JPS61129893A - Light beam deflector - Google Patents

Light beam deflector

Info

Publication number
JPS61129893A
JPS61129893A JP25243284A JP25243284A JPS61129893A JP S61129893 A JPS61129893 A JP S61129893A JP 25243284 A JP25243284 A JP 25243284A JP 25243284 A JP25243284 A JP 25243284A JP S61129893 A JPS61129893 A JP S61129893A
Authority
JP
Japan
Prior art keywords
laser light
mirror
light emitting
bend
electrodes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25243284A
Other languages
Japanese (ja)
Inventor
Sadao Sugiyama
定夫 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Omron Corp
Original Assignee
Omron Tateisi Electronics Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Tateisi Electronics Co filed Critical Omron Tateisi Electronics Co
Priority to JP25243284A priority Critical patent/JPS61129893A/en
Publication of JPS61129893A publication Critical patent/JPS61129893A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06209Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes in single-section lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/062Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying the potential of the electrodes
    • H01S5/06233Controlling other output parameters than intensity or frequency
    • H01S5/06243Controlling other output parameters than intensity or frequency controlling the position or direction of the emitted beam

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To contrive miniaturization, speed-up, and structural simplification by a method wherein a piezoelectric substrate is provided with the semiconductor laser light emitting part and the scan polarizing part of required structure. CONSTITUTION:A bend part 2 is formed in the piezoelectric substrate 1, and electrodes 4, 5 are formed on its front and back; then, the electrode 4 is partly processed into a mirror surface 4a. The semiconductor laser light emitting part 6 is provided in the bend part 2 on the front side, and a mirror member, gate-shaped in cross section, having a mirror 7 opposed to that light emitting part is fixed to a non-bend part 3. When a voltage is not impressed on the substrate 1 because of the zero voltage value of a power source 9, a laser light out of the light emitting part 6 multireflects on the mirror 7 and the mirror surface 4a and is emitted out of the bend 2. Next, when a required voltage is impressed on both electrodes 4, 5 of the substrate 1 via electrode lead-out parts 4b, 5b, then the bend 2 bends on the supporting end by piezoelectric lateral effect, and the direction of laser light reflection changes from the part 6; accordingly, the angle-of-deviation theta of the laser light is controlled by controlling the impressed voltage.

Description

【発明の詳細な説明】 (イ)発明の分野 この発明は、例えばレーザー・プリンタやオプトメカト
ロニクス機器に搭載してレーザ光を偏向制御する光偏向
素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Field of the Invention The present invention relates to an optical deflection element that is installed in, for example, a laser printer or an optomechatronic device and controls the deflection of laser light.

(0)発明の背景 従来、この種の光偏向装置としてはポリゴンスキャナや
ホログラムスキャナが知られている。
(0) Background of the Invention Conventionally, polygon scanners and hologram scanners are known as this type of optical deflection device.

これらの各スキャナは、レーザ光の偏光機能を有すると
いう利点がある反面、発光部を別途に設けなければなら
ない欠点がある。
Each of these scanners has the advantage of having a laser beam polarization function, but has the disadvantage of requiring a separate light emitting section.

加えて、これらの各スキャナはモータ等の回転駆動部を
必要とするので構造が複雑となるうえ、Haの小形化に
限界があり、さらにスキャンスピードも充分なものが得
られないばかりでなく、モータ回転による振動や発熱に
より、悪影響をうける問題点を有していた。
In addition, each of these scanners requires a rotary drive unit such as a motor, which makes the structure complex, and there is a limit to miniaturization of the Ha.Furthermore, not only is it difficult to obtain a sufficient scanning speed, but This had the problem of being adversely affected by vibration and heat generated by motor rotation.

一方、熱光学効果等を利用した光偏向素子が既に発明さ
れているが、この素子ではスキャン角度が小さく実用化
に至らない現状である。
On the other hand, although an optical deflection element that utilizes thermo-optic effects has already been invented, the scan angle of this element is too small to put it into practical use.

いずれにしても、偏光1能を有する従来のスキャナにお
いては充分な小形化、高速化および固体化が望めない問
題点を有していた。
In any case, conventional scanners having polarization capability have had problems in that they cannot be sufficiently miniaturized, high-speed, and solid-state.

(ハ)発明の目的 この発明は、小形化、高速化が可能であって、しかも構
造が簡単で固体化することかできる光偏内素子の提供を
目的とする。
(c) Purpose of the Invention The object of the present invention is to provide an optical polarization element that can be made smaller and faster, has a simple structure, and can be solidified.

(ニ)発明の要約 圧電性基板を舌状の屈曲部と、その両側の非屈曲部とに
区分し、前記屈曲部の表裏両面に電極を形成して、該屈
曲部の表面側に半導体レーザ発光部を設けると共に、該
発光部に対向するミラーをもった断面門形のミラー部材
を非屈曲部に固定し、前記ミラーと対向する電極面を鏡
面となし、前記圧電性基板の両電極に印加する電圧を制
御して半導体レーザ光を偏向すべく構成した光偏向素子
であることを特徴とする。
(d) Summary of the Invention A piezoelectric substrate is divided into a tongue-shaped bent portion and non-bent portions on both sides thereof, electrodes are formed on both the front and back surfaces of the bent portion, and a semiconductor laser is formed on the front side of the bent portion. A light emitting part is provided, a mirror member having a gate-shaped cross section and a mirror facing the light emitting part is fixed to a non-bent part, an electrode surface facing the mirror is made a mirror surface, and both electrodes of the piezoelectric substrate are provided. The present invention is characterized in that it is an optical deflection element configured to deflect semiconductor laser light by controlling an applied voltage.

(ホ)発明の効果 この発明によれば、同一基板上に半導体レーザ発光部と
スキャン機構部つまり屈曲部とを設けることができるの
で、素子の小形化および構造の簡素化を図ることができ
る効果がある。
(E) Effects of the Invention According to the invention, since the semiconductor laser light emitting section and the scanning mechanism section, that is, the bending section can be provided on the same substrate, the device can be miniaturized and the structure simplified. There is.

加えて、前述の圧電性基板の両電極に電圧を印加すると
、屈曲部は圧電横効果により屈曲動作するので、レーザ
光の反射方向を可変することができ、この電圧を制御す
ることにより、レーザ光のスキャン方向を自由に変える
ことができ、ざらに印加周波数を高くすると、スキャン
スピードを高速化することができる効果がある。
In addition, when a voltage is applied to both electrodes of the piezoelectric substrate mentioned above, the bending part bends due to the piezoelectric transverse effect, so the direction of reflection of the laser beam can be varied, and by controlling this voltage, the laser beam can be The scanning direction of the light can be freely changed, and by roughly increasing the applied frequency, the scanning speed can be increased.

(へ)発明の実施例 この発明の一実施例を以下図面に基づいて詳述する。(f) Examples of the invention An embodiment of the present invention will be described in detail below based on the drawings.

図面は光偏向素子を示し、第1図乃至第3図において、
1は水晶やPZTなどの圧電性基板で、この圧電性基板
1のほぼ中央部を周知のエツチング手段等によりコの字
形に穿設して舌状の屈曲部2と、その両側の非屈曲部3
とに区分している。
The drawings show a light deflection element, and in FIGS. 1 to 3,
Reference numeral 1 denotes a piezoelectric substrate made of crystal, PZT, etc., and a U-shaped hole is formed in the approximate center of the piezoelectric substrate 1 by well-known etching means to form a tongue-shaped bent portion 2 and non-bent portions on both sides of the piezoelectric substrate 1. 3
It is divided into

前述の屈曲部2の表面および裏面には蒸着手段によって
電極4.5を形成し、屈曲部2表面における電極4の一
部(第3図に仮想線で示した部分)を鏡面加工してレー
ザ光反射用の鏡面4aと成している。
Electrodes 4.5 are formed on the front and back surfaces of the above-mentioned bent portion 2 by vapor deposition, and a portion of the electrode 4 on the surface of the bent portion 2 (the portion indicated by the imaginary line in FIG. 3) is mirror-finished and laser-treated. It has a mirror surface 4a for reflecting light.

さらに、前述の屈曲部2における表面側には半導体レー
ザ発光部6を設けている。そして、この半導体レーザ発
光部6と対向するミラー7(具体的には鏡面加工された
レーザ光反射用の鏡面)をもった断面円形のミラー部材
8を前述の非屈曲部3に固定している。
Furthermore, a semiconductor laser light emitting section 6 is provided on the front surface side of the above-mentioned bending section 2. A mirror member 8 having a circular cross section and having a mirror 7 (specifically, a mirror-finished mirror surface for reflecting laser light) facing the semiconductor laser light emitting section 6 is fixed to the non-bending section 3. .

前述のミラー7と対向する電極4面は既に述べた如く鏡
面加工によりレーザ光反射用の鏡面4aに形成している
As described above, the surface of the electrode 4 facing the mirror 7 is formed into a mirror surface 4a for reflecting laser light by mirror finishing.

そして、第4図および第5図に示す如く、電源9を前述
の圧電性基板1の表裏両電極4.5に印加すべく、該電
源9の正極と負極とにそれぞれリード線10.11を接
続し、これら各リード線10.11を電極4,5に、詳
しくは該電極4,5の導出部4b、5bにそれぞれ接続
している。
As shown in FIGS. 4 and 5, lead wires 10.11 are connected to the positive and negative electrodes of the power source 9, respectively, in order to apply the power source 9 to both the front and back electrodes 4.5 of the piezoelectric substrate 1. These lead wires 10.11 are connected to the electrodes 4, 5, more specifically, to the lead-out portions 4b, 5b of the electrodes 4, 5, respectively.

図示実施例は上記の如く構成するものにして、以下作用
を説明する。
The illustrated embodiment is constructed as described above, and its operation will be explained below.

いま、第4図に示す如く前述の電源9の電圧値を零にし
て、圧電性基板1に電圧が印加されていない場合には、
半導体レーザ発光部6からのレーザ光は、固定側のミラ
ー7と、電極4の鏡面4aとの間で入射・反射を図示の
如く繰り返し、屈曲部2の端部から一定方向に放射され
る。
Now, as shown in FIG. 4, when the voltage value of the power source 9 is set to zero and no voltage is applied to the piezoelectric substrate 1,
The laser light from the semiconductor laser light emitting section 6 is repeatedly incident and reflected between the fixed mirror 7 and the mirror surface 4a of the electrode 4 as shown in the figure, and is emitted from the end of the bent section 2 in a fixed direction.

次に、第5図に示す如く、圧電性基板1の両電極4.5
に所定の電圧を印加すると、屈曲部2は圧電横効果によ
り支持端を屈曲支点部として屈曲するので、前述の半導
体レーザ発光部6からのレーザ光の反射方向が第4図の
印加電圧零の時と比較して変化するのである。
Next, as shown in FIG. 5, both electrodes 4.5 of the piezoelectric substrate 1 are
When a predetermined voltage is applied to the bending part 2, the bending part 2 bends by using the supporting end as a bending fulcrum part due to the piezoelectric transverse effect, so that the direction of reflection of the laser light from the semiconductor laser light emitting part 6 is as shown in FIG. 4 when the applied voltage is zero. It changes over time.

第5図では合計8回の反射を繰り返した後に、屈曲部2
の端部からレーザ光が放射しているが、印加電圧値を制
御して、屈曲部2の屈曲角度を任意に可変すると、レー
ザ光の偏向角θを自由に制御することができる。
In Figure 5, after repeating a total of 8 reflections, the bending part 2
Laser light is emitted from the end of the bending portion 2. By controlling the applied voltage value and arbitrarily varying the bending angle of the bending portion 2, the deflection angle θ of the laser light can be freely controlled.

そのうえ、印加周波数を高くすれば、スキャンスピード
を高速化することができる。ただし、この場合には前述
の電源9は図示の直流電源から交流電源にすることは勿
論である。
Moreover, by increasing the applied frequency, the scanning speed can be increased. However, in this case, the power source 9 described above can of course be changed from the illustrated DC power source to an AC power source.

しかも、同一の圧電性基板1上に半導体レーザ発光部6
とスキャン機構部(つまり屈曲部2)とを設けることが
できるので、素子の小形化および構造の簡素化を図るこ
とができ、光偏向素子それ自体を固体化することができ
るのである。
Moreover, the semiconductor laser light emitting section 6 is disposed on the same piezoelectric substrate 1.
Since it is possible to provide the scanning mechanism section (that is, the bending section 2), the device can be made smaller and the structure can be simplified, and the optical deflection device itself can be solidified.

【図面の簡単な説明】[Brief explanation of drawings]

図面はこの発明の一実施例を示し、 第1図は光偏向素子の平面図、 第2図は第1図のI[−m線矢視断面図、第3図は第2
図のl1l−1線矢視断面図、第4図は第1図のIV 
−IV線矢視断面図、第5図は偏向作用を説明するため
の断面図である。 1・・・圧電性基板    2・・・屈曲部3・・・非
屈曲部     4.5・・・電 橿4a・・・鏡面 6・・・半導体レーザ発光部 7・・・ミラー      8・・・ミラー部材第1図 光傷向系)#JFめ団
The drawings show one embodiment of the present invention, FIG. 1 is a plan view of the optical deflection element, FIG. 2 is a cross-sectional view taken along the line I[-m in FIG. 1, and FIG.
A sectional view taken along the line l1l-1 in the figure, Figure 4 is IV in Figure 1.
A cross-sectional view taken along the line -IV, and FIG. 5 is a cross-sectional view for explaining the deflection action. DESCRIPTION OF SYMBOLS 1...Piezoelectric substrate 2...Bending part 3...Non-bending part 4.5...Electric rod 4a...Mirror surface 6...Semiconductor laser light emitting part 7...Mirror 8... Mirror member Figure 1 Optical scratch resistance system) #JF team

Claims (1)

【特許請求の範囲】 1、圧電性基板を舌状の屈曲部と、その両側の非屈曲部
とに区分し、前記屈曲部の表裏両 面に電極を形成して、該屈曲部の表面側に 半導体レーザ発光部を設けると共に、該発 光部に対向するミラーをもった断面門形の ミラー部材を非屈曲部に固定し、前記ミラ ーと対向する電極面を鏡面となし、前記圧 電性基板の両電極に印加する電圧を制御し て半導体レーザ光を偏向すべく構成した 光偏向素子。
[Claims] 1. A piezoelectric substrate is divided into a tongue-shaped bent portion and non-bent portions on both sides thereof, and electrodes are formed on both the front and back surfaces of the bent portion, and electrodes are formed on the front side of the bent portion. A semiconductor laser light emitting section is provided, a mirror member having a gate-shaped cross section and a mirror facing the light emitting section is fixed to a non-bending section, an electrode surface facing the mirror is made a mirror surface, and both sides of the piezoelectric substrate are fixed. An optical deflection element configured to deflect semiconductor laser light by controlling the voltage applied to an electrode.
JP25243284A 1984-11-28 1984-11-28 Light beam deflector Pending JPS61129893A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25243284A JPS61129893A (en) 1984-11-28 1984-11-28 Light beam deflector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25243284A JPS61129893A (en) 1984-11-28 1984-11-28 Light beam deflector

Publications (1)

Publication Number Publication Date
JPS61129893A true JPS61129893A (en) 1986-06-17

Family

ID=17237284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25243284A Pending JPS61129893A (en) 1984-11-28 1984-11-28 Light beam deflector

Country Status (1)

Country Link
JP (1) JPS61129893A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459025A2 (en) * 1990-05-29 1991-12-04 Symbol Technologies, Inc. Scanning system implemented on semiconductor or electro-optical substrate
US5625483A (en) * 1990-05-29 1997-04-29 Symbol Technologies, Inc. Integrated light source and scanning element implemented on a semiconductor or electro-optical substrate
EP1131666A1 (en) * 1998-09-28 2001-09-12 T Squared G Incorporated Scanning head lens assembly

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0459025A2 (en) * 1990-05-29 1991-12-04 Symbol Technologies, Inc. Scanning system implemented on semiconductor or electro-optical substrate
US5625483A (en) * 1990-05-29 1997-04-29 Symbol Technologies, Inc. Integrated light source and scanning element implemented on a semiconductor or electro-optical substrate
EP1131666A1 (en) * 1998-09-28 2001-09-12 T Squared G Incorporated Scanning head lens assembly
EP1131666A4 (en) * 1998-09-28 2006-02-15 Squared G Inc T Scanning head lens assembly

Similar Documents

Publication Publication Date Title
JP4092283B2 (en) Two-dimensional optical scanner and optical device
JP6516516B2 (en) Light deflector
JP5391600B2 (en) Vibration mirror element
US11750779B2 (en) Light deflector, optical scanning system, image projection device, image forming apparatus, and lidar device
AU2937495A (en) Thin film actuated mirror array for use in an optical projection system
JP5848504B2 (en) Optical deflector
JP2002267996A (en) Optical scanner and its manufacturing method
JPS61129893A (en) Light beam deflector
JP2005266074A (en) Optical scanner
JP2006313238A (en) Light deflector
JP2006195290A (en) Image reader and image forming apparatus
JP3800292B2 (en) Light modulation device and display device
JPS58125025A (en) Two-dimensional optical deflector
JP3800287B2 (en) LIGHT MODULATION DEVICE, ITS MANUFACTURING METHOD, AND DISPLAY DEVICE
JP2000019446A (en) Optical scanner
JP7247618B2 (en) Optical scanning device and optical scanning method
JPS62284323A (en) Light beam scanner
JP4566014B2 (en) Optical scanning apparatus and image forming apparatus
JP7295404B2 (en) optical scanner
JPS62198820A (en) Optical deflector
WO2021229689A1 (en) Optical scanning device and distance measuring device
JP4682589B2 (en) Piezoelectric actuator and light sweep device using the same
JPH04156508A (en) Light deflector and light beam scanning device
JP2004294959A (en) Electrostatic actuator
JP2006201519A (en) Optical scanner and image forming apparatus