JPS61204024A - Removing apparatus for hydrogen sulfide contained in gas - Google Patents
Removing apparatus for hydrogen sulfide contained in gasInfo
- Publication number
- JPS61204024A JPS61204024A JP60044680A JP4468085A JPS61204024A JP S61204024 A JPS61204024 A JP S61204024A JP 60044680 A JP60044680 A JP 60044680A JP 4468085 A JP4468085 A JP 4468085A JP S61204024 A JPS61204024 A JP S61204024A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- hydrogen sulfide
- liquid
- tower
- regeneration tower
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treating Waste Gases (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明はガス中の硫化水素を除去する装置に関し、更に
詳しくはハイドロキノン(又はキノン)を添加溶解17
たアルカリ水溶液を吸収液として該ガスを洗浄し、硫化
水素を吸収し、吸収液は、再生塔において空気に接触し
酸化再生し循環使用するようにしたガス中の硫化水素を
除去する装置に関する。Detailed Description of the Invention (Industrial Field of Application) The present invention relates to an apparatus for removing hydrogen sulfide from gas, and more specifically, it relates to an apparatus for removing hydrogen sulfide from gas, and more specifically, for adding and dissolving hydroquinone (or quinone) to
The present invention relates to an apparatus for removing hydrogen sulfide from gas, in which the gas is cleaned using an aqueous alkaline solution as an absorption liquid, hydrogen sulfide is absorbed, and the absorption liquid is brought into contact with air in a regeneration tower to be oxidized and regenerated for circulation.
(従来の技術)
従来酸化基を導入して水溶化したキノン類、ハイドロキ
ノン類又はこれらの金属塩類のアルカリ水溶液をもって
精製すべきガス中に存在する硫化水素を吸収し硫化水素
吸収後の吸収液を酸化Lm黄を析出しこれを分離し吸収
液を再び循環する湿式ガス精製法はタカハックス法他類
似プロセスとして知られている。(特公昭39−101
5号公報、特公昭53−1284号公報など参照)
この方法において実用されているプロセスは触媒として
、1.4−ナフトキノン−2−スルホン酸ナトリウム、
ハイドロキノンを添加し又アμカリ源として水酸ナトリ
ウム、炭酸ナトリウム、重炭酸ナトリウム等を溶解した
吸収液を吸収塔頂部から流下して塔底部から導入する硫
化水素を含有するガスと気液接触し含有硫化水素を吸収
させた後該液を多孔質ガス分散筒等を有する再生塔の塔
底部に導入し同時に該塔底部から圧縮空気を圧入して液
中に溶解される酸素及び上記触媒の作用により吸収され
た硫化水素を酸化して硫黄を析出させ該液を再生して再
び吸収塔に循環する方法である。(Prior art) Conventionally, hydrogen sulfide present in the gas to be purified is absorbed using an alkaline aqueous solution of quinones, hydroquinones, or metal salts thereof, which have been made water-solubilized by introducing an oxidizing group, and the absorbed liquid after hydrogen sulfide absorption is A wet gas purification method in which Lm oxide yellow is precipitated, separated, and the absorption liquid is circulated again is known as the Takahax method and other similar processes. (Tokuko Sho 39-101
5, Japanese Patent Publication No. 53-1284, etc.) The process used in this method uses sodium 1,4-naphthoquinone-2-sulfonate as a catalyst,
An absorption liquid containing hydroquinone and dissolved sodium hydroxide, sodium carbonate, sodium bicarbonate, etc. as a potassium source flows down from the top of the absorption tower and is brought into gas-liquid contact with a gas containing hydrogen sulfide introduced from the bottom of the tower. After absorbing the hydrogen sulfide contained therein, the liquid is introduced into the bottom of a regeneration tower having a porous gas dispersion cylinder, etc., and at the same time compressed air is forced into the bottom of the tower to remove the oxygen dissolved in the liquid and the action of the catalyst. This method oxidizes the hydrogen sulfide absorbed by the absorber to precipitate sulfur, regenerates the liquid, and recirculates it to the absorption tower.
さらに吸収液の再生には通常気泡塔(分散枝又は分散管
を有する)が使用されていたので、吸収液の再生塔内に
おける滞留時間が大となり装置が大型となる欠点、さら
に使用する空気量が多大となり(これは利用率が悪いた
めである)さらに分散枝、分散管の圧損が大きく空気押
込動力が必要であった。Furthermore, since a bubble column (having a dispersion branch or a dispersion tube) was normally used to regenerate the absorption liquid, the residence time of the absorption liquid in the regeneration tower was long, resulting in a large-sized device, and the amount of air used was also disadvantageous. (This is due to the poor utilization rate.) Furthermore, the pressure loss in the dispersion branches and dispersion pipes was large, and air pushing power was required.
一方生成した硫黄粒子の肥大化、浮上の必要のために別
置タンクを必要とした。On the other hand, a separate tank was required due to the enlargement of the sulfur particles produced and the need for flotation.
(発明が解決しようとする問題点り
本発明はこのような実情に濫みてなされたものであって
、気液接触効率を高め、硫黄粒子を採取するためのタン
クの小型化又は省略化のできるガス中の硫化水素を除去
する装置を提供しようとするものである。(Problems to be Solved by the Invention) The present invention has been made in view of the above circumstances, and aims to improve the gas-liquid contact efficiency and to make it possible to downsize or omit the tank for collecting sulfur particles. The present invention aims to provide an apparatus for removing hydrogen sulfide from gas.
(問題点を解決するための手段)
す1cわち本発明け、
(1) ハイドロキノンを含んだアルカリ水溶液ヲ吸
収液とし7てガス中の硫化水素を吸収する吸収塔と、該
吸収液を再生する再生塔よりなるガス中の硫化水素を除
去する装置において、該再生塔が下部にロータリアトマ
イザを設けてなるものであることを特徴とするガス中の
硫化水素除去装置
及び
(2) ハイドロキノンを含んだアルカリ水溶液を吸
収液としてガス中の硫化水素を吸収する吸収塔と、該吸
収液を再生する再生塔よりなるガス中の硫化水素を除去
する装置において、該再生塔が下部にロータリアトマイ
ザを、上部にコンベアを設けてなるものであることを特
徴とするガス中の硫化水素除去装置
である。(Means for Solving the Problems) That is, the present invention: (1) An absorption tower that absorbs hydrogen sulfide in gas by using an aqueous alkali solution containing hydroquinone as an absorption liquid, and regenerates the absorption liquid. An apparatus for removing hydrogen sulfide from a gas comprising a regeneration tower, characterized in that the regeneration tower is equipped with a rotary atomizer at the bottom; In an apparatus for removing hydrogen sulfide from gas, the apparatus includes an absorption tower that absorbs hydrogen sulfide in gas using an alkaline aqueous solution as an absorption liquid, and a regeneration tower that regenerates the absorption liquid, in which the regeneration tower has a rotary atomizer at the bottom, This is an apparatus for removing hydrogen sulfide from gas, characterized in that it is equipped with a conveyor at the top.
以下従来法を、第2図によって説明し、併せて本発明装
置の実施態様を第1図によって説明する。Hereinafter, the conventional method will be explained with reference to FIG. 2, and an embodiment of the apparatus of the present invention will be explained with reference to FIG. 1.
第2図において、精製すべき硫化水素を含むガスは、導
管15から吸収塔1に導入され、塔頂部の撒液管15か
ら撒布されるあとで述べる酸化処理液と向流接触される
。吸収塔1内では硫化水素は例えば炭酸ソーダと反応し
て水硫化ソーダを生じる。In FIG. 2, a gas containing hydrogen sulfide to be purified is introduced into the absorption tower 1 through a conduit 15, and is brought into countercurrent contact with an oxidation treatment liquid, which will be described later, which is sprayed through a spray pipe 15 at the top of the tower. In the absorption tower 1, hydrogen sulfide reacts with, for example, sodium carbonate to produce sodium hydrogen sulfide.
H2B+ Na2CO3−+ NaH8+ NaHCo
、3吸収塔1から流出する吸収液は導管6を通ってタン
ク5に集められるが、この間に吸収液中に溶存するキノ
ンと水硫化ソーダとは次式の如く一部反応する。H2B+ Na2CO3-+ NaH8+ NaHCo
, 3 The absorption liquid flowing out from the absorption tower 1 is collected in the tank 5 through the conduit 6, during which time the quinone dissolved in the absorption liquid and the sodium hydrogen sulfide partially react as shown in the following equation.
則ちキノンが水硫化ソーダと反応して硫黄となりキノン
はハイドロキノンになる。In other words, quinone reacts with sodium hydrogen sulfide to form sulfur, and quinone becomes hydroquinone.
次いで吸収液はポンプ7′によって導管21を経て再生
塔2の塔底部から送入され、圧縮機19から送入される
空気又は酸素含有ガスと並流接触し次式の如き残りの水
硫化ソーダの酸化と同時に触媒の酸化再生が行われる。The absorption liquid is then fed from the bottom of the regeneration tower 2 via the conduit 21 by the pump 7' and is brought into co-current contact with the air or oxygen-containing gas fed from the compressor 19 to remove the remaining sodium hydrogen sulfide as follows: At the same time as the oxidation of the catalyst, oxidative regeneration of the catalyst takes place.
NaH8+NaHCO3+−02−+ Na2C○、+
H20+Sかくして十分に再生された酸化処理液は導管
22を通ってタンク4に集められ、ポンプ7によって導
管18を経て再び吸収塔1に循環する。該酸化処理液は
タンク4に導かれるが、タンク4の液面上にはイオウが
浮上肥大化してコンベア12で除去され、フィルター1
6で回収される。NaH8+NaHCO3+-02-+ Na2C○,+
The H20+S thus sufficiently regenerated oxidation treatment liquid is collected in the tank 4 through the conduit 22 and circulated by the pump 7 through the conduit 18 to the absorption tower 1 again. The oxidation treatment liquid is led to the tank 4, but sulfur floats to the surface of the tank 4, becomes thick, is removed by the conveyor 12, and is passed through the filter 1.
Collected at 6.
しかしこの方法によるとタンク4でのイオウの浮上は十
分でなくタンク4の下部に沈着するイオウが多く、導管
18に目詰りを起こすことが多かった。However, according to this method, sulfur does not float sufficiently in the tank 4, and a large amount of sulfur settles in the lower part of the tank 4, which often causes clogging of the conduit 18.
これに対し、本発明の実施態様は第1図の示すように、
吸収液の導管21を経て再生塔2の塔底部へ送入される
までは第2図の従来の方法と同じであるので説明は省略
する。In contrast, the embodiment of the present invention, as shown in FIG.
The process until the absorption liquid is sent to the bottom of the regeneration tower 2 through the conduit 21 is the same as the conventional method shown in FIG. 2, so a description thereof will be omitted.
圧縮機19から送入される空気又は酸素含有ガスは再生
塔2の塔底部のロータリアトマイザ17′により微細気
泡となって塔底部から送付された該吸収液と反応をくり
返し再生塔2を上部に流れていく。The air or oxygen-containing gas fed from the compressor 19 is turned into fine bubbles by the rotary atomizer 17' at the bottom of the regeneration tower 2, and is repeatedly reacted with the absorption liquid sent from the bottom of the tower to pass the regeneration tower 2 to the top. It flows.
OOH
この時m細気泡のまわりには反応によって生成したイオ
ウの粒子がくつつき内部に浮遊するイオウはほとんどな
くなる。微細気泡でなければ自分自身のもつチャージの
みで肥大化し、あるものは気泡とともに上昇、浮上し、
一部は液中に懸濁しくもし液の流れがなければ第2図に
おけるタンク4の状態のごとく下部に沈着する。OOH At this time, sulfur particles generated by the reaction are surrounded by the small bubbles, and there is almost no sulfur floating inside. If the bubbles are not microscopic, they will enlarge due to their own charge, and some will rise and surface with the bubbles.
Some of it is suspended in the liquid, and if there is no flow of liquid, it will settle at the bottom, as in the case of tank 4 in FIG.
吸収塔1内充填物の目づまり、再生塔2の散気管17の
目づまりの原因となっていた。This caused clogging of the packing in the absorption tower 1 and clogging of the air diffuser pipe 17 of the regeneration tower 2.
かくして再生塔2液面上に空気泡とともに浮上したイオ
ウ粒子はすぐにコンベア12でかき取υ除去し、シュー
トを通ってフィμター16で回収される。一方浮上した
イオウ粒子のすぐ下に存在する酸化処理液は導管22を
通ってタンク4に集められ、ポンプ7によって再び吸収
塔1に循環する。ここでタンク4は従来の(第2図の)
タンク4の容積の必要はなくボンデ7の運転可能範囲で
良い。The sulfur particles thus floated on the liquid surface of the regeneration tower 2 along with air bubbles are immediately scraped off by the conveyor 12, passed through a chute, and collected by the filter 16. On the other hand, the oxidized liquid existing immediately below the floating sulfur particles is collected in the tank 4 through the conduit 22 and circulated to the absorption tower 1 again by the pump 7. Here, tank 4 is a conventional tank (as shown in Figure 2).
There is no need for the capacity of the tank 4, and the capacity within which the bonder 7 can be operated is sufficient.
本発明は吸収液の空気又は酸素含有ガスによる酸化再生
に従来の気泡塔を使用せず、気液接触効率の高いロータ
リアトマイザが吸収液の処理に優れていることを見出し
た。The present invention has discovered that a rotary atomizer with high gas-liquid contact efficiency is excellent in treating the absorption liquid without using a conventional bubble column for oxidation regeneration of the absorption liquid with air or oxygen-containing gas.
第5図はハイドロキノンを含んでいる水硫化物を生成し
たアルカリ水溶液(40t)に空気(2m’/h )を
接触させる際に従来の気泡塔B及び本発明のロータリア
トマイザAを使用した再生塔を使用した場合の水硫化イ
オンの経時的減少状態を示すグラフである。両者は明ら
かに有意差が認められる。Figure 5 shows a regeneration tower using a conventional bubble column B and a rotary atomizer A of the present invention when air (2 m'/h) is brought into contact with an alkaline aqueous solution (40 t) that has produced hydrosulfide containing hydroquinone. It is a graph showing the state of decrease in hydrosulfide ions over time when using. There is clearly a significant difference between the two.
第3図は液境膜内に酸素を供給する速度に関係する拡散
律速反応であることが明らかであり従って酸素濃度を高
め吸収液と酸素との接触効率を高める再生方式を採用す
れば再生反応を迅速に進行する事が可能である。It is clear that Figure 3 is a diffusion-limited reaction related to the rate of supplying oxygen into the liquid film. Therefore, if a regeneration method is adopted that increases the oxygen concentration and increases the contact efficiency between the absorbing liquid and oxygen, the regeneration reaction will occur. It is possible to proceed quickly.
本発明においては上記の拡散律速反応を効率的に進行さ
せる為反応器下部に設置したロータリアトマイザによっ
て供給する空気の、又は酸素含有ガスの分散径を少とし
気液表面積を大にし接触効率を高める再生塔を採用して
いる。In the present invention, in order to efficiently advance the above-mentioned diffusion-limited reaction, the dispersion diameter of the air or oxygen-containing gas supplied by a rotary atomizer installed at the bottom of the reactor is reduced to increase the gas-liquid surface area and increase the contact efficiency. It uses a regeneration tower.
ロータリアトマイザは第4図に示すように、液中でカッ
プ状の回転体2を高速で回転させ、そのカップの内側に
空気5を連続的に送入しカップ下端からガスを溢流させ
る。溢流したガスはガスと液体との比重差に基づく遠心
力効果によって回転体表面にガス層を形成する。このガ
ス層と回転総まわりの液との間には相対速度がある為、
この間のWi擦によってガス層は引きちぎられ、微細な
気泡となって液中に分散させるものである。As shown in FIG. 4, the rotary atomizer rotates a cup-shaped rotating body 2 in liquid at high speed, and continuously feeds air 5 into the cup to cause gas to overflow from the lower end of the cup. The overflowing gas forms a gas layer on the surface of the rotating body due to the centrifugal force effect based on the difference in specific gravity between the gas and the liquid. Since there is a relative velocity between this gas layer and the liquid around the entire rotation,
During this time, the gas layer is torn off by Wi-rubbing, forming fine bubbles and dispersing them in the liquid.
回転体を高速で回転させる為に駆動装置5を必要とする
が回転体に突起部がない事、回転体のまわりの雰囲気が
気体に近い事などからその消費動力は通常の攪拌翼に比
べると非常に少ないという特長をもっている。A drive device 5 is required to rotate the rotating body at high speed, but because there are no protrusions on the rotating body and the atmosphere around the rotating body is close to gas, its power consumption is lower than that of ordinary stirring blades. It has the advantage of being extremely rare.
また軸封部4に接する流体は気体のみであり液中に硫黄
粒子のような固形物が含まれていても液体は軸封部に接
しない為、固形物の混入による軸封部破損の懸念はなく
多孔板、多孔質分散筒のような細孔がない為、穴の目づ
まり等のトラプμは完全にさけられる。In addition, the fluid that comes into contact with the shaft seal 4 is only gas, and even if the liquid contains solid matter such as sulfur particles, the liquid will not come into contact with the shaft seal, so there is a concern that the shaft seal may be damaged due to solid matter being mixed in. Since there are no pores like in a perforated plate or a porous dispersion cylinder, traps such as hole clogging can be completely avoided.
則ち従来の方法では散気管等の気液接触装置によって酸
化再生したために生成したイオウはコンベアで分離され
るもの以外は水糸内を一定濃度で循環しており、これが
目づまりの原因となっていた。しかし本発明ではロータ
リアトマイザによる高い気液接触、酸化再生して生成し
たイオウの高い浮上能力、さらにはコンベアによる有効
な分離を考慮したため前記トラブルは解消され、ロータ
リアトマイザの高い信頼性ととともに長期ランニングが
可能となった。In other words, in the conventional method, the sulfur generated by oxidation and regeneration using a gas-liquid contact device such as an aeration pipe circulates in the water string at a constant concentration, except for what is separated by the conveyor, and this causes clogging. Ta. However, in the present invention, the above-mentioned troubles are solved because the rotary atomizer takes into consideration the high gas-liquid contact, the high floating ability of the sulfur produced by oxidation and regeneration, and the effective separation by the conveyor, and the rotary atomizer has high reliability and long-term operation. became possible.
第1図は本発明の一実施態様を示す系統図、第2図は従
来の実施態様を示す系統図、第3図はアルカリ水溶液中
水硫化イオンの経時変化を示す図、第4図は本発明にお
いて使用するロータリアトマイザの概略図である。
復代理人 内 1) 明
復代理人 萩 原 亮 −
第1図
迄
!L/
第2図Fig. 1 is a system diagram showing one embodiment of the present invention, Fig. 2 is a system diagram showing a conventional embodiment, Fig. 3 is a diagram showing changes over time of hydrosulfide ions in an alkaline aqueous solution, and Fig. 4 is a diagram showing the present invention. 1 is a schematic diagram of a rotary atomizer used in the invention. Sub-agents 1) Meifuku agent Ryo Hagiwara - Up to Figure 1! L/ Figure 2
Claims (2)
としてガス中の硫化水素を吸収する吸収塔と、該吸収液
を再生する再生塔よりなるガス中の硫化水素を除去する
装置において、該再生塔が下部にロータリアトマイザを
設けてなるものであることを特徴とするガス中の硫化水
素除去装置。(1) In an apparatus for removing hydrogen sulfide from a gas, the regeneration tower is comprised of an absorption tower that absorbs hydrogen sulfide from a gas using an aqueous alkali solution containing hydroquinone as an absorption liquid, and a regeneration tower that regenerates the absorption liquid. A device for removing hydrogen sulfide from gas, characterized in that it is equipped with a rotary atomizer at the bottom.
としてガス中の硫化水素を吸収する吸収塔と、該吸収液
を再生する再生塔よりなるガス中の硫化水素を除去する
装置において、該再生塔が下部にロータリアトマイザを
、上部にコンベアを設けてなるものであることを特徴と
するガス中の硫化水素除去装置。(2) In an apparatus for removing hydrogen sulfide from a gas, the regeneration tower is comprised of an absorption tower that absorbs hydrogen sulfide in the gas using an aqueous alkaline solution containing hydroquinone as an absorption liquid, and a regeneration tower that regenerates the absorption liquid. A device for removing hydrogen sulfide from gas, characterized by comprising a rotary atomizer at the bottom and a conveyor at the top.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60044680A JPS61204024A (en) | 1985-03-08 | 1985-03-08 | Removing apparatus for hydrogen sulfide contained in gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60044680A JPS61204024A (en) | 1985-03-08 | 1985-03-08 | Removing apparatus for hydrogen sulfide contained in gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61204024A true JPS61204024A (en) | 1986-09-10 |
Family
ID=12698148
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60044680A Pending JPS61204024A (en) | 1985-03-08 | 1985-03-08 | Removing apparatus for hydrogen sulfide contained in gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61204024A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6389409A (en) * | 1986-10-02 | 1988-04-20 | Idemitsu Kosan Co Ltd | Method for recovering sulfur |
CN105817130A (en) * | 2016-05-10 | 2016-08-03 | 四川西油致诚石油技术有限公司 | Device for efficient treatment of exhaust gas hydrogen sulfide |
CN109632743A (en) * | 2018-12-27 | 2019-04-16 | 浙江天为企业评价咨询有限公司 | A kind of dual channel atomic fluorescence photometers |
CN109632668A (en) * | 2018-12-27 | 2019-04-16 | 浙江天为企业评价咨询有限公司 | A kind of atomic absorption spectrophotometer |
-
1985
- 1985-03-08 JP JP60044680A patent/JPS61204024A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6389409A (en) * | 1986-10-02 | 1988-04-20 | Idemitsu Kosan Co Ltd | Method for recovering sulfur |
JPH0456761B2 (en) * | 1986-10-02 | 1992-09-09 | Idemitsu Kosan Co | |
CN105817130A (en) * | 2016-05-10 | 2016-08-03 | 四川西油致诚石油技术有限公司 | Device for efficient treatment of exhaust gas hydrogen sulfide |
CN109632743A (en) * | 2018-12-27 | 2019-04-16 | 浙江天为企业评价咨询有限公司 | A kind of dual channel atomic fluorescence photometers |
CN109632668A (en) * | 2018-12-27 | 2019-04-16 | 浙江天为企业评价咨询有限公司 | A kind of atomic absorption spectrophotometer |
CN109632668B (en) * | 2018-12-27 | 2021-10-26 | 浙江天为安全科技有限公司 | Atomic absorption spectrophotometer |
CN109632743B (en) * | 2018-12-27 | 2021-10-26 | 浙江天为安全科技有限公司 | Double-channel atomic fluorescence photometer |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5585005A (en) | Method for effecting gas-liquid contact | |
AU667093B2 (en) | Method and apparatus for effecting gas-liquid contact | |
JP2506596B2 (en) | Method and apparatus for removing H2S by separate absorber and oxidizer and reaction chamber between them | |
US4243648A (en) | Method for removing hydrogen sulfide from gas streams | |
CA1212819A (en) | Removal of hydrogen sulphide from gaseous streams | |
CA2065547C (en) | Continuous process for mass transfer of a liquid reagent with two different gases | |
GB2351493A (en) | Desulfurizing a gaseous feed containing hydrogen sulfide | |
JP2007136251A (en) | Method and apparatus for wetly desulfurizing hydrogen sulfide-containing gas | |
KR0152244B1 (en) | Method and apparatus for effecting gas-liquid contact | |
JPS61204024A (en) | Removing apparatus for hydrogen sulfide contained in gas | |
CN106166438B (en) | A kind of method and device of photodissociation chlorine aqueous solution induced radical removing hydrogen sulfide | |
CA1071613A (en) | Removal of hydrogen sulfide from gases | |
US5500130A (en) | Method for effecting gas-liquid contact | |
JP2001025640A (en) | Method and apparatus for treating hydrogen sulfide- containing gas by recirculating reduced catalyst solution | |
CA2003010A1 (en) | Composition and method for removing hydrogen sulfide from gas streams | |
JPS62225226A (en) | Wet stack-gas desulfurization facility | |
CN113680200A (en) | Iron chelate double-tower desulfurization process | |
JPS614522A (en) | Method for removing hydrogen sulfide contained in gas | |
US5876677A (en) | Ultrasound-assisted liquid redox absorber | |
KR0151705B1 (en) | Dual impeller method and apparatus for affecting chemical conversion | |
JPH0526525B2 (en) | ||
CN216457990U (en) | Chelated iron double-tower desulfurization device | |
JPH0227868Y2 (en) | ||
JPS59230620A (en) | Slurry concentration control method of wet waste gas desulfurization apparatus | |
JPH0456761B2 (en) |