JPS6079132A - Air-fuel ratio controller for engine - Google Patents
Air-fuel ratio controller for engineInfo
- Publication number
- JPS6079132A JPS6079132A JP18809983A JP18809983A JPS6079132A JP S6079132 A JPS6079132 A JP S6079132A JP 18809983 A JP18809983 A JP 18809983A JP 18809983 A JP18809983 A JP 18809983A JP S6079132 A JPS6079132 A JP S6079132A
- Authority
- JP
- Japan
- Prior art keywords
- air
- fuel ratio
- error
- output
- engine
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1477—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
- F02D41/148—Using a plurality of comparators
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/14—Introducing closed-loop corrections
- F02D41/1438—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
- F02D41/1444—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
- F02D41/1454—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
- F02D41/1456—Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
この発明は機関の空燃比を測定して帰還し、空燃比を所
定値に正確に調整する仁とが可能な空燃比制御装置に関
し、特に、機関の空燃比にほぼ比例する出力を発生する
空燃比センサを使用して任意の空燃比に調整する際に調
整制御を応答性を損ねることなく安定にして良好な特性
を得る仁とができるようにしたものである。[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to an air-fuel ratio control device capable of measuring and returning the air-fuel ratio of an engine and accurately adjusting the air-fuel ratio to a predetermined value. Using an air-fuel ratio sensor that generates an output that is approximately proportional to the air-fuel ratio of the engine, it is possible to stabilize the adjustment control and obtain good characteristics without impairing responsiveness when adjusting the air-fuel ratio to any desired air-fuel ratio. This is what I did.
従来よシ、機関の空燃比を所定値に調整する目的で第1
図に示すごとき特性を有した空燃比センサ(より具体的
には酸素センサ)が実用に供されてきた。。Conventionally, the first
An air-fuel ratio sensor (more specifically, an oxygen sensor) having the characteristics shown in the figure has been put into practical use. .
A ・
すなわち、理論空燃比(/′Fm14.7)よ多燃料過
濃(リッチ)のとき出力がほぼ0.8vとな多、理論空
燃比よシ燃料過薄(リーン)のとき出力が#丘ぼOvと
なる酸素センサが従来使用されている。A - In other words, when the fuel is richer than the stoichiometric air-fuel ratio (/'Fm14.7), the output is approximately 0.8V, and when the fuel is leaner than the stoichiometric air-fuel ratio, the output is #. Conventionally, an oxygen sensor with an open position Ov has been used.
このような特性を有する空燃比センサを使用して空燃比
を理論空燃比を中心としてリミットサイクルを描くよう
に制御することが可能である。Using an air-fuel ratio sensor having such characteristics, it is possible to control the air-fuel ratio so as to draw a limit cycle around the stoichiometric air-fuel ratio.
しかしながら、理論空燃比以外の任意の空燃比に調整す
る目的には供することが不可能である。However, it is impossible to use this for the purpose of adjusting the air-fuel ratio to an arbitrary air-fuel ratio other than the stoichiometric air-fuel ratio.
そこで、従来よシ理論空燃比に調整するときのみ空燃比
センサを用いて負帰還制御し、パワーゾーンなどのごと
くその他の空燃比に調整するときには、帰還なしの開ル
ープ制御とせざるを得なかった。Therefore, conventionally, negative feedback control was performed using an air-fuel ratio sensor only when adjusting to the stoichiometric air-fuel ratio, and when adjusting to other air-fuel ratios such as power zone, open loop control without feedback had to be used. .
このために、たとえば、ノ臂ワーゾ一ンにおいて、とき
として燃料過少によるノッキングの発生、あるいは排気
温度の異常な上昇などの不都合が生じるので、空燃比設
定中心をややリッチ側にオフセットさせることすなわち
燃費率を妥協することを余義なくされた。For this reason, for example, inconveniences such as knocking due to insufficient fuel or an abnormal rise in exhaust temperature may occur in the armpit zone. forced to compromise on rates.
また、大気圧や燃料温度など複合的に空燃比を変動させ
る要因についても個々にセンサを設けて補正すること、
すなわち制御装置の大形化と高価格化が避けられなかっ
た。In addition, individual sensors should be installed to compensate for factors that cause the air-fuel ratio to fluctuate in a complex manner, such as atmospheric pressure and fuel temperature.
In other words, it was inevitable that the control device would become larger and more expensive.
理論空燃比に調整する場合であっても、リミットサイク
ルを描かせ、空燃比を振ると、機関のアイドル状態のご
とく、回転数が空燃比に強く支配される運転条件では、
空燃比のリミットサイクルに応動して回転変動が発生し
体感を著しく損ねるため、アイドル状態においては、空
燃比の負帰還制御を断念することが多かった。Even when adjusting to the stoichiometric air-fuel ratio, if you draw a limit cycle and vary the air-fuel ratio, under operating conditions where the rotation speed is strongly controlled by the air-fuel ratio, such as when the engine is idling,
Negative feedback control of the air-fuel ratio was often abandoned in the idling state because rotational fluctuations occur in response to the limit cycle of the air-fuel ratio, significantly impairing the driver's experience.
以上に述べた欠点を解消するためには、空燃比に比例的
に出力を発生し、任意の空燃比に負帰還制御可能な空燃
比センサが必要とされる。In order to eliminate the above-mentioned drawbacks, an air-fuel ratio sensor is required that generates an output proportional to the air-fuel ratio and can perform negative feedback control at any air-fuel ratio.
また、制御もいわゆる線形制御とすることによって空燃
比の変動を伴わない制御を行なえることが、回転変動抑
止のために望ましい。Furthermore, it is desirable to perform so-called linear control so as to be able to perform control without fluctuations in the air-fuel ratio in order to suppress rotational fluctuations.
このような事情によって、酸素ポンプと酸素センサを空
隙を挾んで相対した形式の空燃比センサが発明され、空
燃比にほぼ比例した出力を発生可能であって、良好な特
性を有することが各方面の研究によって明らかにされて
いる。Under these circumstances, an air-fuel ratio sensor was invented in which an oxygen pump and an oxygen sensor were placed opposite each other with an air gap in between. This has been revealed by research.
以下に、このような空燃比センサを使用して空燃比制御
を行なう従来の空燃比制御装置について第2図〜第4図
によシ説明する。第2図は従来の空燃比制御装置の構成
をブロックダイアダラムで表わしたものであって、Il
は目標の空燃比、Iφは計測された実際の空燃比に対応
する信号てあって、後述するように直接的には電流値で
ある。A conventional air-fuel ratio control device that performs air-fuel ratio control using such an air-fuel ratio sensor will be described below with reference to FIGS. 2 to 4. FIG. 2 shows the configuration of a conventional air-fuel ratio control device using a block diagram.
is the target air-fuel ratio, and Iφ is a signal corresponding to the measured actual air-fuel ratio, which is directly a current value as described later.
ERIは誤差増幅器であって、目標空燃比Iiと実測空
燃比重φ との誤差Ie を出力する。ERI is an error amplifier and outputs an error Ie between the target air-fuel ratio Ii and the measured air-fuel specific gravity φ.
GPは比例増幅器であって、誤差Ieに比例する出力な
発生する。G、は積分器であって、誤差Isを時間積分
して出力する。GP is a proportional amplifier and generates an output proportional to the error Ie. G is an integrator that integrates the error Is over time and outputs the result.
比例増幅器GPと積分器G、の出力を加算増幅器SUM
で加算するようにしておシ、加算増幅器SUMの出力は
パルス巾演算器GTに出力するようになっている。この
パルス巾演算器9τは加算増幅器SUMの出力をパルス
巾に変換してソレノイド弁Gi K出力するようにして
いる。The outputs of the proportional amplifier GP and the integrator G are added to the amplifier SUM.
The output of the summing amplifier SUM is output to the pulse width calculator GT. This pulse width calculator 9τ converts the output of the summing amplifier SUM into a pulse width and outputs it to the solenoid valve GiK.
このソレノイド弁Gfはパルスを印加されている間開弁
して機関GEへ燃料(hを供給する。Qムは機関G、に
よって吸引されている空気であって、燃料Qfと混合さ
れ燃焼して排気(EX)となる。This solenoid valve Gf opens while a pulse is applied to supply fuel (h) to the engine GE. It becomes exhaust (EX).
また、Gλは空燃比センサであって、排気EXの組成、
特に酸素分圧がら空燃比に対応する電流信号を発生する
。この空燃比センサGλは、たとえば第3図に示すよう
に構成されている。Further, Gλ is an air-fuel ratio sensor, and the composition of exhaust EX,
In particular, a current signal corresponding to the oxygen partial pressure to the air/fuel ratio is generated. This air-fuel ratio sensor Gλ is configured as shown in FIG. 3, for example.
この第3図において、1.2は微少な空隙を挾んで対向
したイオン伝導性固体電解質であって、それぞれの両面
には多孔性の白金電極3と4.5と6が形成され、白金
電極4.6はアースされ、白金電極3は電流制御器GC
に接続され、白金電極5は誤差増幅器ER2に接続され
ている。In FIG. 3, 1.2 is an ion-conducting solid electrolyte that faces each other with a minute gap in between, and porous platinum electrodes 3, 4.5, and 6 are formed on each surface. 4.6 is grounded, and the platinum electrode 3 is the current controller GC.
The platinum electrode 5 is connected to the error amplifier ER2.
白金電極3−イオン伝導性固体電解質1−白金電極4は
酸素ポンシフを構成し、電流工φを流すとこれに見合っ
た酸素0!が実線矢印の方向に送出され空隙内の酸素を
減少する。The platinum electrode 3 - the ion-conductive solid electrolyte 1 - the platinum electrode 4 constitute an oxygen pump, and when the electric current φ is applied, the corresponding amount of oxygen is 0! is sent in the direction of the solid line arrow to reduce the oxygen in the void.
空隙内には外部から破線矢印の方向に酸素0.が拡散侵
入し、酸素ポンプ7が送出した空隙内の酸素を補充する
ので、空隙内の酸素分圧は空隙外の酸素分圧お・よび酸
素ボンデ7の駆動電流Iφによって定まる値に平衡する
。Zero oxygen is introduced into the void from the outside in the direction of the dashed arrow. diffuses in and replenishes the oxygen in the gap sent out by the oxygen pump 7, so that the oxygen partial pressure in the gap is balanced to a value determined by the oxygen partial pressure outside the gap and the drive current Iφ of the oxygen bonder 7.
白金電極5−イオ、ン電導性固体電解質2−白金電極6
は酸素センサ8を構成し、空隙内外の酸素分圧比に見合
った起電力Voを発生する。Platinum electrode 5 - Ionic conductive solid electrolyte 2 - Platinum electrode 6
constitutes an oxygen sensor 8, which generates an electromotive force Vo commensurate with the oxygen partial pressure ratio inside and outside the gap.
V refは目標起電力であって、平衡状態においては
起電力V。は目標起電力■refに等しくなるように閉
ループ制御を行なう。V ref is the target electromotive force, which is the electromotive force V in the equilibrium state. Closed-loop control is performed so that it becomes equal to the target electromotive force ref.
ER2は誤差増幅器であって目標起電力vrefと起電
力v0との誤差ve′t−出力する。誤差veは補償要
素GVによシ処理され、電流制御器Gcによって酸素ポ
ンプ7の駆動電流Iφに変換される。ER2 is an error amplifier and outputs the error ve't- between the target electromotive force vref and the electromotive force v0. The error ve is processed by the compensation element GV and converted into the drive current Iφ of the oxygen pump 7 by the current controller Gc.
補償要素GVは積分要素を含んでおシ、誤差veが0に
なるまで、出力を増加あるいは減少して、駆動電流工φ
を′増加あるいは減少させ、平衡状態に至る。The compensation element GV includes an integral element and increases or decreases the output until the error ve becomes 0, and the drive current
′ increases or decreases to reach an equilibrium state.
この平衡状態において、駆動電流工φは空隙外の酸素分
圧を指示しているの、で、第3図の空燃比センサを機関
の排気ガス中に設置すれば、排気ガス中の酸素分圧すな
わち空燃比(7/F)を指示している。In this equilibrium state, the drive current φ indicates the oxygen partial pressure outside the air gap, so if the air-fuel ratio sensor shown in Figure 3 is installed in the engine exhaust gas, the oxygen partial pressure in the exhaust gas will be In other words, the air-fuel ratio (7/F) is indicated.
代表的な特性を第4図に示すように、第3図の空燃比セ
ンサは空燃比に比例した駆動電流工φが流れるので、こ
れを検出して空燃比信号とすることが可能である。As a typical characteristic is shown in FIG. 4, the air-fuel ratio sensor shown in FIG. 3 has a driving current φ proportional to the air-fuel ratio flowing therethrough, so it is possible to detect this and use it as an air-fuel ratio signal.
以上に述べた通シ、第2図の空燃比制御装置は空燃比に
比例する出力を発生可能な空燃比センサGλを使用して
いるために、機関の運転状態に適した任意の空燃比に制
御し得ること、および基本的にはいわゆる線形制御が可
能であることによシ、リミットサイクルを描かない、す
なわち回転変動を併なわない良好な空燃比制御を可能に
するという秀れた特徴を有する。As mentioned above, the air-fuel ratio control device shown in Fig. 2 uses an air-fuel ratio sensor Gλ that can generate an output proportional to the air-fuel ratio, so it can control the air-fuel ratio at any air-fuel ratio suitable for the engine operating condition. It has the excellent feature of not drawing a limit cycle, that is, enabling good air-fuel ratio control without rotational fluctuations, because it can be controlled and basically so-called linear control is possible. have
しかしながら、第2図の空燃比制御装置は、次に述べる
ような欠点を有しておシ、実用に共し得なかった。すな
わち、空燃比センサGλが酸素ポンプと酸素センサが空
隙を挾んで対向し、この空隙内の酸素分圧を所定の平衡
状態に保持することによって、空燃比を測定するもので
あるために、空隙を可能な限り小容積にしたとしても遅
れ時間が無視できない。However, the air-fuel ratio control device shown in FIG. 2 has the following drawbacks and cannot be put to practical use. That is, since the air-fuel ratio sensor Gλ measures the air-fuel ratio by having an oxygen pump and an oxygen sensor facing each other with a gap in between, and maintaining the oxygen partial pressure in the gap in a predetermined equilibrium state, Even if the volume is made as small as possible, the delay time cannot be ignored.
このために、機関の燃焼の変動、特に気筒間分配のバラ
ツキによる排気ガスの変動によって、空隙内の酸素分圧
を厳密に平衡状態に保持できず、酸素ポンプの駆動電流
工φはたえず変動する。For this reason, due to fluctuations in engine combustion, especially fluctuations in exhaust gas due to variations in cylinder distribution, the oxygen partial pressure in the air gap cannot be maintained in a strictly balanced state, and the oxygen pump drive current φ constantly fluctuates. .
このように、駆動電流Iφが変動すると、空燃比制御装
置はこれに応動して燃料供給量を変動させるので、装置
各部の遅れ時間とあいまって空燃比変動が助長され、空
燃比を所定の値に平衡させることができない。In this way, when the drive current Iφ fluctuates, the air-fuel ratio control device changes the fuel supply amount in response, which, together with the delay time of each part of the device, aggravates the air-fuel ratio fluctuation and keeps the air-fuel ratio at a predetermined value. cannot be balanced.
この発明は、上記従来の不都合に鑑みなされたものであ
シ、空燃比を線形制御によシ任意の値に調整可能であっ
て、気筒間分配などによる空燃比変動にいたずらに応動
しない秀れた空燃比制御装置を提案するものである。This invention was made in view of the above-mentioned conventional disadvantages, and has the advantage of being able to adjust the air-fuel ratio to any value by linear control, and not reacting unnecessarily to air-fuel ratio fluctuations caused by distribution between cylinders, etc. This paper proposes a new air-fuel ratio control device.
以下、この発明の機関の空燃比制御装置の実施例につい
て図面に基づき説明する。第5図はこの発明の一実施例
の構成を示すブロック図であり、G8 は第6図に示す
ごとき特性(すなわち、一定以下の誤差入力Ieに対し
ては出カニ。′が発生せず、、一定以上の誤差入カニ。Embodiments of the air-fuel ratio control device for an engine according to the present invention will be described below with reference to the drawings. FIG. 5 is a block diagram showing the configuration of an embodiment of the present invention, and G8 has the characteristics as shown in FIG. , Crab with an error above a certain level.
に対してはそれに比例する出力I。′を発生する特性)
を有する演算増幅器である。For , the output I is proportional to it. ′)
It is an operational amplifier with
この演算増幅器Gs l’i誤差増幅器ERIと比例増
幅器CPとの間に挿入されている。その他の構成ならび
に作用は第2図によって説明した通シである。This operational amplifier Gs l'i is inserted between the error amplifier ERI and the proportional amplifier CP. The other configurations and operations are the same as those explained with reference to FIG.
さて、第5図の機関の空燃比制御装置においては、比例
増幅器GPの前段に演算増幅器G8を設けているので、
誤差1.の微少な変動に比例増幅器CPは応動せず、装
置の平衡状態を乱さない。Now, in the air-fuel ratio control system for the engine shown in FIG. 5, since the operational amplifier G8 is provided before the proportional amplifier GP,
Error 1. Proportional amplifier CP does not react to minute fluctuations in , and does not disturb the equilibrium state of the device.
演算増幅器Gaに与えられる不感帯は、空燃比の気筒間
分配のバラツキによって生じる酸素ポンプ駆動電流工φ
の変動幅とほぼ等しくしておくのが好ましい。The dead band given to the operational amplifier Ga is caused by the oxygen pump drive current φ caused by variations in the air-fuel ratio distribution between cylinders.
It is preferable to make it approximately equal to the fluctuation range of .
なお、積分器GIは従来通シ、誤差増幅器ERIに直接
接続されているが、これは気筒間分配による空燃比変動
のごとく、平均的には目標の空燃比に制御できている状
態では誤差の工。が変動しても積分器GIの出力には影
響が現われないためである。Incidentally, the integrator GI is conventionally connected directly to the error amplifier ERI, but this is due to the fact that when the air-fuel ratio is controlled to the target air-fuel ratio on average, the error is Engineering. This is because the output of the integrator GI is not affected even if .
なお、この第5図の構成では積分器GIの入力に不感帯
を設けていないので、空燃比を正確に目標値と一致させ
る(すなわち工φ=Iiとする)という機能は損ねない
。In the configuration shown in FIG. 5, no dead zone is provided at the input of the integrator GI, so the function of making the air-fuel ratio accurately match the target value (that is, setting φ=Ii) is not impaired.
しかしながら、他の実施例として積分器GIの入力を演
算増幅器G8の出力側に接続しても不感帯が小さければ
、はぼ同様の効果が得られることは言うまでもない。However, it goes without saying that even if the input of the integrator GI is connected to the output side of the operational amplifier G8 as another embodiment, the same effect can be obtained as long as the dead zone is small.
以上詳しく説明した通シ、この発明の機関の空燃比制御
装置においては、空燃比が気筒間分配のバラツキなどに
よる変動によって誤差を生じても、これに過敏に応動し
ないように誤差信号に不感帯を設けたことによ)、従来
不可能であった任意の空燃比における線形制御を可能と
したので、ノクワーゾーンなど理論空燃比以外でも帰還
制御によって正しく空燃比を調整可能となシ、また、リ
ミットサイクルを描いて空燃比を変動させないので、無
負荷時に帰還制御しても回転変動が生じないなど、非常
にすぐれた制御特性を実現できる。As explained in detail above, in the engine air-fuel ratio control device of the present invention, even if an error occurs due to variations in the air-fuel ratio due to variations in cylinder distribution, etc., a dead band is provided in the error signal so as not to react too sensitively to the error. This enables linear control at arbitrary air-fuel ratios, which was previously impossible, so the air-fuel ratio can be adjusted correctly by feedback control even at non-stoichiometric air-fuel ratios, such as in the no-war zone. Since the air-fuel ratio does not fluctuate by drawing , it is possible to achieve extremely excellent control characteristics, such as no rotational fluctuations even if feedback control is performed during no-load conditions.
なお、第5図の説明において、演算増幅器G8の特性は
第6図に示したような不感帯を有する特性ゝとしたが、
−足取下の誤差では増幅率が低くなる可変増幅率を有す
る特性でも同様の効果が得られることは明らかである。In the explanation of FIG. 5, the characteristics of the operational amplifier G8 were assumed to have a dead zone as shown in FIG.
- It is clear that a similar effect can be obtained with a characteristic having a variable amplification factor in which the amplification factor becomes low in response to an error in footfall.
また、誤差補正演算手段としては、第5図の構成では比
例増幅器Gpおよび積分器Gt を使用したが、他に誤
差を微分する微分器を設け、これの出力を併用すること
によって、空燃比制御の応答性を高めることも可能であ
る。In addition, although the proportional amplifier Gp and the integrator Gt are used as the error correction calculation means in the configuration shown in FIG. It is also possible to improve the responsiveness of
この場合、微分器の入力は比例増幅器GPと同様、演算
増幅器G8の出力に接続することは言うまでもない。In this case, it goes without saying that the input of the differentiator is connected to the output of the operational amplifier G8, similar to the proportional amplifier GP.
以上のように、この発明の機関の空燃比制御装置によれ
ば、機関の空燃比にほぼ比例する出力を発生するりニア
空燃比センサを用いて任意の空燃比にリニア制御すると
き空燃比誤差信号に不感帯を設け、気筒間分配による変
動に応動しないようにしたので、/9ワーゾーンなど、
理論空燃比以外でも帰還制御によって正しく空燃比の調
整が可能であるとともに、無負荷時に帰還制御しても回
転変動が生じない効果を奏するものである。As described above, according to the air-fuel ratio control device for an engine of the present invention, an output that is approximately proportional to the air-fuel ratio of the engine is generated, and an air-fuel ratio error occurs when performing linear control to an arbitrary air-fuel ratio using a near air-fuel ratio sensor. A dead zone is provided in the signal so that it does not respond to fluctuations due to distribution between cylinders, so the /9 war zone, etc.
The air-fuel ratio can be correctly adjusted by feedback control even when the air-fuel ratio is other than the stoichiometric air-fuel ratio, and rotational fluctuations do not occur even if feedback control is performed during no-load conditions.
第1図は従来使用されている空燃比センサの特性図、第
2図は空燃比にほぼ比例する出力を有する空燃比センサ
を使用した従来の機関の空燃比制御装置のブロック図、
第3図は第2図の機関の空燃比制御装置および第5図の
この発明の機関の空燃比制御装置に使用する空燃比セン
サの構成を示す図、第4図は第3図の空燃比センサの特
性図、第5図はこの発明の機関の空燃比制御装置の一実
施例のブロック図、第6図は第5図の機関の空燃比制御
装置における演算増幅器の特性例を示す図である。
ERI・−・誤差増幅器、Ga・・・演算増幅器、GP
・・・比例増幅器%GI・・・積分器、GW ”・機関
、Gλ0°°空燃比センサーGτ・・・パルス巾m幅器
、Gf・・・ソレノイド弁。
なお、図中同一符号は同一または相当部分を示す。
代理人 大 岩 増 雄
第1図
第2図
第3図
第4図
空燃上し
第5図
第6図
Ia’FIG. 1 is a characteristic diagram of a conventionally used air-fuel ratio sensor, and FIG. 2 is a block diagram of a conventional engine air-fuel ratio control device using an air-fuel ratio sensor having an output approximately proportional to the air-fuel ratio.
FIG. 3 is a diagram showing the configuration of an air-fuel ratio sensor used in the air-fuel ratio control device for the engine shown in FIG. 2 and the air-fuel ratio control device for the engine of the present invention shown in FIG. A characteristic diagram of the sensor, FIG. 5 is a block diagram of an embodiment of the engine air-fuel ratio control device of the present invention, and FIG. 6 is a diagram showing an example of the characteristics of the operational amplifier in the engine air-fuel ratio control device of FIG. be. ERI -- Error amplifier, Ga -- Operational amplifier, GP
...Proportional amplifier %GI...Integrator, GW"・Engine, Gλ0°° Air-fuel ratio sensor Gτ...Pulse width m width unit, Gf...Solenoid valve. In addition, the same symbols in the figures are the same or The corresponding part is shown. Agent Masuo Oiwa Figure 1 Figure 2 Figure 3 Figure 4 Air combustion Figure 5 Figure 6 Ia'
Claims (4)
段の出力によシ燃料供給量を演算する手段、この手段の
出力を受けて機関へ燃料を供給する手段、機関排気の成
分によシ空燃比を検出しこの空燃比にほぼ比例した電気
信号を出力する空燃比センサ、この空燃比センサの出力
を受けて所望の空燃比との誤差に対応する補正量を演算
するとともに上記誤差が所定値よシ小さいときと大きい
ときでは補正演算の比率が異なるようにする手段、この
補正量を上記燃料供給量を演算する手段に上記誤差が減
少するように作用させる手段を備えてなる機関の空燃比
制御装置。(1) Means for detecting four parameters of engine operation, means for calculating the amount of fuel supplied based on the output of this means, means for supplying fuel to the engine based on the output of this means, and means for supplying fuel to the engine based on the components of engine exhaust An air-fuel ratio sensor that detects the air-fuel ratio and outputs an electrical signal approximately proportional to this air-fuel ratio, receives the output of this air-fuel ratio sensor, calculates a correction amount corresponding to the error from the desired air-fuel ratio, and eliminates the above-mentioned error. An engine comprising means for making the correction calculation ratio different when it is smaller than a predetermined value and when it is larger than a predetermined value, and means for applying the correction amount to the means for calculating the fuel supply amount so as to reduce the error. Air-fuel ratio control device.
を積分した量および誤差を微分した量のいずれか、ある
いはそれらを組み合せた量を演算し補正量として出力す
るように構成されかつ誤差が所定値よシ小さいときには
上記誤差に比例した量または上記誤差を微分した量を抑
制してまたはOにクランプして上記補正量を生成するよ
うにしたことを特徴とする特許請求の範囲第1項記載の
機関の空燃比制御装置。(2) The means for calculating the correction amount is configured to calculate an amount proportional to the error, an amount obtained by integrating the error, an amount obtained by differentiating the error, or a combination thereof, and output it as the correction amount. When the error is smaller than a predetermined value, an amount proportional to the error or an amount obtained by differentiating the error is suppressed or clamped to O to generate the correction amount. An air-fuel ratio control device for an engine according to item 1.
と酸素センサによ多構成されこの酸素ポンプはこの空隙
内の酸素濃度を制御するごとくに電流駆動されかつ酸素
センサは上記空隙内外の酸素濃度比率に応じた電圧を出
力し、この電圧を所定値に保持するように上記酸素ポン
プの駆動電流を制御し、この駆動電流に対応する電気出
力を発生する形式のものとしたことを特徴とする特許請
求の範囲第1項および第2項記載の機関の空燃比制御装
置。(3) The air-fuel ratio sensor is composed of an oxygen pump and an oxygen sensor that face each other with an air gap in between. The oxygen pump is characterized by outputting a voltage according to the concentration ratio, controlling the driving current of the oxygen pump to maintain this voltage at a predetermined value, and generating an electrical output corresponding to this driving current. An air-fuel ratio control device for an engine according to claims 1 and 2.
と酸素センナによ多構成され、この酸素ポンプは上記空
隙内の酸素濃度を制御するごとくに所定の電流で駆動さ
れ、この酸素センサは上記空隙内外の酸素濃度比率に応
じた電圧を発生し、この電圧を出力とする形式のものと
し九ことを特徴とする特許請求の範囲第1項および第2
項記載の機関の空燃比制御装置。(4) The air-fuel ratio sensor is composed of an oxygen pump and an oxygen sensor facing each other with an air gap in between.The oxygen pump is driven with a predetermined current to control the oxygen concentration in the air gap, Claims 1 and 2 are characterized in that the voltage is generated according to the oxygen concentration ratio inside and outside the gap, and this voltage is output.
An air-fuel ratio control device for the engine described in Section 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18809983A JPS6079132A (en) | 1983-10-04 | 1983-10-04 | Air-fuel ratio controller for engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP18809983A JPS6079132A (en) | 1983-10-04 | 1983-10-04 | Air-fuel ratio controller for engine |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6079132A true JPS6079132A (en) | 1985-05-04 |
JPS637255B2 JPS637255B2 (en) | 1988-02-16 |
Family
ID=16217679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP18809983A Granted JPS6079132A (en) | 1983-10-04 | 1983-10-04 | Air-fuel ratio controller for engine |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6079132A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6240267U (en) * | 1985-08-29 | 1987-03-10 | ||
JPS6326747U (en) * | 1986-08-06 | 1988-02-22 | ||
EP0595586A2 (en) * | 1992-10-30 | 1994-05-04 | Ford Motor Company Limited | A method for controlling an air/fuel ratio of an internal combustion engine |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4968120A (en) * | 1972-11-09 | 1974-07-02 | ||
JPS57203843A (en) * | 1981-06-10 | 1982-12-14 | Mitsubishi Electric Corp | Air-fuel ratio feedback control device |
JPS584177A (en) * | 1981-06-25 | 1983-01-11 | テンポソニツクス・インコ−ポレ−テツド | Keyboard coding unit |
JPS5834656A (en) * | 1981-08-25 | 1983-03-01 | Fujitsu Ltd | Code conversion system |
JPS58153155A (en) * | 1982-03-09 | 1983-09-12 | Ngk Spark Plug Co Ltd | Oxygen sensor |
JPS59201948A (en) * | 1983-04-30 | 1984-11-15 | Mitsubishi Motors Corp | Air-fuel ratio controller for engine |
JPS59226252A (en) * | 1983-06-07 | 1984-12-19 | Nippon Denso Co Ltd | Air-fuel ratio controlling apparatus |
JPS606037A (en) * | 1983-06-23 | 1985-01-12 | Nippon Denso Co Ltd | Air-fuel ratio controller |
JPS6032949A (en) * | 1983-08-02 | 1985-02-20 | Nippon Denso Co Ltd | Air fuel ratio controlling apparatus |
JPS6043138A (en) * | 1983-08-20 | 1985-03-07 | Nippon Denso Co Ltd | Air-fuel ratio controlling apparatus |
JPS6043139A (en) * | 1983-08-20 | 1985-03-07 | Nippon Denso Co Ltd | Air-fuel ratio controlling apparatus |
-
1983
- 1983-10-04 JP JP18809983A patent/JPS6079132A/en active Granted
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4968120A (en) * | 1972-11-09 | 1974-07-02 | ||
JPS57203843A (en) * | 1981-06-10 | 1982-12-14 | Mitsubishi Electric Corp | Air-fuel ratio feedback control device |
JPS584177A (en) * | 1981-06-25 | 1983-01-11 | テンポソニツクス・インコ−ポレ−テツド | Keyboard coding unit |
JPS5834656A (en) * | 1981-08-25 | 1983-03-01 | Fujitsu Ltd | Code conversion system |
JPS58153155A (en) * | 1982-03-09 | 1983-09-12 | Ngk Spark Plug Co Ltd | Oxygen sensor |
JPS59201948A (en) * | 1983-04-30 | 1984-11-15 | Mitsubishi Motors Corp | Air-fuel ratio controller for engine |
JPS59226252A (en) * | 1983-06-07 | 1984-12-19 | Nippon Denso Co Ltd | Air-fuel ratio controlling apparatus |
JPS606037A (en) * | 1983-06-23 | 1985-01-12 | Nippon Denso Co Ltd | Air-fuel ratio controller |
JPS6032949A (en) * | 1983-08-02 | 1985-02-20 | Nippon Denso Co Ltd | Air fuel ratio controlling apparatus |
JPS6043138A (en) * | 1983-08-20 | 1985-03-07 | Nippon Denso Co Ltd | Air-fuel ratio controlling apparatus |
JPS6043139A (en) * | 1983-08-20 | 1985-03-07 | Nippon Denso Co Ltd | Air-fuel ratio controlling apparatus |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6240267U (en) * | 1985-08-29 | 1987-03-10 | ||
JPS6326747U (en) * | 1986-08-06 | 1988-02-22 | ||
EP0595586A2 (en) * | 1992-10-30 | 1994-05-04 | Ford Motor Company Limited | A method for controlling an air/fuel ratio of an internal combustion engine |
EP0595586A3 (en) * | 1992-10-30 | 1994-09-07 | Ford Motor Co | A method for controlling an air/fuel ratio of an internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
JPS637255B2 (en) | 1988-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4601809A (en) | Oxygen concentration detecting system using oxygen sensor including oxygen ion pump | |
US4278060A (en) | Feedback type air fuel ratio controlling system | |
US11067531B2 (en) | Method of operation of a gas sensor | |
JP2001355841A (en) | Controller for burner and setting method for the controller | |
US4622125A (en) | Oxygen concentration control system | |
JPH0414305B2 (en) | ||
JP2902162B2 (en) | Air-fuel ratio sensor output correction method | |
JPH0148442B2 (en) | ||
US4391690A (en) | Apparatus for monitoring SO2 concentrations | |
JPS6079132A (en) | Air-fuel ratio controller for engine | |
US6576118B2 (en) | Correction device of air-fuel ratio detection apparatus | |
JPS61221644A (en) | Air-fuel ratio sensor | |
JPS62121843A (en) | Air-fuel ratio controller | |
JPH10509242A (en) | Device for measuring the concentration of components in gas mixtures | |
US4818362A (en) | Oxygen concentration sensing apparatus | |
US5580440A (en) | Air fuel ratio sensory | |
JPH07104324B2 (en) | Air-fuel ratio detector | |
JPH07117527B2 (en) | Oxygen concentration detector | |
JP2514608B2 (en) | Air-fuel ratio control device for internal combustion engine | |
JP5826729B2 (en) | Oxygen concentration measuring method and oxygen concentration measuring device | |
JP2001115881A (en) | Air-fuel ratio control device for internal combustion engine | |
JPH0311662B2 (en) | ||
JP3734685B2 (en) | Sensor element temperature detection device for air-fuel ratio sensor | |
JP2774100B2 (en) | Oxygen concentration detector | |
JPS6128857A (en) | Air-fuel ratio detector |