extracted from the inner cylindrical container 11 through the LN2 extraction pipe 17, and the inside of the inner cylindrical container 11 is evacuated using a vacuum pump (not shown), and the sheathed heater 5. ..., 5 is energized and the regeneration gas (purified gas) is caused to flow in the opposite path to that used during purification, thereby desorbing and removing the adsorbed impurity gas.

第5図において円筒状の外筒容器12と円筒状の内筒容
器11とは互に同心的に設けられ、その内部には吸着筒
9.91・・・、9’、9が収容され、吸着筒9.9’
、・・・、9’ 、 9はそれぞれ連絡配管21.・・
・、21によって直列に連結され、内筒容器11の外周
面と外筒容器12の内周面との間の空間部には円筒状の
熱交換器16が配設されて、外観的にははg円筒形のガ
ス精製装置とされている。
In FIG. 5, a cylindrical outer container 12 and a cylindrical inner container 11 are provided concentrically with each other, and adsorption cylinders 9, 91, . . . , 9', 9 are accommodated therein. Adsorption tube 9.9'
, . . . , 9', 9 are connecting pipes 21., 9' and 9, respectively.・・・
, 21 are connected in series, and a cylindrical heat exchanger 16 is disposed in the space between the outer peripheral surface of the inner cylindrical container 11 and the inner peripheral surface of the outer cylindrical container 12. is assumed to be a cylindrical gas purification device.

〔発明の効果〕〔Effect of the invention〕

本発明のガス精製装置は従来の装置に比べて次のような
優れた特徴を有している。
The gas purification device of the present invention has the following superior features compared to conventional devices.

t 吸着剤の再生時、加熱されたガスによる間接加熱と
異り、加熱効率がきわめて高い。
t When regenerating the adsorbent, heating efficiency is extremely high, unlike indirect heating using heated gas.

2 吸着剤の再生時、内筒容器の内部をも真空にするこ
とができガス伝導による熱エネルギーのロスが小さい。
2. When regenerating the adsorbent, the inside of the inner cylindrical container can also be evacuated, reducing thermal energy loss due to gas conduction.

五 ガスを外部加熱するための加熱炉、ブロワ−1配管
ならびにこれらの保温も不要であり、従って装置が小型
化できると共にシール材、バルブなどの耐熱仕様が緩や
かになり、設備費が低減される。
5. There is no need for a heating furnace for externally heating gas, blower 1 piping, or insulation of these, and therefore the equipment can be made smaller, and the heat resistance specifications for sealing materials, valves, etc. can be relaxed, and equipment costs can be reduced. .

実施例 装置: 第4図および第5図で示されたと同様な装置において、
7簡の吸着筒、それぞれの容器本体の材質5US504
、寸法89.1m1x1000ilIIIHx2−關t
とし、このうちシーズヒータ−が内蔵された4簡にはそ
れぞれ第2図で示されたと同様な構造のものを用いた。
Example device: In a device similar to that shown in FIGS. 4 and 5,
7 suction tubes, each container body material 5US504
, Dimensions: 89.1m1x1000ilIIIHx2-T
Of these, four cabinets each having a built-in sheathed heater had a structure similar to that shown in FIG. 2.

すなわち4筒それぞれについてヒーター鞘として材質5
US304、寸法19g15!1 X 1000n)i
 X 1,2IIlt1シーズヒーターとして200V
、500W1寸法161E1!メx1o5oxxl、B
熱部の長さ809關、放熱板として材質5US504、
寸法50111X 20 (HEjlX 1111 t
め板16枚を使用した。また7筒の吸着筒のそれぞれに
はヤシ殻活性炭を51ずつ充填した。内筒容器は寸法3
18.51!11X1400WHX4朋t、外筒容器は
寸法600z’xdx1600xacHx4mtであり
、金属細管で保護されたリード線は内筒容器および外筒
容器それぞれの壁を貫通させてスライダックに接続し、
それぞれの貫通部はスェージロック継手(米、スェージ
ロック社製)で固定した。
In other words, material 5 is used as the heater sheath for each of the four cylinders.
US304, dimensions 19g15!1 x 1000n)i
X 1,2IIlt1 200V as a sheathed heater
, 500W1 dimension 161E1! Mex1o5oxxl, B
The length of the heating part is 809 mm, the material is 5US504 as a heat sink,
Dimensions 50111X 20 (HEjlX 1111t
Sixteen plates were used. In addition, each of the seven adsorption cylinders was filled with 51 pieces of coconut shell activated carbon. Inner cylinder container size 3
18.51! 11 x 1400 WH
Each penetration part was fixed with a Swagelok joint (manufactured by Swagelok, USA).

この装置を用いてガスの精製および吸着剤の再生を行っ
た。
This equipment was used to purify gas and regenerate adsorbent.

ガスの精製: 内筒容器の外周面と外筒容器の内周面との間の空間を真
空状態(o、17・五すに保ち、内筒容器にLN2 を
供給して吸着筒を一196℃に冷却しながら原料ガス供
給管より窒素ガス33o ppm5−酸化炭素ガスフ 
0 ppm、メタンガス70pp睦含む原料水素ガスを
流速2ONfi”/hr で供給し、精製を10日間続
けた。この間に得られた精製水素ガスをTCDおよびF
ID型ガスクロマトグラフによって分析した結果窒素ガ
ス、−酸化炭素ガスおよびメタンガスはいずれも検出さ
れなかった。これら・不純ガスの検出下限は窒素ガス1
pprnx−酸化炭素0.lppm、メタンガス0.O
5ppm である。
Purification of gas: The space between the outer peripheral surface of the inner cylinder container and the inner peripheral surface of the outer cylinder container is kept in a vacuum state (at 17°C), and LN2 is supplied to the inner cylinder container to make the adsorption cylinder 1196°C. While cooling to
Raw material hydrogen gas containing 0 ppm and 70 ppm of methane gas was supplied at a flow rate of 2 ONfi"/hr, and purification was continued for 10 days. The purified hydrogen gas obtained during this period was purified by TCD and F
As a result of analysis using an ID type gas chromatograph, no nitrogen gas, -carbon oxide gas, or methane gas was detected. The detection limit for these impure gases is nitrogen gas 1
pprnx-carbon oxide 0. lppm, methane gas 0. O
It is 5ppm.

吸着剤の再生ニ 一次に原料水素ガスの供給を停止し、吸着剤の再生を行
った。内筒容器のLN2’ を抜き出した後、室温の乾
燥窒素ガスを内筒容器に流して昇温した。内筒容器内の
温度が一50℃まで上昇したとき窒素ガスを止め、内筒
容器内を0.1Torrの真空とした。スライダックを
操作して各吸着筒のシーズヒーターそれぞれに0.5へ
の電流を流し始め、徐々に電流値を増し2.OAとする
と同時に吸着剤の再生用ガスとして精製水素ガスを常圧
で精製ガス抜出管から、精製時とは逆の経路で始めの1
hrにI N ml流した。
Regeneration of the adsorbent First, the supply of raw hydrogen gas was stopped, and the adsorbent was regenerated. After extracting LN2' from the inner cylinder container, dry nitrogen gas at room temperature was flowed into the inner cylinder container to raise the temperature. When the temperature inside the inner cylindrical container rose to 150° C., the nitrogen gas was stopped, and the inside of the inner cylindrical container was made into a vacuum of 0.1 Torr. Operate the slider to start passing a current of 0.5 to each sheathed heater in each adsorption tube, and gradually increase the current value.2. At the same time as OA, purified hydrogen gas is used as a regenerating gas for the adsorbent at normal pressure from the purified gas extraction pipe in the opposite direction to that used during purification.
I N ml was flowed for hr.

シーズヒーターが内蔵された吸着筒内の温度はさらに上
昇をつyけ、10℃となったときに、精製水素ガスを流
速3 N yl”/ h rで2hr流した。その後、
吸着筒内の温度は、さらに上昇をっgけ180℃に達し
た。こ工でシーズヒーターの電流を1.8Aに下げたが
0.5hr後に吸着筒内の温度は210℃に達して、ケ
父一定となった。このときシーズヒーターが内蔵されて
いない吸着筒内の温度は190”Cであった。この状態
で再生用ガスの流速をINm”/hr に下げ、3.5
br再生を続けた。この間シーズヒーターが内蔵されて
いない吸着筒内の温度は205℃では!一定値を示した
The temperature inside the adsorption column with a built-in sheathed heater continued to rise further, and when it reached 10°C, purified hydrogen gas was flowed at a flow rate of 3 Nyl"/hr for 2 hours. After that,
The temperature inside the adsorption cylinder rose further and reached 180°C. With this process, the current of the sheathed heater was lowered to 1.8 A, but the temperature inside the adsorption cylinder reached 210° C. after 0.5 hr and became constant. At this time, the temperature inside the adsorption cylinder without a built-in sheath heater was 190"C. In this state, the flow rate of the regeneration gas was reduced to INm"/hr, and the temperature was 3.5"C.
br playback continued. During this time, the temperature inside the adsorption cylinder without the built-in sheathed heater was 205℃! It showed a constant value.

こ〜で再生を終了し、電流を切り、内側容器内の真空を
破って室温の窒素ガスを流して冷却することにより2h
r後に吸着筒内の温度は120℃に下った。この間に要
した全電力消費量は7KWHであり、精製水素ガスの消
費量は12Nmlであった。引続き水素ガスの精製を行
った結果前記と同様な結果が得られた。
At this point, the regeneration is finished, the current is turned off, the vacuum inside the inner container is broken, and nitrogen gas at room temperature is supplied to cool the container for 2 hours.
The temperature inside the adsorption column dropped to 120° C. after 30 minutes. The total power consumption during this period was 7KWH, and the consumption of purified hydrogen gas was 12Nml. Subsequently, the hydrogen gas was purified, and the same results as above were obtained.

比較例 実施例と同様に水素ガスの吸着精製を行った後、条件を
次の様に変更して吸着剤の再生を行った。
Comparative Example After hydrogen gas was adsorbed and purified in the same manner as in the example, the adsorbent was regenerated by changing the conditions as follows.

すなわち吸着筒にシーズヒーターを内蔵させる代りに外
筒容器の外部に電気炉とブロワ−を設け、420℃に加
熱された電気炉で窒素ガスを加熱しなから内筒容器との
間を循環させて吸着筒を加熱した。また再生用ガスとし
て500℃に加熱された別の加熱炉で精製水素ガスを加
熱して吸着筒内に流した。
In other words, instead of having a sheathed heater built into the adsorption tube, an electric furnace and a blower are installed outside the outer cylindrical container, and the nitrogen gas is heated in the electric furnace heated to 420°C and then circulated between it and the inner cylindrical container. The adsorption cylinder was heated. Further, as a regeneration gas, purified hydrogen gas was heated in another heating furnace heated to 500° C. and flowed into the adsorption cylinder.

〔吸着剤の再生、〕[Regeneration of adsorbent,]

ます内筒容器内のLN2  を抜き出した後、室温の乾
燥窒素ガスを内筒容器に流して、内筒容器が0℃に昇温
したとき上記の加熱窒素ガス循環系に接続し、1hrで
吸着筒内の温度を100℃に昇温させた。窒素ガスの一
環を続けながら500℃に調節された電気炉で加熱され
た精4hrで200℃に達した。窒素ガス加熱用電気炉
の調節温度を400℃に下げて、さらに3゜5br@け
た。
After extracting the LN2 from the inner cylinder container, dry nitrogen gas at room temperature is flowed into the inner cylinder container, and when the temperature of the inner cylinder container rises to 0℃, it is connected to the above heated nitrogen gas circulation system and adsorption takes place for 1 hour. The temperature inside the cylinder was raised to 100°C. It was heated in an electric furnace adjusted to 500°C while continuously supplying nitrogen gas, and the temperature reached 200°C in 4 hours. The temperature of the electric furnace for nitrogen gas heating was lowered to 400°C, and the temperature was further increased by 3°5br@.

吸着剤の再生に要した電力消費量は循環ブロワ−の駆動
電力を除いて、58KWHであり、精製水素ガスの消費
量は12N1rL’であった。引続き水素ガスの精製を
行ったところ実施例における精製と同様な結果が得られ
た。
The power consumption required for regenerating the adsorbent was 58 KWH, excluding the driving power of the circulation blower, and the consumption of purified hydrogen gas was 12N1rL'. Subsequently, the hydrogen gas was purified, and the same results as in the example were obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ピ)および(→は、それぞれシーズヒーターが内
蔵された吸着筒の縦断面図および横断端面図であり、第
2図(至)および(ロ)はそれぞれ第1図とは異る態様
の吸着筒の縦断面図および横断端面図であり、第3図は
単一の吸着筒が用いられた本発明のガス精製装置の原理
を示すための縦断面図であり、第4図は複数の吸着筒が
用いられた本発明のガス精製装置の原理を示すため1・
・・入口 2・・・出口 3・・・容器本体 4・・・
金属細管で保護されたリード線 5・・・シーズヒータ
ー 6・・・吸着剤 7・・・上端 8・・・放熱板−
9および91・・・吸着筒 1パ0・・・ヒーター鞘1
1・・・内筒容器 12・・・外筒容器 13・・・熱
交換器 14・・・原料ガス供給管 15・・・精製ガ
ス抜出管 16・・・LNz  供給管 17・・・L
Nz抜出管 18・・・蛇管 19および20 継手 
ならびに21・・・連絡配管である。 特許出願人 日本バイオニクス株式会社代表者高崎文夫
Figure 1) and (→) are a vertical cross-sectional view and a cross-sectional end view of an adsorption cylinder with a built-in sheathed heater, respectively, and Figures 2 (to) and (b) are different from those in Figure 1, respectively. FIG. 3 is a vertical sectional view showing the principle of the gas purification apparatus of the present invention using a single adsorption column, and FIG. 4 is a longitudinal sectional view showing a plurality of adsorption columns. In order to demonstrate the principle of the gas purification apparatus of the present invention using an adsorption cylinder, 1.
...Inlet 2...Outlet 3...Container body 4...
Lead wire protected by thin metal tube 5... Sheathed heater 6... Adsorbent 7... Upper end 8... Heat sink -
9 and 91... Adsorption tube 1 Pa0... Heater sheath 1
1... Inner cylindrical container 12... Outer cylindrical container 13... Heat exchanger 14... Raw material gas supply pipe 15... Purified gas extraction pipe 16... LNz supply pipe 17... L
Nz extraction pipe 18...Serpentine pipe 19 and 20 Joint
and 21...connection piping. Patent applicant Fumio Takasaki, representative of Nippon Bionics Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 深冷吸着法によるガス精製装置において、外筒容器およ
び内筒容器によつて2重構造とされ、該内筒容器には1
または複数の吸着筒が収容され、該吸着筒の少くとも1
つにはシーズヒーターが内蔵されたことを特徴とするガ
ス精製装置
A gas purification device using the cryogenic adsorption method has a double structure consisting of an outer cylindrical container and an inner cylindrical container, and the inner cylindrical container has one
or a plurality of adsorption cylinders are accommodated, and at least one of the adsorption cylinders is
A gas purification device featuring a built-in sheathed heater.
JP16100084A 1984-07-31 1984-07-31 Gas purifying apparatus Granted JPS6138616A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16100084A JPS6138616A (en) 1984-07-31 1984-07-31 Gas purifying apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16100084A JPS6138616A (en) 1984-07-31 1984-07-31 Gas purifying apparatus

Publications (2)

Publication Number Publication Date
JPS6138616A true JPS6138616A (en) 1986-02-24
JPH0432685B2 JPH0432685B2 (en) 1992-06-01

Family

ID=15726665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16100084A Granted JPS6138616A (en) 1984-07-31 1984-07-31 Gas purifying apparatus

Country Status (1)

Country Link
JP (1) JPS6138616A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832460A (en) * 1984-07-27 1989-05-23 Casio Computer Co., Ltd. Liquid crystal apparatus having pressure absorbing means
US5453112A (en) * 1994-02-02 1995-09-26 Praxair Technology, Inc. Pressure swing adsorption heat recovery
CN105032117A (en) * 2015-07-09 2015-11-11 东南大学 Apparatus for gas-solid reaction between heavy metal vapor and adsorbent
JP2018153744A (en) * 2017-03-16 2018-10-04 株式会社富士通ゼネラル Suction unit and air cleaner
JP2022166371A (en) * 2021-04-21 2022-11-02 大陽日酸株式会社 gas purifier

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4832460A (en) * 1984-07-27 1989-05-23 Casio Computer Co., Ltd. Liquid crystal apparatus having pressure absorbing means
US5453112A (en) * 1994-02-02 1995-09-26 Praxair Technology, Inc. Pressure swing adsorption heat recovery
CN105032117A (en) * 2015-07-09 2015-11-11 东南大学 Apparatus for gas-solid reaction between heavy metal vapor and adsorbent
JP2018153744A (en) * 2017-03-16 2018-10-04 株式会社富士通ゼネラル Suction unit and air cleaner
JP2022166371A (en) * 2021-04-21 2022-11-02 大陽日酸株式会社 gas purifier

Also Published As

Publication number Publication date
JPH0432685B2 (en) 1992-06-01

Similar Documents

Publication Publication Date Title
US4030896A (en) Regeneration of adsorbents
US3668881A (en) Adsorptive cryopumping method and apparatus
JPH0432686B2 (en)
US6432174B1 (en) Induced natural convection thermal cycling device
CN103848398A (en) Device for producing hyper-pure hydrogen by use of integrated low-temperature adsorption method
US10436516B2 (en) Thermal cycling device
JPS6138616A (en) Gas purifying apparatus
CN204588705U (en) A kind of helium cryogenic purincation device
JPS62148304A (en) Apparatus for producing high concentration gaseous oxygen basing on pressure swinging adsorption method
JPS6259964B2 (en)
JPH10267189A (en) Heat-insulated reactor
JP2002102693A (en) Method for regenerating conductive adsorbing agent charged with organic substance
JP2601927B2 (en) Isotope separation method and thermal diffusion tower used for the method
CN203807153U (en) Device for producing hyperpure hydrogen by using integrated low-temperature adsorption method
US3764266A (en) Pump for producing a vacuum free of hydrogen
US3598538A (en) Directly heated gas dissociator
US3479144A (en) Catalytic burner
JP4201572B2 (en) Catalytic oxidation treatment apparatus and gas purification system using the same
JP2000229213A (en) Double tube or multi-tube type adsorption device
JPH04293513A (en) Production of oxygen-rich gas by pressure fluctuation adsorption process
JP3054062B2 (en) Purifier
RU2102120C1 (en) Device for cleaning of inert gas
CN114768531B (en) Hydrogen isotope water separation system and method
JPS63248706A (en) Purification treatment of carbon material
CN217614609U (en) Air inlet structure of polypeptide synthesis reactor