JPS61189850A - Continuous casting method of steel slab - Google Patents

Continuous casting method of steel slab

Info

Publication number
JPS61189850A
JPS61189850A JP3049485A JP3049485A JPS61189850A JP S61189850 A JPS61189850 A JP S61189850A JP 3049485 A JP3049485 A JP 3049485A JP 3049485 A JP3049485 A JP 3049485A JP S61189850 A JPS61189850 A JP S61189850A
Authority
JP
Japan
Prior art keywords
slab
thickness
shells
solidified shell
solidified
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3049485A
Other languages
Japanese (ja)
Inventor
Wataru Ohashi
渡 大橋
Masahiko Kato
正彦 加藤
Takeyoshi Ninomiya
二宮 健嘉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP3049485A priority Critical patent/JPS61189850A/en
Publication of JPS61189850A publication Critical patent/JPS61189850A/en
Pending legal-status Critical Current

Links

Landscapes

  • Continuous Casting (AREA)

Abstract

PURPOSE:To improve remarkably the internal quality and particularly central segregation of a slab by exerting rolling down force to the slab advancing in a continuous casting machine in the position where the thickness of the solidified shell of the slab satisfies the specific equation relating to the thickness of the solidified shell and the thickness of the slab. CONSTITUTION:The slab 1 is drawn by guide rolls 2, etc. and advances in the direction (a) while the rolling down force is exerted to the slab 1 in the thickness direction thereof by driving rolls 3 having backup rolls 4. The solidified shells 11 are formed to the slab 1 from the surface part and the molten steel remains while the molten steel is held enclosed by the shells 11, by which an unsolidified part 12 is formed. The slab 1 is rolled down in the thickness direction thereof by the rolls 3 and the upper and lower shells 11 are thereby press-welded in the position of the range where the shells 11 satisfy the equation (h is the thickness of the solidified shell on one side of the slab in the thickness direction and D is the thickness of the slab). The increased segregation owing to the flow of the unsolidified steel as a result of the rolling reduction and the worry about the press-weldability of the solidified shells to each other are thoroughly eliminated by forming a crater end 13 in the above- mentioned manner.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は鋼の連続鋳造、特にスラブ用の連続鋳造方法に
関するもので、連続鋳造機内を進行する鋳片に強制的に
クレータ−エンドを形成せしめることによって、その内
部品質を改善する方法を提供するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to continuous casting of steel, in particular to a continuous casting method for slabs, in which a crater end is forcibly formed in a slab moving through a continuous casting machine. This provides a method to improve its internal quality.

従来の技術 近年、溶鋼より鋼片や鋼塊等を製造する方法として、造
塊法から連続鋳造法への転化は著しく。
Conventional technology In recent years, there has been a remarkable shift from ingot making to continuous casting as a method for manufacturing billets and ingots from molten steel.

現在では全体の80%近くが連続鋳造法により製造され
るに至っている。
Currently, nearly 80% of all products are manufactured using the continuous casting method.

連続鋳造においては鋳型に溶鋼を注入して所定の断面形
状の鋳片とした後、前記鋳型に続いて配設されたピンチ
ロール及びガイドロール群で前記鋳片を連続的に引抜き
、その芯部まで完全に凝固した後に所定長さに切断して
鋼板用鋼片、つまりスラブや形鋼用鋼片が製造されてい
る。
In continuous casting, after pouring molten steel into a mold to form a slab with a predetermined cross-sectional shape, the slab is continuously pulled out by a group of pinch rolls and guide rolls arranged following the mold, and its core is After it has completely solidified, it is cut to a predetermined length to produce steel billets for steel plates, that is, slabs and steel sections.

ところが連続鋳造法、特にスラブ用連続鋳造法において
は、造塊法に比して圧減比(鋳造厚に対する製品厚の比
)を大きくとれないことから、前記鋳片の芯部に残留す
る未凝固状態の溶鋼が完全に凝固を完了する位置(該未
凝固状態の溶鋼が鋳片芯部まで完全に凝固を完了する位
置を本発明においては、クレータ−エンドと言う)近傍
で中心偏析が生じ易く、これによって鋳片の内部欠陥を
招くという問題があった。
However, in the continuous casting method, especially the continuous casting method for slabs, it is not possible to achieve a large reduction ratio (ratio of product thickness to casting thickness) compared to the ingot making method, so the unused material remaining in the core of the slab is Center segregation occurs near the position where the molten steel in the solidified state completely solidifies (the position where the molten steel in the unsolidified state completely solidifies to the core of the slab is referred to as the crater end in the present invention). This has the problem of causing internal defects in the slab.

即ち前記クレータ−エンドの近傍は、鋳片の上下に配列
されたガイドロールで支持されており、該ガイドロール
の上下方向の間隔は、鋳型内での鋳片厚から、クレータ
−エンドに達するまでの間に凝固収縮する厚み分を差し
引いた寸法に保たれている。
That is, the vicinity of the crater end is supported by guide rolls arranged above and below the slab, and the distance between the guide rolls in the vertical direction is determined by the thickness of the slab in the mold until it reaches the crater end. The dimensions are maintained by subtracting the thickness that occurs during solidification and shrinkage.

従来、前記ロール間隔は過去の平均的な凝固収縮量から
鋳造を開始する前に設定され、しかも複数のロール対(
鋳片を挟んで配設された上下のロールを一対と言う)を
一群として一定の間隔にすることが普通であった。
Conventionally, the roll spacing was set before starting casting based on the past average solidification shrinkage amount, and moreover, the roll spacing was set based on the past average solidification shrinkage amount, and
It was common for a group of upper and lower rolls placed with the slab in between (called a pair) to be spaced at regular intervals.

前記凝固収縮は鋳片の表面より凝固殻が順次生成される
ことによって生じるが、実際の操業における前記凝固殻
の生成状況は一様ではなく、寧ろ絶えず変化しており予
め設定された部位における凝固収縮量は大きく変動する
。このため前記従来の技術ではクレータ−エンド近傍に
おける鋳片の凝固収縮量に見合った適確な支持ができな
かった。
The solidification shrinkage is caused by the sequential formation of solidified shells from the surface of the slab, but in actual operation, the formation of the solidified shells is not uniform, but rather constantly changes, and solidification occurs at predetermined locations. The amount of shrinkage varies widely. For this reason, the conventional technique described above cannot provide appropriate support commensurate with the amount of solidification shrinkage of the slab in the vicinity of the crater end.

つまり予め想定した凝固収縮量に対して実際の凝固収縮
量が多かった場合、設定値に対してロール間隔が広くな
り、鋳片芯部の未凝固部分の体積が大きくなる。逆に実
際の凝固収縮量が少なかった場合、設定値に対してロー
ル間隔が狭くなり、鋳片芯部の未凝固部分の体積が小さ
くなる。従ってクレータ−エンド近傍における凝固殻内
部(未凝固部分)の体積が変化することになる。このよ
うな体積変化が生じると当該部分に溶鋼が吸引され、こ
れに伴いクレータ−エンド近傍で〔S〕、CP)等の有
害成分が濃化して固化するなどして中心偏析が発生して
いた。
In other words, if the actual amount of solidification shrinkage is greater than the amount of solidification shrinkage assumed in advance, the roll interval will become wider than the set value, and the volume of the unsolidified portion of the slab core will increase. Conversely, if the actual amount of solidification shrinkage is small, the roll interval becomes narrower than the set value, and the volume of the unsolidified portion of the slab core becomes smaller. Therefore, the volume inside the solidified shell (unsolidified portion) near the crater end changes. When such a volume change occurs, molten steel is sucked into the area, and as a result, harmful components such as [S] and CP) concentrate and solidify near the crater end, causing central segregation. .

前記問題を解決するために、従来においても例えば特公
昭5B−382913号公報に示すように、鋳片の凝固
のプロフィールを検出あるいは推定し、該プロフィール
に追従して鋳片に、その進行方向に対してなだらかに軽
圧下を加える技術が提案されている。
In order to solve the above problem, in the past, as shown in Japanese Patent Publication No. 5B-382913, for example, the solidification profile of the slab is detected or estimated, and the solidification profile of the slab is detected or estimated, and the slab is moved in the direction of movement according to the profile. On the other hand, a technique has been proposed in which a gentle gentle reduction is applied.

しかしながらクレータ−エンド近傍の凝固プロフィール
は操業条件によって複雑に変化するうえに幅方向にも不
均一であることから、それらを検出もしくは推定するこ
とは極めて困難であり、加えて前記動的な変動に追従し
て軽圧下を行うことも実買上大きな効果は期待できなか
った。
However, since the solidification profile near the crater end changes in a complex manner depending on the operating conditions and is also non-uniform in the width direction, it is extremely difficult to detect or estimate it. Following this and applying light pressure reduction was not expected to have any significant effect in actual purchase.

又、特公昭411i−29387号公報においては圧延
成形ロールを用い、該成形ロール前後での鋳片の移送速
度を検出して、成形ロールの回転速度を制御することに
よって、クレータ−エンド近傍における鋳片芯部に残留
する未凝固部の大きさ及び形状を一定にする技術が提案
されている。
In addition, in Japanese Patent Publication No. 411i-29387, rolling forming rolls are used, and by detecting the transfer speed of the slab before and after the forming rolls and controlling the rotational speed of the forming rolls, casting in the vicinity of the crater end is controlled. A technique has been proposed for making the size and shape of the unsolidified portion remaining in one core portion constant.

しかしながらクレータ−エンドは成形ロールの回転速度
と成形前後の鋳片断面積のみの関係によって決定される
べきものではなく、前記関係は全て満足したとしても、
例えば冷却が遅れ凝固殻厚が薄くて成形後の鋳片芯部に
未凝固部を残した状態で成形ロールで圧下を継続すると
、クレータ−エンド近傍で溶鋼の流動を誘引する結果と
なり、鋳片の内部品質は著しく悪化してしまうことにな
る。
However, the crater end should not be determined only by the relationship between the rotational speed of the forming roll and the cross-sectional area of the slab before and after forming, and even if all of the above relationships are satisfied,
For example, if cooling is delayed and the solidified shell thickness is thin, and if rolling is continued with forming rolls with unsolidified parts remaining in the core of the slab after forming, this will result in the flow of molten steel near the crater end, causing the slab to flow. The internal quality of the system will deteriorate significantly.

発明が解決しようとする問題点 本発明は前述したスラブ用連続鋳造方法における従来の
問題点を抜本的に解決するものであって、連続鋳造によ
り製造されるスラブの内部品質、特に中心偏析の著しい
改善を可能ならしめる方法を提供するものである。
Problems to be Solved by the Invention The present invention fundamentally solves the conventional problems in the above-mentioned continuous casting method for slabs. It provides a method for making improvements possible.

問題点を解決するための手段 前記問題点を解決するための本発明の特徴は、鋼のスラ
ブ用連続鋳造方法において、連続鋳造機内を進行する鋳
片の凝固殻厚が下記(1)式を満足する部位において鋳
片の厚み方向に圧下刃を加え、強制的にクレータ−エン
ドを形成せし、めることにある。
Means for Solving the Problems The feature of the present invention for solving the above problems is that in the continuous casting method for steel slabs, the solidified shell thickness of the slab advancing in the continuous casting machine satisfies the following equation (1). The purpose is to apply a reduction blade in the thickness direction of the slab at a satisfactory location to forcibly form a crater end.

70≦(2h/D)X 100≦95  ・・φ (1
)但し h:鋳片厚み方向の片側の凝固殻厚D:鋳片厚
み 作用 さて1本発明者等は前記従来の鋳片の凝固収縮量に見合
ったロール間隔設定による方法、或いは鋳片の進行方向
に対してなだらかに軽圧下す為方法における問題点が、
クレータ−エンドの位置、形状等の変化に起因している
ことに注目し、クレータ−エンド位置の正確な制御を行
う方法についてまず実験研究を行った。
70≦(2h/D)X 100≦95 ・・φ (1
) However, h: Solidified shell thickness on one side in the slab thickness direction D: Slab thickness effect 1. The present inventors have proposed the above-mentioned conventional method of setting the roll spacing commensurate with the amount of solidification shrinkage of the slab, or the progress of the slab. The problem with the method is that the pressure is applied gently and gently in the direction.
Focusing on the fact that this is caused by changes in the position and shape of the crater end, we first conducted experimental research on a method for accurately controlling the position of the crater end.

而して前記クレータ−エンド位置を制御するには、例え
ば鋳造速度や冷却強度を調整することが考えられ、従来
においても一部試みられていた。
In order to control the crater end position, for example, adjusting the casting speed or cooling intensity may be considered, and some attempts have been made in the past.

しかしながら、このようなマクロ的な操業変数を用いて
制御する場合、ある程度の範囲内にクレータ−エンドの
位置を収めることは可能であっても、前記中心偏析に最
も影響を与える未凝固部分の厚さが1mm前後となる範
囲では、微小な外乱によっても瞬時に完全凝固してしま
うため、実買上その制御は行えないことが判った。
However, when controlling using such macroscopic operational variables, although it is possible to keep the position of the crater end within a certain range, the thickness of the unsolidified part, which has the greatest influence on the central segregation, It was found that in a range where the diameter is around 1 mm, even the slightest disturbance causes instantaneous complete solidification, so it has been found that this cannot be controlled in practice.

従ってクレータ−エンドの位置を制御し、て、その位置
に追従するようにロール間隔を決定する方法では限界の
あることを知見した本発明者等は、更に実験研究を重ね
た結果、未凝固部分を有する鋳片に圧下刃を加えて1強
制的にクレータ−エンドを形成することによって前記問
題点の抜本的で、かつ効果的な解決が可能であると言う
薪知見を得た。
Therefore, the present inventors found that there were limitations in the method of controlling the position of the crater end and determining the roll interval to follow that position.As a result of further experimental research, the inventors found that the unsolidified portion We have obtained the knowledge that it is possible to fundamentally and effectively solve the above problem by adding a reduction blade to the cast slab having the following properties to forcibly form a crater end.

前記強制的にクレータ−エンドを形成させる場合、■圧
下に伴う未凝固の溶鋼の流動による偏析の悪化、■凝固
殻同志の圧着性、等が懸念された。しかしながらこれら
の懸念も鋳片に圧下刃を加える部位を以下に述べる範囲
内とすることにより解決することができた。
When the crater end is forcibly formed, there are concerns about (1) deterioration of segregation due to the flow of unsolidified molten steel due to rolling reduction, (2) poor adhesion of solidified shells to each other, etc. However, these concerns could be resolved by adjusting the area where the reduction blade is applied to the slab within the range described below.

以下図面に基づいて説明する。This will be explained below based on the drawings.

第1図は本発明に基づいてクレータ−エンドを形成する
方法を説明するための説明図であり、クレータ−エンド
近傍の部分断面を示す図である。
FIG. 1 is an explanatory diagram for explaining the method of forming a crater end based on the present invention, and is a diagram showing a partial cross section near the crater end.

図において、1は鋳片であり、矢印aで示す方向に進行
する。2は前記鋳片lのガイドロールであり、3は鋳片
lの厚み方向に圧下刃を加える圧下用駆動ロール(以下
、単に駆動ロールと言う)、また4は前記駆動ロール3
のバックアップロールである。鋳片lはその表面部より
凝固殻11が生成され、該凝固殻11で包囲された状態
で溶鋼が残留し、未凝固部12を形成している。
In the figure, 1 is a slab, which moves in the direction shown by arrow a. 2 is a guide roll for the slab l, 3 is a rolling drive roll (hereinafter simply referred to as a driving roll) that applies a rolling blade in the thickness direction of the slab l, and 4 is the driving roll 3.
This is a backup role. A solidified shell 11 is generated from the surface of the slab l, and molten steel remains surrounded by the solidified shell 11, forming an unsolidified portion 12.

本発明者等はこのような装置において多くの実験を繰り
返した結果、連続鋳造機内を進行する鋳片1の凝固殻1
1が下記(1)式を満足する範囲の部位において前記駆
動ロール3により鋳片1をその厚み方向に圧下して、上
下の凝固殻11を圧着することによってクレータ−エン
ド13を形成すれば、前記■及び■の懸念が完全に解決
されることを確認した。
As a result of repeated many experiments using such an apparatus, the present inventors have found that the solidified shell 1 of the slab 1 progressing inside the continuous casting machine.
1 satisfies the following formula (1), the slab 1 is rolled down in the thickness direction by the drive roll 3, and the upper and lower solidified shells 11 are crimped to form the crater end 13. It has been confirmed that the above concerns (① and ②) have been completely resolved.

70≦ (2h/D)  X  100 ≦95−−−
(1)但し h:鋳片厚み方向の片側の凝固殻厚D:鋳
片厚み つまり鋳片lの厚みDに対する凝固殻11の厚みhの比
率(以下、この比率を凝固率と言う、)凝固率= ((
2h/D) X 100)が70〜95%となる範囲内
において、未凝固部12が無くなり、上下の凝固殻11
が接合するように圧下刃を加えて、クレータ−エンド1
3を強制的に形成するものである。
70≦ (2h/D) X 100≦95---
(1) However, h: Solidified shell thickness on one side in the slab thickness direction D: Slab thickness, that is, the ratio of the thickness h of the solidified shell 11 to the thickness D of the slab l (hereinafter, this ratio is referred to as the solidification rate) Rate = ((
Within the range where 2h/D)
Add a reduction blade so that they join, and make the crater end 1.
3 is forcibly formed.

前記凝固率が85%以下であれば駆動ロールによる圧下
が溶鋼の流動を防止するダムの機能を果たし、溶鋼の流
動がダム以降の部分では堰き止められて偏析は生じない
、又鋳片lの芯部に適量の溶鋼が残留することから上下
の凝固殻11も完全に密着し一体化する。
If the solidification rate is 85% or less, the reduction by the drive rolls will function as a dam to prevent the flow of molten steel, and the flow of molten steel will be dammed up in the area after the dam, and no segregation will occur, and the slab will not flow. Since an appropriate amount of molten steel remains in the core, the upper and lower solidified shells 11 are also completely adhered and integrated.

特に前記第1図に示すように凝固率が85%以下であり
、而も圧下される前の鋳片厚D、圧下された後の鋳片厚
Doが下記(2)式を満足するように圧下刃を加えると
、溶鋼の流動を完全に防止し、欠陥の全くない状態で圧
着させることができる。
In particular, as shown in Fig. 1, the solidification rate is 85% or less, and the slab thickness D before being rolled and the slab thickness Do after being rolled satisfy the following formula (2). Adding a reduction blade completely prevents the flow of molten steel and allows crimping to occur without any defects.

(D−Do ) / 2≧((D−2h)/2)+1 
−−− (2)但し D :圧下前の鋳片厚(■) Do :圧下後の鋳片厚(m) h :鋳片厚み方向の片側の凝固殻厚(a)ところで鋳
片1の凝固状況をその幅方向の断面で見ると第2図のよ
うに、厚み方向及び幅方向の表面より凝固殻11が生成
されている0例えば鋳片厚み方向の凝固率が前述したよ
うに70〜95%に達すると幅方向の凝固殻(以下該幅
方向の凝固殻を端部凝固殻と言い、厚み方向の凝固殻は
特記なき以外単に凝固殻と言う)11aも相当量厚くな
る。
(D-Do) / 2≧((D-2h)/2)+1
--- (2) However, D: Slab thickness before reduction (■) Do: Slab thickness after reduction (m) h: Solidified shell thickness on one side in the slab thickness direction (a) By the way, the solidification of slab 1 If we look at the situation in cross section in the width direction, as shown in Figure 2, solidified shells 11 are generated from the surface in the thickness direction and width direction.For example, the solidification rate in the thickness direction of the slab is 70 to 95 as described above. %, the solidified shell in the width direction (hereinafter, the solidified shell in the width direction is referred to as the end solidified shell, and the solidified shell in the thickness direction is simply referred to as the solidified shell unless otherwise specified) 11a also becomes considerably thicker.

従ってこのような凝固状況でクレータ−エンド13を形
成するためには、第3図に示すように未凝固部12に相
当する部分のみを圧下する突起付き駆動ロール3aを用
いる方法、及び第4図に示すように鋳片lに全体的に圧
下刃を加える同一径の駆動ロール3bを用いる方法が考
えられる。しかしながらいずれの方法においても端部凝
固殻11aと凝固殻11との接合部には未凝固部12a
が残留し易く、その部分において前述したような溶鋼の
流動が発生し、著しい偏析を生じることがある。このよ
うな現象は凝固率が70%に達しない状態で圧下刃を加
えクレータ−エンドを形成した場合に、その発生率が極
端に高くなるが、凝固率が70%以上となるとそれらは
殆ど発生しないことが確認された。
Therefore, in order to form the crater end 13 in such a solidified state, there is a method using a drive roll 3a with protrusions that rolls down only the portion corresponding to the unsolidified portion 12, as shown in FIG. 3, and a method shown in FIG. A possible method is to use drive rolls 3b of the same diameter to apply a reduction edge to the entire slab l, as shown in FIG. However, in either method, there is an unsolidified portion 12a at the joint between the end solidified shell 11a and the solidified shell 11.
tends to remain, and the above-mentioned flow of molten steel may occur in that area, resulting in significant segregation. The incidence of such phenomena becomes extremely high when a reduction blade is added to form a crater end before the solidification rate has reached 70%, but when the solidification rate exceeds 70%, they almost never occur. It was confirmed that it does not.

また前記第4図のような場合、鋳片端部の中央(第4図
のX部)に非常に大きな歪を生じ、凝固率が70%未満
の場合には鋳造方向に亀裂の入ることも確認された。本
発明°において凝固殻を70〜95%に限定したのは係
る理由からである。
In addition, in the case shown in Figure 4 above, a very large strain occurs at the center of the end of the slab (X section in Figure 4), and cracks appear in the casting direction when the solidification rate is less than 70%. It was done. This is the reason why the solidified shell is limited to 70 to 95% in the present invention.

尚、連続鋳造において製造されるスラブ用鋳片lはその
幅が種々変化し、その変化量も大きい場合がある。この
ように鋳片幅が頻繁に変化し、而もその変化量が大きい
場合には例えば第5図の斜視図に示すように鋳片1の進
行方向aに対して2対の駆動ロール31 a 、 31
 bを横移動可能に設け、該2対の駆動ロール31a、
31bでクレータ−エンド13aを形成させればよい。
Note that the width of the slab slab L produced in continuous casting varies, and the amount of variation may be large. When the slab width changes frequently and the amount of change is large, two pairs of drive rolls 31 a are moved in the traveling direction a of the slab 1, as shown in the perspective view of FIG. 5, for example. , 31
b is provided horizontally movably, and the two pairs of drive rolls 31a,
31b may form a crater end 13a.

実施例 350屯/Hrの弯曲型連続鋳造機において、生変At
−9i−キルド鋼の製造中に本発明を実施した。
Example 3 In a curved continuous casting machine with a capacity of 50 tons/Hr,
The invention was carried out during the production of -9i-killed steel.

鋳造条件は、鋳片の幅が1300mm、厚みが250)
、鋳造速度Vcが1.8m/sinであり、凝固殻の凝
固常数には27.0mm/m1n2であった。鋳片の凝
固殻厚は前記凝固常数Kが与えられるとメニスカスから
の距flI?(m)と鋳造速度Vcとから下記(3)式
のように求められる。
The casting conditions are: width of slab is 1300mm, thickness is 250mm)
, the casting speed Vc was 1.8 m/sin, and the solidification constant of the solidified shell was 27.0 mm/m1n2. Given the solidification constant K, the solidified shell thickness of the slab is the distance flI from the meniscus? (m) and the casting speed Vc as shown in the following equation (3).

h=K・(L/vC)″ ・・・(3)而して本発明に
基づいてクレータ−エンドを形成させる部位は、前記距
離りを基準とすると下記(4)式で求められる。
h=K.(L/vC)'' (3) Based on the present invention, the site where the crater end is formed can be determined by the following equation (4) using the distance as a reference.

70≦2X27X (L/L、6)” X100 /2
50 ≦95−−− (4)つまり、距離りは21.9
m≦L≦30.9mとなり、その時の凝固殻厚りは99
.9m■≦h≦118.7mmとなる0本実施例におい
てはL = 21.9mの部位を選択し、(その時の凝
固殻厚りは約1ooms)又、前記(2)式に基づく下
記(5)式を満足する圧下量とするために圧下後の鋳片
厚D0を180mmに設定した。
70≦2X27X (L/L, 6)”X100/2
50≦95--- (4) In other words, the distance is 21.9
m≦L≦30.9m, and the solidified shell thickness at that time is 99
.. 9 m≦h≦118.7 mm In this example, a portion of L = 21.9 m was selected (the solidified shell thickness at that time was approximately 1 ooms), and the following (5) based on the above formula (2) was selected. ) The slab thickness D0 after rolling was set to 180 mm in order to achieve a rolling reduction that satisfied the formula.

(250−Do ) / 2≧((250−200) 
/2) +1.0−−−  (5)さて本実施例におい
ては前記圧下量を得るために前記第3図に示すような突
起付き駆動ロール3aを用い、その突起部のロール径は
450■lとした。又鋳片の端面より75II11中央
に入った点より鋳片幅方向に均等に圧下を加えた。この
時の圧下による反力は約200屯であり、駆動ロールの
局部変形等の問題は全く発生しなかった。
(250-Do) / 2≧((250-200)
/2) +1.0 --- (5) Now, in this embodiment, in order to obtain the above rolling reduction amount, a drive roll 3a with projections as shown in FIG. 3 is used, and the roll diameter of the projections is 450 mm. It was set as l. Further, rolling was applied evenly in the width direction of the slab from a point that entered the center of 75II11 from the end face of the slab. The reaction force due to rolling at this time was approximately 200 tons, and no problems such as local deformation of the drive roll occurred.

第1表は本実施例によって製造されたスラブの中心偏析
をサルファープリントによる評点法で調査し、従来法と
比較して表したものである。従来法は前記距fllLが
18m〜37mの部位におけるロール間隔を253mm
の一定に保ち、自然状態で凝固させたものである。
Table 1 shows the center segregation of the slab manufactured by this example, which was investigated using the scoring method using sulfur print, and compared with the conventional method. In the conventional method, the roll interval in the area where the distance fllL is 18 m to 37 m is 253 mm.
It is kept at a constant value and allowed to solidify in its natural state.

第  1  表 前記第1表より判るように本発明の実施により有害成分
の濃化及び連続の著しい前記サルファープリントのB評
点は皆無となり、製品に加工した場合問題とならない評
点範囲である評点C以下で全量製造することが可能とな
った。
Table 1 As can be seen from the above Table 1, by implementing the present invention, there is no B grade for the sulfur print, which has a significant concentration and continuity of harmful ingredients, and the grade is below C, which is the grade range that does not pose a problem when processed into products. It became possible to produce the entire amount.

発明の効果 以上詳述したように、本発明によれば連続鋳造により製
造されるスラーブの中心偏析を著しく改善でき、その結
果品質の優れたスラブを製造することが可能となった。
Effects of the Invention As detailed above, according to the present invention, the center segregation of slabs manufactured by continuous casting can be significantly improved, and as a result, it has become possible to manufacture slabs of excellent quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に基づくクレータ−エンドの形成法を説
明するための断面図、第2図は一般的な鋳片の凝固状態
を示す断面図、第3図は突起付き駆動ロールを用いた実
施例を示す断面図、第4図は同一径の駆動ロールを用い
た実施例を示す断面図、第5図は横移動可能な2対の駆
動ロールを用いた実施例を示す斜視図である。 l・・Φ鋳片、2・・・ガイドロール、3@・・駆動ロ
ール、4・・φバックアップロール、11・・・鋳片1
の凝固殻、12・・・鋳片1の未凝固部、13−−・鋳
片lのクレータ−エンド。
Fig. 1 is a cross-sectional view for explaining the crater-end forming method according to the present invention, Fig. 2 is a cross-sectional view showing the solidification state of a general slab, and Fig. 3 is a cross-sectional view showing the solidification state of a general slab. FIG. 4 is a cross-sectional view showing an example using drive rolls of the same diameter, and FIG. 5 is a perspective view showing an example using two pairs of drive rolls that are laterally movable. . l... Φ slab, 2... Guide roll, 3@... Drive roll, 4... φ backup roll, 11... Slab 1
solidified shell of 12--unsolidified portion of slab 1, 13--crater end of slab 1.

Claims (1)

【特許請求の範囲】 鋼のスラブ用連続鋳造方法において、連続鋳造機内を進
行する鋳片の凝固殻厚が下記(1)式を満足する部位に
おいて鋳片の厚み方向に圧下刃を加え、強制的にクレー
ターエンドを形成せしめることを特徴とする鋼のスラブ
用連続鋳造方法。 70≦(2・h/D)×100≦95・・・(1) (但し、hは鋳片厚み方向の片側の凝固殻厚、Dは鋳片
厚みを表わす。)
[Claims] In a continuous casting method for steel slabs, a reduction blade is applied in the thickness direction of the slab at a portion where the solidified shell thickness of the slab advancing in the continuous casting machine satisfies the following formula (1), and A continuous casting method for steel slabs characterized by forming a crater end. 70≦(2・h/D)×100≦95...(1) (However, h represents the solidified shell thickness on one side in the slab thickness direction, and D represents the slab thickness.)
JP3049485A 1985-02-20 1985-02-20 Continuous casting method of steel slab Pending JPS61189850A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3049485A JPS61189850A (en) 1985-02-20 1985-02-20 Continuous casting method of steel slab

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3049485A JPS61189850A (en) 1985-02-20 1985-02-20 Continuous casting method of steel slab

Publications (1)

Publication Number Publication Date
JPS61189850A true JPS61189850A (en) 1986-08-23

Family

ID=12305384

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3049485A Pending JPS61189850A (en) 1985-02-20 1985-02-20 Continuous casting method of steel slab

Country Status (1)

Country Link
JP (1) JPS61189850A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924585A (en) * 1986-09-04 1990-05-15 Kawasaki Steel Corp. Method and apparatus for continuous compression forging of continuously cast steel
US4962808A (en) * 1988-07-14 1990-10-16 Thyssen Stahl Aktiegesellschaft Method of producing a steel strip having a thickness of less than 10 mm
JPH0552306U (en) * 1991-12-19 1993-07-13 住友精密工業株式会社 Sliding structure of rotary actuator
CN102335733A (en) * 2011-10-21 2012-02-01 上海亚新连铸技术工程有限公司 Method for soft reduction through bulging

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4924585A (en) * 1986-09-04 1990-05-15 Kawasaki Steel Corp. Method and apparatus for continuous compression forging of continuously cast steel
US4962808A (en) * 1988-07-14 1990-10-16 Thyssen Stahl Aktiegesellschaft Method of producing a steel strip having a thickness of less than 10 mm
JPH0552306U (en) * 1991-12-19 1993-07-13 住友精密工業株式会社 Sliding structure of rotary actuator
CN102335733A (en) * 2011-10-21 2012-02-01 上海亚新连铸技术工程有限公司 Method for soft reduction through bulging

Similar Documents

Publication Publication Date Title
US4493363A (en) Method at continuous casting of steels and metal alloys with segregation tendency and apparatus for carrying out the method
US4519439A (en) Method of preventing formation of segregations during continuous casting
JPS61189850A (en) Continuous casting method of steel slab
JPS6234461B2 (en)
JPH03155441A (en) Vertical continuous casting method and apparatus thereof
US3900066A (en) Apparatus for continuous casting a metal strand shaped to provide concave surfaces
JPH10193067A (en) Method for continuously casting steel
JPS60162560A (en) Continuous casting method of steel
US4454908A (en) Continuous casting method
JPH11221651A (en) Method for making forged product subjected to coating and apparatus therefor
JPS60137562A (en) Continuous casting method for thin sheet
JP3394730B2 (en) Continuous casting method of steel slab
JPS6216722B2 (en)
JPH078421B2 (en) Continuous casting method
JPS6127151A (en) Continuous casting method and direct rolling method
US4582119A (en) Method of, and apparatus for, continuously casting metal in a mold chamber having cooled rotating walls
JPS6228056A (en) Continuous casting method
JP3063533B2 (en) Continuous casting of wide thin cast slabs
JPS63290654A (en) Strip continuous casting method
JPS5940539B2 (en) Continuous casting method
JPH01306059A (en) Large pressing reduction method for cast slab strand in continuous casting
JPH08257715A (en) Continuous casting method
JP3042324B2 (en) Dummy bar head for continuous casting of wide thin slab
JP2720692B2 (en) High-speed casting end method in continuous casting
JPS63165053A (en) Continuous casting method with few center segregation