JPS61255533A - Vertical magnetic recording medium and its production - Google Patents
Vertical magnetic recording medium and its productionInfo
- Publication number
- JPS61255533A JPS61255533A JP9592185A JP9592185A JPS61255533A JP S61255533 A JPS61255533 A JP S61255533A JP 9592185 A JP9592185 A JP 9592185A JP 9592185 A JP9592185 A JP 9592185A JP S61255533 A JPS61255533 A JP S61255533A
- Authority
- JP
- Japan
- Prior art keywords
- film
- recording medium
- magnetic recording
- alloy
- saturation magnetization
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Magnetic Record Carriers (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明はF e −Cr合金を主体とする垂直磁気記録
媒体の改良に関するもので、特に飽和磁化が大きく、か
つ、マイクロクラックのない垂直記録媒体およびその製
造方法に関するものである。[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to improvement of perpendicular magnetic recording media mainly made of Fe-Cr alloy, and particularly perpendicular recording media with large saturation magnetization and no microcracks. and its manufacturing method.
垂直磁気記録方式は、膜面の垂直方向に磁化して記録す
る方式であり、現用の面内記録方式にくらべて反磁界に
よる記録減磁が少ないので高密度磁気記録に適している
と考えられている。Perpendicular magnetic recording is a method that records by magnetizing in the direction perpendicular to the film surface, and is considered suitable for high-density magnetic recording because it causes less recording demagnetization due to demagnetizing fields than the current longitudinal recording method. ing.
この垂直磁気記録を実現するためには、記録媒体として
、磁性膜面に対して垂直方向に磁化容易軸を有する垂直
磁化膜が必要である。このような磁気特性を持つ磁性膜
として、Cr含有量が33〜40原子%で、飽和磁化の
値が100〜300emu/ccのF e −Cr合金
膜が知られている(これについては、第8回日本応用磁
気学会学術講演概要集P9 (1984,11)に記載
されている)。In order to realize this perpendicular magnetic recording, a perpendicular magnetization film having an axis of easy magnetization perpendicular to the magnetic film surface is required as a recording medium. As a magnetic film having such magnetic properties, an Fe-Cr alloy film with a Cr content of 33 to 40 atomic % and a saturation magnetization value of 100 to 300 emu/cc is known (this will be discussed in Chapter 3). (Described in the 8th Japan Society of Applied Magnetics Academic Conference Abstracts P9 (1984, November)).
しかしながら、この材料はCr含有率が33yK子%と
多いために、飽和磁化が300 e+su/ g 程度
以下と小さく再生出力が小さいという問題点を有してい
た。また、Cr含有率が33g子%と多いためにFe−
Cr合金膜がもろく、磁化膜にマイクロクラックが生じ
やすいという問題点も有していることが明らかになった
。However, since this material has a high Cr content of 33yK%, it has a problem in that the saturation magnetization is as low as about 300 e+su/g or less, and the reproduction output is small. In addition, since the Cr content is as high as 33g%, Fe-
It has become clear that the Cr alloy film is brittle and has the problem that microcracks are likely to occur in the magnetized film.
本発明の目的は、Crの含有量を低減することによって
、飽和磁化の値が大きく、かつ、マイクロクランクのな
いFe−Cr系垂直磁気記録媒体およびその製造方法を
提供する゛ことにある。An object of the present invention is to provide an Fe--Cr perpendicular magnetic recording medium that has a large saturation magnetization value by reducing the Cr content and is free of microcranks, and a method for manufacturing the same.
33原子%以上のCrを含むF e −Cr磁性合金膜
が垂直磁化膜になる理由はつぎのように考えられている
。マグネトロンスパッタ法で作製したF e −33M
子%Crの磁性合金膜は円柱構造をした非晶質または微
結晶状のFe−Cr合金が膜面に垂直にならび各カラム
間は非磁性のbcccr偏析物により磁気的に隔離され
ている。これが垂直磁気異方性の一因と考えられている
。The reason why an Fe--Cr magnetic alloy film containing 33 atomic % or more of Cr becomes a perpendicular magnetization film is considered as follows. Fe-33M produced by magnetron sputtering method
In the Cr magnetic alloy film, an amorphous or microcrystalline Fe--Cr alloy having a columnar structure is arranged perpendicularly to the film surface, and each column is magnetically isolated by nonmagnetic bcccr segregation. This is thought to be a cause of perpendicular magnetic anisotropy.
この垂直磁気異方性の大きさくK、) が、膜面の垂直
方向に磁化した時の静磁エネルギー(2πIs”、Is
: 飽和磁化)より大になるという条件を満足した時
、膜は垂直磁化膜になる。The magnitude of this perpendicular magnetic anisotropy (K,) is the magnetostatic energy (2πIs'', Is
: saturation magnetization), the film becomes a perpendicularly magnetized film.
公知の方法では、Cr含有率が33原子%以下では垂直
磁化膜にならない。これは、上述のカラムの径が大きい
ためと推定される。In the known method, a perpendicularly magnetized film cannot be obtained if the Cr content is less than 33 atomic %. This is presumed to be due to the large diameter of the column mentioned above.
そこで、カラム径とFe−Cr合金が垂直磁化膜になる
Crの含有率との関係を調べた結果、カラム径を0.0
1〜0.1μmとすることによりCrの含有率が20〜
30原子%の間においてもFe−Cr合金膜は垂直磁化
膜になることが明らかになった。Therefore, as a result of investigating the relationship between the column diameter and the content of Cr in which the Fe-Cr alloy becomes a perpendicularly magnetized film, we found that the column diameter was 0.0
By setting it to 1 to 0.1 μm, the Cr content is 20 to 20.
It has become clear that the Fe--Cr alloy film becomes a perpendicularly magnetized film even at a concentration of 30 atomic %.
カラム径の制御法としては、F e −Cr合金膜を物
理蒸着(スパッタ、蒸着など)する際に、アースを基準
にして−50〜−500vの電圧を基板に印加する方法
がとくに有効である。A particularly effective method for controlling the column diameter is to apply a voltage of -50 to -500V to the substrate with respect to ground when performing physical vapor deposition (sputtering, vapor deposition, etc.) of the Fe-Cr alloy film. .
基板温度は、20〜200℃のいずれでもよいが50〜
150℃の間の温度がマイクロクラックの発生がないの
でより好ましい。The substrate temperature may be anywhere from 20 to 200°C, but may be from 50 to 200°C.
A temperature between 150° C. is more preferable since microcracks do not occur.
第2図に、高周波スパッタ法でFe−Cr合金膜を作製
する際にアースを基準にして一150■のバイアス電圧
を基板に印加して作製したFe−Cr合金膜の実効的な
垂直磁気異方性の大きさく K u = Kよ一2π工
52)および飽和磁化と膜のCr含有率との関係を示し
た。これらの膜のカラム径は0.02〜0.05μmで
あった。Figure 2 shows the effective perpendicular magnetic difference of the Fe-Cr alloy film produced by applying a bias voltage of -150 μm to the substrate with respect to ground when producing the Fe-Cr alloy film using the high-frequency sputtering method. The relationship between the magnitude of orientation (K u = K + 2π 52) and the saturation magnetization and Cr content of the film was shown. The column diameter of these membranes was 0.02-0.05 μm.
第2図からあきらかなように、バイアス電圧を印加して
カラム径を0.02〜0.05μmに制御することによ
りCrの含有率が23原子%〜40原子%のFa=C:
r合金膜は垂直磁化膜になる。As is clear from FIG. 2, by applying a bias voltage and controlling the column diameter to 0.02 to 0.05 μm, the Cr content is 23 atomic % to 40 atomic % Fa=C:
The r alloy film becomes a perpendicular magnetization film.
また、Crの含有率が23〜28原子%のFe−Cr合
金膜の飽和磁化は400〜650emu/ccで、公知
の値(100〜300emu/cc )よりも大きい。Further, the saturation magnetization of a Fe--Cr alloy film with a Cr content of 23 to 28 atomic % is 400 to 650 emu/cc, which is larger than the known value (100 to 300 emu/cc).
また、30原子%以下のCr含有率のF e −Cr合
金膜ではいずれも膜面のマイクロクラック発生は認めら
れなかった。すなわち、高周波スパッタ時に基板に一1
50VのDCバイアスを印加してカラム径を0.02〜
0.05μmに制御することにより、飽和磁化が大きく
、マイクロクラックのないFe−Cr垂直磁化膜が得ら
れる。Furthermore, no microcracks were observed on the film surface in any of the Fe--Cr alloy films with a Cr content of 30 atomic % or less. In other words, during high-frequency sputtering, one layer is applied to the substrate.
Apply a DC bias of 50V and adjust the column diameter to 0.02~
By controlling the thickness to 0.05 μm, a perpendicularly magnetized Fe—Cr film with large saturation magnetization and no microcracks can be obtained.
本発明のF e −Cr合金膜に10原子%以下のNi
、Co、Bi、白金族元素、Zr、Ta。The Fe-Cr alloy film of the present invention contains 10 atomic % or less of Ni.
, Co, Bi, platinum group elements, Zr, Ta.
Nb、W、Cの少なくとも一つを含有させれば、Fe−
Cr合金の耐食性向上やマイクロクラック発生防止に効
果があるのでより好ましい。If at least one of Nb, W, and C is contained, Fe-
It is more preferable since it is effective in improving the corrosion resistance of the Cr alloy and preventing the generation of microcracks.
また、Fe−Cr合金膜の下に高透磁率膜を形成すれば
再生出力が約2倍になるので好ましい。Furthermore, it is preferable to form a high magnetic permeability film under the Fe--Cr alloy film, since this will approximately double the reproduction output.
高透磁率膜の厚さは、0.3〜2μmが好ましい。The thickness of the high magnetic permeability film is preferably 0.3 to 2 μm.
この範囲が好ましいのは、0.3μm以下では再生出力
増大効果が小さく、2μm以上では再生出力増大効果が
飽和するためである。高透磁率膜の材料には、フェライ
ト、パーマロイ、センダスト。This range is preferable because the reproduction output increasing effect is small when the thickness is 0.3 μm or less, and the reproduction output increasing effect is saturated when the thickness is 2 μm or more. Materials for high magnetic permeability films include ferrite, permalloy, and sendust.
(Fe、Co、Nx) (Sx* By Ct P
+AQ−B)系非晶質合金、(Fe、Go、N1)−(
Hf、Zr、Y、Ti、Nb、Ta、W、V。(Fe, Co, Nx) (Sx* By Ct P
+AQ-B) type amorphous alloy, (Fe, Go, N1)-(
Hf, Zr, Y, Ti, Nb, Ta, W, V.
Mo、Cr)系非晶質合金、Fe−8i、Fe−5i−
Ru、F8xsNzなどの多結晶と非磁性膜(SiO2
,AQ203など)、磁性膜(Go。Mo, Cr) based amorphous alloy, Fe-8i, Fe-5i-
Polycrystals such as Ru, F8xsNz and non-magnetic films (SiO2
, AQ203, etc.), magnetic film (Go.
N x +パーマロイなど)との積層膜など磁気ヘッド
用材料として公知の材料を使用することができる。It is possible to use a material known as a material for a magnetic head, such as a laminated film of N x + permalloy, etc.).
F e −Cr合金膜の単層膜の下地層には、SnO,
などの使用すれば、飽和磁化の大きいFa−Cr合金垂
直膜が得られるので好ましい。The base layer of the single-layer Fe-Cr alloy film includes SnO,
It is preferable to use the above because a vertical Fa--Cr alloy film with high saturation magnetization can be obtained.
また、電導性下地膜の最近接原子間距離が1.8〜2.
2人のものは下地膜としての効果が大きいのでより好ま
しい。Further, the distance between the nearest atoms of the conductive base film is 1.8 to 2.
The two materials are more preferable because they have a great effect as a base film.
高透磁率膜を使用する、いわゆる二層膜の場合には最近
接原子間距離が1.8〜2.2人の電導性下地膜を高透
磁率膜とF e −Cr垂直磁化膜との間に形成させれ
ばFe−Cr垂直磁化膜の飽和磁化を大きくできるので
より好ましい。In the case of a so-called two-layer film that uses a high magnetic permeability film, a conductive underlayer film with a nearest neighbor atomic distance of 1.8 to 2.2 is formed between the high magnetic permeability film and the Fe-Cr perpendicular magnetization film. It is more preferable to form the Fe--Cr perpendicularly magnetized film between the two layers because the saturation magnetization of the Fe--Cr perpendicularly magnetized film can be increased.
高透磁率膜、Fe−Cr合金膜の形成法には、高周波ス
パッタ法、マグネトロンスパッタ法、イオンビームスパ
ッタ法などの人バッタ法、蒸着法。The high magnetic permeability film and the Fe-Cr alloy film can be formed using manual sputtering methods such as high frequency sputtering, magnetron sputtering, and ion beam sputtering, and vapor deposition methods.
めっき法、化学蒸着法などのいずれでもよいが、スパッ
タ法、蒸着法などの物理蒸着法が膜形成が容易であるの
でより好ましい。この中、スパッタ法は膜組成制御が容
易であるのでさらに好ましい。Any method such as a plating method or a chemical vapor deposition method may be used, but a physical vapor deposition method such as a sputtering method or a vapor deposition method is more preferable because it facilitates film formation. Among these, the sputtering method is more preferable because the film composition can be easily controlled.
以下に、実施例で本発明、を説明するが、実施例は本発
明に制限を加えるものではない。The present invention will be explained below with reference to Examples, but the Examples are not intended to limit the present invention.
実施例1
第1図に示したRFスパッタ装置を用い、非磁性基板上
にF e −Cr合金膜を形成した。第1図において、
1は非磁性基板でこの基板には一500V−OVのバイ
アス電圧を印加できる構造をもつ。Example 1 Using the RF sputtering apparatus shown in FIG. 1, an Fe--Cr alloy film was formed on a non-magnetic substrate. In Figure 1,
Reference numeral 1 denotes a non-magnetic substrate which has a structure to which a bias voltage of 1500 V-OV can be applied.
2はスパッタターゲットでターゲットには13.5M
Hz の高周波(RF)がかけられる構造をもつ。2 is a sputter target and the target is 13.5M.
It has a structure that allows radio frequency (RF) waves of Hz to be applied.
3はニードルバルブでArなどのスパッタリングガスの
流量を!51!整できる構造になっている。3 is a needle valve to control the flow rate of sputtering gas such as Ar! 51! It has a structure that can be adjusted.
上記の装置を使用し、100IlfiφのFe−Cr合
金ターゲットを用いて5 X 10−”TorrのAr
圧圧下5大
板上に膜厚0.3μmのF e − C r合金膜を被
着させた。Using the above apparatus, Ar of 5 X 10-” Torr was applied using a Fe-Cr alloy target of 100 Ilfiφ.
An Fe-Cr alloy film with a film thickness of 0.3 μm was deposited on five large plates under pressure.
なお、基板にはアースを基準に一150vのバイアス電
圧を印加した。Note that a bias voltage of -150 V was applied to the substrate with respect to ground.
これらのFe−Cr合金膜のOrr有量と、試料振動型
磁束計(V S M)により測定した飽和磁化(Is)
と磁気トルク測定装置で測定したKu(=によ一2πI
s”)を第2図に示す。The Orr content of these Fe-Cr alloy films and the saturation magnetization (Is) measured by a sample vibrating magnetometer (V SM)
and Ku measured with a magnetic torque measuring device (= 2πI
s”) is shown in FIG.
第2図には比較例として、バイアスを印加しなかった場
合も示す。As a comparative example, FIG. 2 also shows a case where no bias was applied.
第2図からあきらかなように、RFスパッタ時に一15
0Vのバイアス電圧を印加することにより、Crの含有
率が23〜40原子%のFe−Cr合金膜は垂直磁化膜
になる。また、Cr含有率が23〜28原子%のF e
− C r合金膜の飽和磁化は4 0 0 − 6
5 0eIIu/ccで,公知の値(100〜3 0
0e+su/cc )よりも大きい.また、30原子%
以下のCr含有率のF e − C r合金膜ではいず
れも膜面上のマイクロクラック発生は認められなかった
。As is clear from Figure 2, during RF sputtering,
By applying a bias voltage of 0 V, the Fe--Cr alloy film with a Cr content of 23 to 40 atomic % becomes a perpendicularly magnetized film. Further, Fe with a Cr content of 23 to 28 at%
- The saturation magnetization of the Cr alloy film is 400-6
50eIIu/cc, known value (100~30
0e+su/cc). Also, 30 atomic%
No microcracks were observed on the film surface in any of the Fe-Cr alloy films with the following Cr contents.
実施例2
ターゲットに、5原子%のNiを含有するFe−〇r金
合金使用したこと、バイアス電圧を一500Vにしたこ
とを除き、実施例1と同様にしてF e − 5 ff
i子%N i − 2 0 M子%Cr合金膜を作製し
た。この膜の磁気特性はつぎのようである。Example 2 Fe-5 ff was produced in the same manner as in Example 1, except that Fe-〇r gold alloy containing 5 at% Ni was used as the target and the bias voltage was set to -500V.
An alloy film of i%Ni-20M%Cr was fabricated. The magnetic properties of this film are as follows.
垂直方向の保磁力(Hc.) ニア000e、面内方
向の保磁力(HcI) :1500e、飽和磁化(I
s ) : 6 9 5emu/cc 、垂直方向
の角形比(I r./I s): 0.08、面内方向
の角形比(I r,/I s): 0.05、実効的垂
直磁気異方性定数(Ku) : 8.6 X 1 0
’erg/cc、カラム径:〜0.02μm、マイクロ
クラック:なし。Perpendicular coercive force (Hc.) near 000e, in-plane coercive force (HcI): 1500e, saturation magnetization (I
s): 695emu/cc, Vertical squareness ratio (Ir./Is): 0.08, In-plane squareness ratio (Ir,/Is): 0.05, Effective perpendicular magnetism Anisotropy constant (Ku): 8.6 x 1 0
'erg/cc, column diameter: ~0.02 μm, microcracks: none.
この結果からあきらかなように、F e − C r−
Ni合金膜は、垂直磁化膜であり、飽和磁化も約7 0
0 erau/ ccと大きい。As is clear from this result, Fe − Cr−
The Ni alloy film is a perpendicular magnetization film, and the saturation magnetization is also about 70.
It is large at 0 erau/cc.
実施例3
Goの含有率を10i子%としたこと,バイアス電圧を
一50Vとしたことを除き実施例1と同様にしてFa−
30原子%Cr−10jK子%C。Example 3 Fa-
30 atomic% Cr-10jK %C.
合金膜を作製した。この膜の特性はつぎのようである。An alloy film was prepared. The characteristics of this film are as follows.
Hc、: 4000e’、Has : 1200c、
I s : 354cmu/cc 、 I
rt/ I s : 0.10、I r、/ I
s : 0.04、Ku : 5.3 X 10”e
rg/cc、カラム径:〜0.1μm、マイクロクラッ
ク:なし。Hc: 4000e', Has: 1200c,
Is: 354cmu/cc, I
rt/Is: 0.10, Ir,/I
s: 0.04, Ku: 5.3 x 10”e
rg/cc, column diameter: ~0.1 μm, microcracks: None.
この結果からあきらかなように、Fa −Co −Cr
合金膜は垂直磁化膜であり、飽和磁化も約350emu
/ccと大きい。また、マイクロクラックも観察されな
かった。As is clear from this result, Fa -Co -Cr
The alloy film is a perpendicular magnetization film, and the saturation magnetization is also about 350 emu.
It is large at /cc. Further, no microcracks were observed.
以上の説明からあきらかなように、Cr含有率を20〜
30原子%、カラム径を0.02〜0.1μmとするこ
とにより、飽和磁化が350〜7f)Oemu/ccと
大きく、マイクロクラックのないFe−Cr垂直磁化膜
が得られる。As is clear from the above explanation, the Cr content is 20~
By using 30 atomic % and a column diameter of 0.02 to 0.1 μm, an Fe-Cr perpendicular magnetization film with a large saturation magnetization of 350 to 7 f) Oemu/cc and no microcracks can be obtained.
第1図は、本発明の一実施例における、Fe−Cr薄膜
の作製に使用した高周波スパック装置の概略断面図、第
2図は本発明の効果を示した説明図である。
1・・・非磁性基板、2・・・スパッタターゲット、3
・・・ニードルバルブ、4・・バイアス電圧を印加して
作製したF e −Cr・合金膜の飽和磁化の変化曲線
、5・・・バイアス電圧を印加して作製したF e
Cr合金膜の実効的垂直異方性(K u )の変化曲線
、6・・・従来法(バイアスなし)で作製したFe−C
r膜の飽和磁化の変化曲線、7・・・従来法で作製した
F e −Cr膜のKuの変化曲線。
第 2 図
Cr含有率(象j%)FIG. 1 is a schematic cross-sectional view of a high frequency spackle apparatus used for producing a Fe--Cr thin film in one embodiment of the present invention, and FIG. 2 is an explanatory diagram showing the effects of the present invention. 1... Nonmagnetic substrate, 2... Sputter target, 3
... Needle valve, 4... Change curve of saturation magnetization of Fe-Cr alloy film produced by applying bias voltage, 5... Fe produced by applying bias voltage
Change curve of effective perpendicular anisotropy (K u ) of Cr alloy film, 6...Fe-C produced by conventional method (no bias)
Change curve of saturation magnetization of r film, 7... Change curve of Ku of Fe-Cr film produced by conventional method. Figure 2 Cr content (elevation j%)
Claims (1)
介さずに被着された垂直磁気異方性を有するFe−Cr
合金を主体とする磁気記録媒体において、Crの含有量
が20〜30原子%、飽和磁化の値が350〜700e
mu/ccであることを特徴とする垂直磁気記録媒体。 2、特許請求の範囲第1項において、磁気記録媒体にN
i、Co、Bi、白金族元素、Zr、Ta、Nb、W、
Cの少なくとも一つを10原子%以下含むことを特徴と
する垂直磁気記録媒体。 3、Fe−Crを主体とする合金をターゲットとして不
活性ガスを含む雰囲気中でスパッタリングを行なうこと
を特徴とする垂直磁気記録媒体の製造法。 4、特許請求の範囲第3項の製造法にお いて、スパッタリングまたは蒸着時に、アースを基準に
して−50〜−500Vのバイアス電圧を印加すること
を特徴とする垂直磁気記録媒体の製造法。[Claims] 1. Fe-Cr having perpendicular magnetic anisotropy deposited on a non-magnetic substrate with or without a high permeability magnetic material.
In a magnetic recording medium mainly composed of an alloy, the Cr content is 20 to 30 at% and the saturation magnetization value is 350 to 700e.
A perpendicular magnetic recording medium characterized in that it is mu/cc. 2. In claim 1, the magnetic recording medium contains N.
i, Co, Bi, platinum group elements, Zr, Ta, Nb, W,
A perpendicular magnetic recording medium comprising 10 atomic % or less of at least one of C. 3. A method for producing a perpendicular magnetic recording medium, which comprises performing sputtering using an alloy mainly composed of Fe-Cr as a target in an atmosphere containing an inert gas. 4. A method for manufacturing a perpendicular magnetic recording medium according to claim 3, characterized in that a bias voltage of -50 to -500 V is applied with reference to ground during sputtering or vapor deposition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9592185A JPS61255533A (en) | 1985-05-08 | 1985-05-08 | Vertical magnetic recording medium and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9592185A JPS61255533A (en) | 1985-05-08 | 1985-05-08 | Vertical magnetic recording medium and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61255533A true JPS61255533A (en) | 1986-11-13 |
Family
ID=14150739
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9592185A Pending JPS61255533A (en) | 1985-05-08 | 1985-05-08 | Vertical magnetic recording medium and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61255533A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0333101A2 (en) * | 1988-03-15 | 1989-09-20 | Nihon Shinku Gijutsu Kabushiki Kaisha | Process for manufacturing magnetic recording material |
CN103184414A (en) * | 2011-12-28 | 2013-07-03 | 浦项产业科学研究院 | Hard coating layer and method for forming the same |
-
1985
- 1985-05-08 JP JP9592185A patent/JPS61255533A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0333101A2 (en) * | 1988-03-15 | 1989-09-20 | Nihon Shinku Gijutsu Kabushiki Kaisha | Process for manufacturing magnetic recording material |
CN103184414A (en) * | 2011-12-28 | 2013-07-03 | 浦项产业科学研究院 | Hard coating layer and method for forming the same |
US20140010972A1 (en) * | 2011-12-28 | 2014-01-09 | Research Institute Of Industrial Science & Technology | Hard coating layer and method for forming the same |
US9187648B2 (en) | 2011-12-28 | 2015-11-17 | Research Institute Of Industrial Science & Technology | Hard coating layer and method for forming the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5264981A (en) | Multilayered ferromagnetic film and magnetic head employing the same | |
US20080107922A1 (en) | Magnetic film for magnetic head | |
EP0140513A1 (en) | Thin film magnetic recording structures | |
JPH0587888B2 (en) | ||
JP3612087B2 (en) | Magnetic recording medium | |
JPS61255533A (en) | Vertical magnetic recording medium and its production | |
JPS62158306A (en) | High density iron system magnetic material film and manufacture thereof | |
JPS59228705A (en) | Vertical magnetic recording medium and manufacture of the same | |
JPH05315135A (en) | Co/ni artificial lattice film, magnetoresistance element, magnetic head and magnetic recording medium, and manufacture of co/ni artificial lattice film | |
JPS6390025A (en) | Magnetic recording medium | |
JPH05114530A (en) | Manufacture of soft magnetic alloy film and manufacture of magnetic head | |
JP3132254B2 (en) | Soft magnetic film and method for manufacturing soft magnetic multilayer film | |
JP2710048B2 (en) | Perpendicular magnetic recording medium and manufacturing method thereof | |
JPH11186033A (en) | Ferromagnetic metallic compound film, its manufacture, and magnetic record medium | |
JPS6095721A (en) | Vertical magnetic recording medium and its production | |
JPS61258331A (en) | Magnetic recording medium | |
JPH0389502A (en) | Magnetic multilayer film | |
Simpson et al. | Underlayer-induced readback signal modulation in double-layer perpendicular media | |
JPH06333770A (en) | Manufacture of magnetic film and thin film magnetic head | |
JP2715783B2 (en) | Magnetic recording media | |
JPS61260416A (en) | Vertical magnetic recording medium and its production thereof | |
JPS62128017A (en) | Vertical magnetic recording medium | |
JP2000215434A (en) | Magnetic recording medium and magnetic storage device | |
JP2002109714A (en) | Information recording medium and information recording device | |
JPS62154212A (en) | Laminated iron/oxygen magnetic material film |