JPS6072542A - Light ray ct apparatus - Google Patents

Light ray ct apparatus

Info

Publication number
JPS6072542A
JPS6072542A JP18156383A JP18156383A JPS6072542A JP S6072542 A JPS6072542 A JP S6072542A JP 18156383 A JP18156383 A JP 18156383A JP 18156383 A JP18156383 A JP 18156383A JP S6072542 A JPS6072542 A JP S6072542A
Authority
JP
Japan
Prior art keywords
light
light beam
optical
light source
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18156383A
Other languages
Japanese (ja)
Other versions
JPH0433460B2 (en
Inventor
守 田村
高田 通之助
徳原 康隆
修 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP18156383A priority Critical patent/JPS6072542A/en
Publication of JPS6072542A publication Critical patent/JPS6072542A/en
Publication of JPH0433460B2 publication Critical patent/JPH0433460B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (イ)産業上の利用分野 この発明は、物体ことに生体の1lffi層像を得るた
めのコンピユータ117i層踊影装置(以下cT装置ど
称ず)に関J゛る。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial Application Field The present invention relates to a computer 117i layer imaging device (hereinafter referred to as cT device) for obtaining a 1lffi layer image of an object, particularly a living body. .

(LJ)従来技術 従来のC]−装置としては、x m c−r装置、エミ
ツションCT装置(ポジ1〜ロンCT装買、シンク/L
/7:4 t−ンC1−M@) 、NMR−C−1−装
置J3J、び超n波CT装置が知られ(いる。
(LJ) Prior art Conventional C] - Devices include x m cr device, emission CT device (positive 1 to long CT equipment, sink/L
/7:4 t-ton C1-M@), NMR-C-1-device J3J, and ultra-n-wave CT device are known.

これらの0丁装置のうら生体の代謝1jll (fF、
を観測ひきるものはエミッションCT装置およびNMR
・CT !置である。
Behind these devices, the metabolism of living organisms (fF,
Emission CT equipment and NMR are used to observe
・CT! It is a place.

しかしエミッションC1装置は放射線を観測するもので
あつC生イ水内にウジオアイン1〜−ブ(R1)を注入
り゛るために被曝をMIノられない欠点があり、またN
 M R・c−「装置は電磁波を観測するものであって
強い磁界を発生4−る設備や磁気シールド設備を必要と
するために装置自体や付帯設備が大型になる欠点がある
However, the emission C1 device is a device that observes radiation, and has the disadvantage that radiation exposure cannot be measured by MI since it injects Uzioin 1--B (R1) into the raw water.
MR・c-"The device is for observing electromagnetic waves, and requires equipment that generates a strong magnetic field and magnetic shielding equipment, which has the disadvantage that the device itself and its ancillary equipment are large.

一方、最近、光を利用しC生体の細胞組織を分光学的に
1σ1究Jることが提案されCいる。[1−心筋組織の
酸素特性1111村その他゛心臓” VOl、14N0
.2 ′82]、[l“ミオグロビンの生理的意義J 
Ill 4’tその他゛′生物物理” VOl、 IG
 No 。
On the other hand, it has recently been proposed to use light to spectroscopically investigate cell tissues of living organisms. [1-Oxygen properties of myocardial tissue 1111 Village and others ゛Heart” VOl, 14N0
.. 2 '82], [l"Physiological significance of myoglobin J
Ill 4'tOthers ``Biophysics'' VOl, IG
No.

1 −7611、[l’ Optical M eas
ureme++t of1+1traCOIIular
 oxygen Conccntration orR
at Heart in VitroJ −1−amu
ra et al” A RC+−11V E S O
F[310CI−1[EMIsTRY AND1310
PI−IYS I C3″Vol、191 No 。
1-7611, [l' Optical Meas
ureme++t of1+1traCOIIular
oxygen conccntration orR
at Heart in VitroJ-1-amu
ra et al” A RC+-11V E SO
F[310CI-1[EMIsTRY AND1310
PI-IYS I C3″Vol, 191 No.

I N ovcmber 、 −78J。IN ovcmber, -78J.

(ハ)発明の目的 この発明は、光とCT装置とを組合μた装置を提供り゛
るbのであって、づなわち光を利用して物体ことに生体
のa胞機能を分光学的にかつ2次元的に解析しつる装置
を提供1゛るものである。
(c) Purpose of the Invention The present invention provides a device that combines light and a CT device, that is, it uses light to analyze the abicularis function of a living body in a spectroscopic manner. The purpose of this invention is to provide a device that can perform two-dimensional analysis.

この発明の装置においてはたとえば生体におりるヘモグ
ロビン、ミオグロビンなどの酸素分子と結合しうるタン
パク質の酸素どの結合状態を量的に2次元分布′C観測
でき、また呼吸鎖の(吉成成分であるチ1ヘクローム類
などの酸化、還元状態は酸M fA度J3よび1ネルギ
ー状態の関数ぐあり、これらの酸化、還元状態からミト
コンドリアの酸素濃度を2次元分イ1jで観測ぐさ、こ
れにJ、りたとえば酸素欠乏状態のミオグロビンをtl
す測寸ることで血b l”tl害等の器質性1(t5害
、その程度おJ、びその正確な部位の発見に役立ち得る
ものである。
With the device of this invention, for example, it is possible to quantitatively observe the two-dimensional distribution of the binding state of oxygen in proteins such as hemoglobin and myoglobin that can bind to oxygen molecules in the living body, and also to quantitatively observe the binding state of oxygen in proteins such as hemoglobin and myoglobin in the living body. The oxidation and reduction states of 1 hechromes, etc. are functions of the acid M fA degree J3 and 1 energy state, and from these oxidation and reduction states, the mitochondrial oxygen concentration can be observed in two dimensions with I1j, and J and R For example, myoglobin in an oxygen-deficient state is tl
Measuring blood damage can be helpful in discovering the extent of organic damage, its extent, and its exact location.

(ニ)発明の構成 この発明のC−1−H置は、測定対象に対して吸収のあ
る波長の光ビームを被測定物体に透過さけ、その光ビー
ムの強度のデータから被測定物体内部にa3りる測定対
象の2次元分布像を得ることを特徴とするものであって
、光線CT菰装と称しうるムのである。
(d) Structure of the Invention The C-1-H arrangement of the present invention transmits a light beam of a wavelength that is absorbed by the object to be measured, and uses the data of the intensity of the light beam to detect the inside of the object to be measured. It is characterized by obtaining a two-dimensional distribution image of a measurement target, and can be called a light beam CT system.

1゛なわち、この発明の光線CT装置i、1、ijl祝
光および/また【よ近赤外光の光ビームを被測定物体に
成用するための光源手段、被測定物体を透過した前記光
ビームを受光してその光強度に応じた信号を出力り−る
光検出手段、被測定物体に対して異なる位置で前記光ビ
ームを透過さVるためのビーム走査手段、そのビーム走
査手段に係る光ビーム位置信号と前記光検出手段の出力
信号とに基いて被測定物体内部にお()る測定対象の2
次元分布を算出1−るデータ処理手段およびそのデータ
処理手段で得fc 2次元分布を映像にしで表示する映
像表示手段を具備して構成される。
1. That is, the light beam CT apparatus i, 1, ijl of the present invention and/or light source means for applying a near-infrared light beam to an object to be measured; A light detection means for receiving a light beam and outputting a signal according to the light intensity; a beam scanning means for transmitting the light beam at different positions with respect to an object to be measured; Based on the light beam position signal and the output signal of the light detecting means, two of the objects to be measured are located inside the object to be measured.
The apparatus is configured to include a data processing means for calculating the dimensional distribution and an image display means for displaying the two-dimensional distribution obtained by the data processing means as an image.

上記光源手段ににる光ビームの波長は、被測定物体が生
体である場合には500 n m〜150011mであ
るのが好ましいが、これは500nmより短い波長では
生体内Cの散乱が大きくなり、150011111より
長い波長では生体内の水分による吸収が大ぎくなって光
ビームの透過率が七しく小さくなるからである。
The wavelength of the light beam applied to the light source means is preferably 500 nm to 150011 m when the object to be measured is a living body, but this is because at a wavelength shorter than 500 nm, scattering of C in the living body becomes large. This is because wavelengths longer than 150011111 are absorbed by water in the living body, and the transmittance of the light beam decreases by seventy.

上記光検出手段が受光する光ビームは、測定対象にたい
して吸収度が選択的に大きい波長の単色光ビームである
か、又はその吸収度が選択的に大きい波長の単色光ビー
ムおよび測定対象に対り−る吸収度がその単色光ビーム
と異なりかつ他の吸収物質に対する吸収度が実質的に同
程度の波長の単色光ビームの異なる2波長のもしくは3
以上の波長の光ビームであるのが好ましい。界なる2 
iU長もしくは3以上の波長の光ビームを使用りるのは
、反則、散乱や被検体の厚みの変化の影響を避()るこ
とが主目的である3、異なる2波長の具体例としCは、
測定対象が水分である場合には、約145011mの波
長の光ビーム、ムしくは約145011111の波長の
光ビームおよび約1200nmの波長の光ビームを挙げ
ることができる。また測定対象がヘモグロヒ゛ンである
場合には、約650 n mの波長の光ビーム、もしく
は約a 5o n 111の波長の光ビーム63 J:
び約750nmの波長の光ビームを挙げることかぐきる
。約G50nn+と約750 II…の2波長の光ビー
ムを用いるとへ−Eグロビンのみを測定対象とできこれ
はヘモグ[1ビンを指標として生体内の酸素濃度の観測
がilJ fil:であることを意味し、また同時に酸
素の代謝の観測もi+JOしであることを意味している
。ヘモグ[−1ビンtよ11000n付近にも吸収ピー
クをもち、この波長を使った測定もiり能である。さら
に測定対象がチ1〜クロームである場合には、約850
 nrnの波長の光ご一ム、もしくは約85011mの
波長の光ビームおよび約90011mの波長の光ビーム
を挙げることができる。
The light beam received by the light detection means is either a monochromatic light beam with a wavelength that has a selectively high absorbance with respect to the object to be measured, or a monochromatic light beam with a wavelength that selectively has a high absorbance with respect to the object to be measured. - two or three different wavelengths of a monochromatic light beam whose absorbances differ from that of the monochromatic light beam and whose absorbances with respect to other absorbing substances are substantially the same;
It is preferable that the light beam has a wavelength greater than or equal to the wavelength. world 2
The main purpose of using a light beam with an iU length or a wavelength of 3 or more is to avoid the effects of fouling, scattering, and changes in the thickness of the object.3.C is a specific example of two different wavelengths. teeth,
When the object to be measured is moisture, examples include a light beam with a wavelength of about 145011 m, more preferably a light beam with a wavelength of about 145011111 nm, and a light beam with a wavelength of about 1200 nm. When the object to be measured is hemoglobin, a light beam with a wavelength of about 650 nm or a light beam with a wavelength of about a 5 o n 111 is used.
A light beam with a wavelength of about 750 nm can be emitted. By using a light beam with two wavelengths of approximately G50nn+ and approximately 750 II..., only He-E globin can be measured. This also means that the observation of oxygen metabolism is i+JO. Hemoglobin has an absorption peak near 11,000 nm, and measurement using this wavelength is also possible. Furthermore, when the measurement target is chromium, about 850
One may mention a light beam with a wavelength of nrn, or a light beam with a wavelength of about 85011 m and a light beam with a wavelength of about 90011 m.

約850 If mと約900r+mの2波長の光ビー
ムを用いると酸化されたヂトクロームのみを測定対象と
でき、これはブートクロームを!?標とした生体内の1
%(の濃度の観測J3Jζび酸素の代謝の観測がiり能
であることを意味しCいる。
By using a light beam with two wavelengths of about 850 If m and about 900 r+m, only oxidized ditochrome can be measured, and this is bootchrome! ? Targeted in vivo 1
Observation of the concentration of %(J3Jζ) and observation of oxygen metabolism are effective.

光ビームの波長を選ぶためには、半導体レーザのJ、う
な単色光四:を光源手段に用いるか、タングステンラン
プやハ【」ゲンランプのような白色光源を光源手段に用
いると共に光源手段もしくは光検出手段にフィルタまた
はグレー−jインクのような分光器を設りるとよい。光
検出手段としC(ま、たどえば]AトダイA−ドやフッ
1ト1−ランジスタやPbSセルを用いることができる
In order to select the wavelength of the light beam, a monochromatic light source such as a semiconductor laser is used as the light source means, or a white light source such as a tungsten lamp or a hagen lamp is used as the light source means, and the light source means or light detector is used as the light source means. The means may be provided with a filter or a spectrometer such as a Gray-J ink. As the light detecting means, an A to D, a foot transistor, or a PbS cell can be used.

上記ビーム走査手段は、公知のX線CT装置において提
案されCいるX線走査手段を利用することができる。た
とえば特開昭50−156387号におiノる並進/回
転方式、特開昭50−28894号における回転方式、
特開11i、l 52−10 G 1398号にJ3け
る検出器全周設置/ビーム源回転方式、特開11fl 
bl−126088号にお1ノるビーム源J3 J:び
検出器全周設置方式を利用できる。特に、この発明にa
3ける光源手段J3よび光検出手段は、X線源Jjよび
X線検出器よりも小型かつ安1i11i ”Cあるから
、両前を被測定物体の全周に配置しC1電気的に^速走
査づることを容易にtjいつる。
As the beam scanning means, an X-ray scanning means proposed in a known X-ray CT apparatus can be used. For example, the translation/rotation method in JP-A No. 50-156387, the rotation method in JP-A-50-28894,
Unexamined Japanese Patent Application No. 11i, l 52-10 G 1398 Detector all around installation/beam source rotation method in J3, Unexamined Japanese Patent Application No. 11fl
It is possible to use the beam source J3 J: and detector all-around installation system described in BL-126088. In particular, this invention
The light source means J3 and the light detection means in 3 are smaller and safer than the X-ray source Jj and the X-ray detector, so both fronts are placed around the entire circumference of the object to be measured and C1 is electrically scanned at high speed. Easy to use.

」−記データ処理手段は、公知の0丁装置にJ3いて提
案されているデータ処理手段を利用づることがぐさ・る
。たとえば特17i1昭50〜2838!i月にJ34
:Jるデータ処理手段を利用できる。
The data processing means mentioned above may utilize the data processing means proposed in J3 for a known device. For example, special 17i1 Showa 50-2838! J34 in i month
:J data processing means can be used.

上記映像表示手段は、CI’< T上に画像を表示り“
る公知の映像表示手段を利用づることが(゛きる。
The video display means displays an image on CI'<T.
It is possible to use any known video display means.

(小)実施例 第1図に示ず(1)は、この光明の光線CTI置の一実
施例である。
(Small) Embodiment (1), not shown in FIG. 1, is an embodiment of this light beam CTI device.

光源手段(2)は、第2図に示すように、タングステン
ランプ(3)と干渉フィルタ(5)、f□)とからなり
、干渉フィルタ+53.(6)の切換回転によつC約6
5011111の波長の光ビームおにび約750nmの
波長の光ビームを交互に放射する。
As shown in FIG. 2, the light source means (2) consists of a tungsten lamp (3) and an interference filter (5), f□). C approximately 6 due to switching rotation of (6)
A light beam with a wavelength of 5011111 nm and a light beam with a wavelength of about 750 nm are alternately emitted.

光検出手段(8)は、フォトダイオード(9)と約GO
Onm以上の波長の光をカッ1−する光学フィルタ00
)とからなる。光学−フィルタ(10)を用いるのは測
定軍内の照明の影響を防ぐためである。すなわち測定室
内の照明をたとえば低圧す1〜リウムフンプのような光
源により1jうと、その照明光は光学フィルタ001で
カッ1へされるから測定に影響を、I−iえない。
The light detection means (8) is approximately GO
Optical filter 00 that cuts out light with a wavelength of Onm or more
). The optical filter (10) is used to prevent the effects of illumination within the measurement field. That is, if the illumination in the measurement chamber is provided by a low-pressure light source such as a light source such as a light source such as a light source such as a light source such as a light source, the illumination light is filtered by the optical filter 001, so that it cannot affect the measurement in any way.

光源手段(2)と光検出手段(8)は、対向して配置さ
れており、中間に被測定物体(0)を置くことで透過光
を検出しつる。
The light source means (2) and the light detection means (8) are arranged to face each other, and the transmitted light is detected by placing the object to be measured (0) between them.

ビーム走査手段(11)は、公知の並進/回転方式の6
のである。並進し一タ(1zが回転してベル1〜(13
a ) (131+ )が回動すれば、光源手段(2)
および光検出手段(8)が並進し、光ビームが同じ角度
を保ちつつ被測定物体(0)を走査する。また、回転モ
ータ制)が回転してガントリ(I5)が回転ずれば、被
測定物体(0)にス・1する光ビームの角度が変わる。
The beam scanning means (11) is a known translation/rotation system.
It is. It translates and one ta(1z rotates and bell 1~(13
a) If (131+) rotates, the light source means (2)
The light detection means (8) is translated, and the light beam scans the object to be measured (0) while maintaining the same angle. Furthermore, if the rotary motor system (rotary motor system) rotates and the gantry (I5) rotates, the angle of the light beam that strikes the object to be measured (0) changes.

並進走査に関する位置信号は佼置しン(J(+6+から
出力され、角度に関り゛る位買信)シは位置セン1ノ(
17)から出力される。
The position signal related to translational scanning is output from the position sensor (J (+6+), and the signal related to the angle is output from the position sensor 1 (J).
17).

08)は」ンピ1−タシステムで、Aペレータどの対話
、装置全体の電気機械的制御おJ、びア゛−タ処理を行
う、、りなわち並進走査でプロファイルを1!すること
を角度を変えて繰返し、多数のプロファイルを4!7 
’U、これらから光吸収物質の2次元分イIiを導出す
る。
08) is an operator system that performs interactions such as A operator, electromechanical control of the entire device, and data processing, that is, a profile in translational scanning. Repeat this process with different angles to create as many profiles as possible 4!7
'U, From these, derive the two-dimensional component Ii of the light-absorbing substance.

約G50nmの波長の光ビームはへ−しグl−1ビンに
よつC吸収されるので、約G50nmの波[(に対応J
る光検81手段(8)の出力信号から、へしグロじンの
2次元分布をIIVることが可能である。また約750
 n mの波長の光ビームは、酸素化されたヘモグ【」
ビンに対して(よ約050nmの波長の光ビームと同程
度の吸収を受(〕、脱酸素化されたベモグI」ビンに対
しCは約(i50nmの波長の光ビームよりし大きな吸
収を受番)るから、両波長に対する光検出手段(8)の
出力信号の差から、酸素濃瓜の2次元分布が観測可能で
ある。両波長と光検出手段(8)の出ツノ信Hの対応は
、干渉フィルタf5)、(61の切換の同期信号によっ
て判別される。ざらにデータ採取のタイミングを生体の
心拍または呼吸検出器の信号と同期さければ、心拍や1
+it吸と同期した代謝の状態を観測することができる
Since a light beam with a wavelength of about G50nm is absorbed by the Hesigling l-1 bin, a wave of about G50nm [(corresponding to J
From the output signal of the optical detector 81 means (8), it is possible to determine the two-dimensional distribution of hesiglobin. Also about 750
A beam of light with a wavelength of nanometers is used to detect oxygenated hemoglobin.
The deoxygenated vemog I" for a bottle (which receives a similar absorption as a light beam with a wavelength of about 050 nm), and the Therefore, the two-dimensional distribution of the oxygen-concentrated melon can be observed from the difference between the output signals of the photodetector (8) for both wavelengths.The correspondence between the two wavelengths and the output signal H of the photodetector (8) is determined by the switching synchronization signal of the interference filters f5) and (61.Roughly speaking, if the timing of data collection is synchronized with the heartbeat of the living body or the signal of the respiration detector, the heartbeat or
+It is possible to observe the state of metabolism in synchronization with inhalation.

コンピュターシステムf181で1qられた光吸収物質
すなわち測定対象の2次元分布は、CRTディスプレイ
09)にC映像表示される。
The two-dimensional distribution of the light-absorbing substance, that is, the object to be measured, obtained by the computer system f181 is displayed as a C image on the CRT display 09).

第3図は光源手段(2)の他の構成例を示すもので、2
つの波長の光ビームは、レフターミラ−(7)の回転に
よつC父互に被測定物体(0)に放射される。
FIG. 3 shows another example of the structure of the light source means (2).
The two wavelengths of light beams are mutually radiated onto the object to be measured (0) by the rotation of the left mirror (7).

(イ)はレーリ゛−ダイA−ド(20+ 、 [21)
を用いる場合、(LJ)は色素レーリ゛装置を用いる場
合である。後者におイT (22a ) (23a )
はYAGレーリ゛装置。
(A) is Rayleigh die A-de (20+, [21)
(LJ) is the case when a dye Rayleigh device is used. I like the latter (22a) (23a)
is a YAG relay device.

(22a ) (23b )は色素であり、色素(22
a )(231) )を選ぶことによって波長を比較的
自由に選択できる。
(22a) (23b) are pigments;
a ) (231) ), the wavelength can be selected relatively freely.

第4図はこの光用の光線CT装置の他の実施例の要部を
示すものCあり、光ビームは光ファイバににつて導くこ
とができる性質を利用した独自のビーム走査手段を有し
ている。
Figure 4 shows the main parts of another embodiment of this light beam CT device, which has a unique beam scanning means that takes advantage of the property that the light beam can be guided to an optical fiber. There is.

すなわら、被測定物体(0)が置かれる空間の周囲に小
レンズ(24a ) (24b ) −(24q )(
24r)・・・を配設する。それらから光ファイバ(2
5a ) (25b ) −(25q ) (25r)
 −を導出し、各光ノアイバ(25a ) (25b 
) 7・−(25Q ) (251” )・・・を光カ
ップラ(26a ) (26b )・・・で各々2つの
光ファイバ(27a ) (27a = ) 、(27
1+ )(27b i、−、(27q ) (27q 
’−)、<27r )(27rl、・・・に分【)る。
In other words, small lenses (24a) (24b) - (24q) (
24r)... is arranged. Optical fibers (2
5a) (25b) -(25q) (25r)
− is derived, and each optical fiber (25a) (25b
) 7.-(25Q) (251'')... are connected to two optical fibers (27a) (27a = ), (27
1+ ) (27b i, -, (27q ) (27q
'-),<27r)(27rl,...).

2つに分(プた光ファイバのうら、一方の光ファイバ(
27a ) (27b )・・・(27q ) <27
r )・・・の端部は固定板(28)に円周状に並べて
固定し、他方の光ファイバ(27ai(27b ′)・
(27(1′) (27r ′)・・・の端部も固定板
(29)に円周状1に並べて固定覆る。固定板(28)
には、透孔(31)が聞けられた回転遮光板(30)を
対向させ、その回転遮光板(30)の後に光源手段(2
)を置く。また固定板(29)には、透孔(33)が間
りられた回転遮光板(32)を対向させ、その回転遮光
板(32)の後に光検出手段(8)を置く。
Split into two (back of one optical fiber, one optical fiber (
27a) (27b)...(27q) <27
The ends of the optical fibers (27ai (27b'),
The ends of (27(1') (27r')... are also arranged in a circumferential manner 1 on the fixing plate (29) and fixed and covered.Fixing plate (28)
A rotating light shielding plate (30) with a transparent hole (31) is placed opposite to the rotating light shielding plate (30), and a light source means (2) is placed behind the rotating light shielding plate (30).
). Further, a rotating light shielding plate (32) with a through hole (33) formed therein is opposed to the fixed plate (29), and a light detection means (8) is placed behind the rotating light shielding plate (32).

光源手段(2)から出た光ビームは、透孔(31)に位
置が対応している1本の光ファイバ(271) >に入
り、それに結合されCいる光ファイバ(25b )を通
り、小レンズ(2411)からファンビームとしてh’
l IJ’lされる。ファンビームの照用域内にある光
ファイバには光が入射づ”るが、透孔(33)に位置が
対応している′1本の光ファイバ(27(1−)に入射
した光だ()が光検出器(8)に受光される。
The light beam emitted from the light source means (2) enters one optical fiber (271) whose position corresponds to the through hole (31), passes through the optical fiber (25b) coupled to it, and passes through the small optical fiber (25b). h' as a fan beam from the lens (2411)
l IJ'l will be done. Light is incident on the optical fibers within the irradiation area of the fan beam, but the light is incident on the single optical fiber (27(1-)) whose position corresponds to the through hole (33). ) is received by the photodetector (8).

そこC回転遮光板(30)を成る位1dで固定しておい
て回転遮光板(32〉を回転づれば、1つの位置でのノ
アンご−ムに対応づる複数個のデータが得られるから、
回転遮光板(30)の位置を変えC同じことを繰返Uは
゛、2次元分(1jを篩用り−るのに充分なデータを得
ることができる。
If you fix the C rotating light shielding plate (30) at about 1d and rotate the rotating light shielding plate (32), you can obtain multiple pieces of data corresponding to the angle at one position.
Changing the position of the rotating light-shielding plate (30) and repeating the same process, U can obtain enough data to sieve two dimensions (1j).

第5図(よ人の掌の血液循環状態を光線の吸収により観
測し11=状況を示すものであるa掌の厚さは約25 
+nm ’t’あり、光源手段(2)と光検出手段(8
)の間に静置し、」二腕部をバンド(B ) ’r−締
めたり緩めたりしC血液循環状態を変えた。第6図はそ
の観測結果であって、(イ)は光源手段(2)が50W
のタングスデンランプJ3よび光フィルタ〔透過波長1
10C1On、半(111幅20++m)の場合、(ロ
)は光源手段が3111Wのシー1Fダイオード(波長
78(Lnm )の場合である。光検出手段(8)はい
ずれもシリコン・フAトダイA−ドであり、その出力信
YJを増幅した電圧をデータとし−(示した。第6図に
d3 CJる白い矢印の時刻にバンド(B)を締め、黒
い矢印の時刻にバンド(B)を緩めているが、バンド<
8)を締めると阜°が歯面するために酵素欠乏状態とな
り光の吸収が増加している。
Figure 5 (The state of blood circulation in a person's palm is observed by the absorption of light rays and shows the situation.a The thickness of the palm is approximately 25
+nm 't', light source means (2) and light detection means (8
) and tightened or loosened the upper arm band (B) to change the blood circulation state. Figure 6 shows the observation results, and (a) shows that the light source means (2) is 50W.
Tungsden lamp J3 and optical filter [transmission wavelength 1
In the case of 10C1On, half (111 width 20++ m), (b) is the case where the light source means is a 3111W sea 1F diode (wavelength 78 (Lnm)).The light detection means (8) are both silicon photodiodes A- The voltage obtained by amplifying the output signal YJ is used as data (shown in Figure 6).Tighten the band (B) at the time indicated by the white arrow and loosen the band (B) at the time indicated by the black arrow. However, the band
8) When tightened, the valve becomes tooth-like, resulting in enzyme deficiency and increased light absorption.

なお、1ltll定ス・1象としてたとえばミAグロビ
ンを選んでもよい。また特定の波長の光に吸収のある物
質(薬液や気体など)を被測定物1本内に注入していわ
ゆる造影法や1〜レーりン人を)凶相してしよい。
Incidentally, for example, myA globin may be selected as the 1ltlll constant 1st element. In addition, a substance (chemical solution, gas, etc.) that absorbs light at a specific wavelength may be injected into a single object to be measured to improve contrast.

(へ)発明の効果 この発明の光線C−1−u置にJ、れぼ、次のJ、うな
効果が得られる。
(f) Effects of the invention At the position of the light ray C-1-u of this invention, the following effects can be obtained: J, Rebo, and next J, U.

■ 被測定物体内の光吸収物Y′目111度の2次元分
布を無侵襲で得ることができる。
(2) A two-dimensional distribution of light absorbing matter Y'-th 111 degrees within the object to be measured can be obtained non-invasively.

■ 光吸収物質濃度の2次元分布のu、5間変化に基い
C1生体の代KO+の機能を観測でき、区学的診…1に
利用て・′きる。
■ The function of KO+ in C1 organisms can be observed based on the change between u and 5 in the two-dimensional distribution of light-absorbing substance concentration, and can be used for sectional diagnosis...1.

■ 敦射線1こJ、る被IMが無いので安全(Ilが高
く、取り扱いや保守が容易ひある。
■ It is safe because there is no IM exposed to the radiation line (Il is high, and it is easy to handle and maintain).

(4) 光)ぢ’J3J、び検出器はX線源J3よびX
線検出器舌に比べC安価ひ小型C゛あるから、装置自体
の」ストが安価になり、また小型化でさる。またX線防
護IIJJ設や磁気シールド施設が不要であり、イ]帯
設備のコストが安い。
(4) Light) J3J and the detector are X-ray sources J3 and
Since it is cheaper and smaller than a radiation detector, the cost of the device itself is lower and it is also more compact. In addition, there is no need for X-ray protection IIJJ equipment or magnetic shielding facilities, and the cost of the equipment is low.

■ 光ビームの波長の選択tよ容易であるから、所望の
測定対象に適した波長で観測できる。
(2) Selection of the wavelength of the light beam Since this is easier, observation can be made at a wavelength suitable for the desired object to be measured.

■ 2波長または3以上の波長の1重用によつC1反射
、散乱、測定ヌ(象の厚みJ3J、び測定対象以外の光
吸収物質による吸収の影響を除去できる。
■ By using two wavelengths or three or more wavelengths in a single manner, it is possible to eliminate the influence of C1 reflection, scattering, measurement error, and absorption by light-absorbing substances other than the measurement target.

■ 生体や物体に特定の波長の光に吸収のある物質を注
入していわゆる造影法や1〜レーザ法として使用−リ−
れは、自然状態では観測Cきないものでも観測がjiJ
能となる。
■ A substance that absorbs light at a specific wavelength is injected into a living body or object and used as a contrast method or laser method.
This means that even things that cannot be observed in their natural state can be observed.
Becomes Noh.

A Pa面(I)U 111 f:?’>Is l1t
1第1図はこの発明の光線CT装置の一実施例の構成説
明図、))2図は第゛1図に示J装首におりる光源手段
ど光検出手段の4(4成説明図、第3図は光源手段の他
の例を承り第2図相当図、第4図はこの発明の光線Ci
装置の他の実施例の央部も゛6成説明図、m J図は光
線にJ、り血液循環状態を観測り−る実験の説明図、第
6図は第5図に承り実験結果のグラフである。
A Pa side (I) U 111 f:? '>Is l1t
1. Fig. 1 is an explanatory diagram of the configuration of an embodiment of the light beam CT apparatus of the present invention.)) Fig. 2 is an explanatory diagram of the configuration of the light source means and photodetection means 4 (4 components) shown in Fig. 1. , FIG. 3 is a diagram corresponding to FIG. 2 with another example of the light source means, and FIG. 4 is a diagram showing the light ray Ci of the present invention.
The center part of the other embodiments of the device is also an explanatory diagram of the ``6'' structure. Figure 6 is an explanatory diagram of an experiment in which the state of blood circulation is observed using a light beam. It is a graph.

(1)・・・・・・光線C1−装置、(2)・・・・・
・光it<i手段、(3)・・・・・・タングスデンラ
ンプ、(51(Gl・・・・・・干渉フィルタ、(7)
・・・・・・レフターミラー、(乏3)・・・・・・光
検出手段、(9)・・・・・・フ第1〜ダイA−ド、+
IO)・・・・・・光学フィルタ、(11)・・・・・
・ビーム走査装置、(12)・・・・・・並進モータ、
(14)・・・・・・回転モータ、(16] (17)
・・・・・・位置しンサ、(18)・・・・・・データ
処Jj[装置、(19)・・・・・・CRTディスプレ
イ。
(1)...Light ray C1-device, (2)...
・Light it<i means, (3)...Tungsden lamp, (51(Gl...Interference filter, (7)
...Lefter mirror, (lack 3) ...Photodetection means, (9) ...F 1st to die A-D, +
IO)...Optical filter, (11)...
・Beam scanning device, (12)...translation motor,
(14)...Rotating motor, (16) (17)
...Location sensor, (18)...Data processing Jj [device, (19)...CRT display.

第3図 第4図 第50 第6図 (イ) 梵 −[]e&’′ (ロ) ’lfJ!iDFFFigure 3 Figure 4 50th Figure 6 (stomach) Sanskrit - [] e&’′ (B) 'lfJ! iDFF

Claims (1)

【特許請求の範囲】 1、 t+J祝光おにび/または近赤外光の光ビームを
被測定物体に放射するだめの光源手段、被測定物体を透
過した前記光ビームを受光してその光強度に応じた信号
を出力する光検出手段、被測定物体に対して異なる位置
で前記光ビームを透過さゼるためのビーム走査手段、そ
のビーム走査手段に係る光ビーム位置信号ど前記光検出
手段の出力信号とに基いて被測定物体内部にお()る測
定対象の2次元分布を締出ジるデータ処理手段およびそ
のデータ処理手段で得た2次元分布を映像にして表示J
る映像表示手段を具備してなる光線C−「装置。 2、光源手段もしくは光検出手段のいずれかが分光手段
を具備してなる請求の範[111第1項記載の光線C1
−装置。 3、光源手段が、異なる2つのまたは3つ以上の波長の
光ビームを放射可能である請求の範囲第1項または第2
項記載の光線0丁装置。 4、光検出手段が、異なる2つのまたは3つ以上の波長
の光じ′−ムに対応づる出力信号を弁別ijJ能に出力
しつる請求の範囲第3項記載の光線CT g置。 5、データ処理手段が、異なる2つのまたは3つ以上の
波長の光ビームに対応づる光検出手段の各波長に対応1
−る出力信号の間で潰砕を行ない、その演樟結果ど光ビ
ーム位置信号に基い−C測定対象の2次元分イjを算出
する請求の範囲第4項記載の光線CT装置。 6、光源手段がタングステンランプを含んでなる請求の
範囲第゛1項〜第5項のいずれかに記載の光線C1−装
置。 7、光源手段がハロゲンランプを含lυでなる請求の範
[111第1項〜第5項のいずれかに記載の光線CT装
置。 8、光源手段がキセノンランプを含んでなる請求の範囲
第1項〜ダ15項のいずれかに記載の光線CT装置。 9、光源手段がレーザ装置を含んでなる請求の範囲第1
項〜第5項のいずれかに記載の光線CT装置。 10、レーリ゛装置が色素シー11装置からなる請求の
範囲第9項記載の光線CT装置。 11、レーザ装置が半導体レーザ装置からなる請求の範
囲第9項記載の光線CT装置。 12、光検出手段が光電子増倍管を含んでなる請求の範
囲第1項〜第11項のいずれかに記載の光線C′1装置
。 13、光検出手段がフA(−ダイA−ドを含Iυでなる
請求の範囲第1項〜第11項のいずれかに記載の光FA
c−r装置。 14、光検出手段が)A1−1−ランジスタを含んでな
る請求の範囲第1項〜第11項のいずれかに記載の光線
0丁装置。 15、光検出手段が光導電セルを含んでなる請求の範囲
第1項〜第11項のいずれかに記載の光線CT装「。
[Claims] 1. Light source means for emitting a light beam of t+J light congratulations/or near-infrared light to an object to be measured, and receiving the light beam transmitted through the object to be measured and emitting the light. A light detection means for outputting a signal according to the intensity, a beam scanning means for transmitting the light beam at different positions with respect to the object to be measured, and a light beam position signal related to the beam scanning means, etc. data processing means for eliminating the two-dimensional distribution of the measurement target inside the object to be measured based on the output signal of the device; and displaying the two-dimensional distribution obtained by the data processing means as an image
A light ray C1 apparatus comprising an image displaying means.
- Equipment. 3. Claim 1 or 2, wherein the light source means is capable of emitting light beams of two or more different wavelengths.
0 beam device as described in section. 4. The light beam CT apparatus according to claim 3, wherein the photodetecting means outputs output signals corresponding to optical frames of two or more different wavelengths with discrimination ability. 5. The data processing means corresponds to each wavelength of the light detection means corresponding to the light beam of two or more than three different wavelengths.
5. The optical CT apparatus according to claim 4, wherein the optical beam CT apparatus calculates the two-dimensional component ij of the object to be measured based on the resultant optical beam position signal. 6. The light beam C1-device according to any one of claims 1 to 5, wherein the light source means comprises a tungsten lamp. 7. The light beam CT apparatus according to any one of claims 1 to 5, wherein the light source means includes a halogen lamp. 8. A light beam CT apparatus according to any one of claims 1 to 15, wherein the light source means includes a xenon lamp. 9. Claim 1 in which the light source means includes a laser device
The optical CT apparatus according to any one of Items 1 to 5. 10. The optical CT apparatus according to claim 9, wherein the Rayleigh device comprises a dye sheath 11 device. 11. The optical CT apparatus according to claim 9, wherein the laser device is a semiconductor laser device. 12. The light beam C'1 device according to any one of claims 1 to 11, wherein the photodetecting means includes a photomultiplier tube. 13. The optical FA according to any one of claims 1 to 11, wherein the photodetecting means is a hood A (including a die A).
cr-r device. 14. The zero-beam device according to any one of claims 1 to 11, wherein the light detection means comprises an A1-1 transistor. 15. The optical CT system according to any one of claims 1 to 11, wherein the photodetecting means comprises a photoconductive cell.
JP18156383A 1983-09-28 1983-09-28 Light ray ct apparatus Granted JPS6072542A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18156383A JPS6072542A (en) 1983-09-28 1983-09-28 Light ray ct apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18156383A JPS6072542A (en) 1983-09-28 1983-09-28 Light ray ct apparatus

Publications (2)

Publication Number Publication Date
JPS6072542A true JPS6072542A (en) 1985-04-24
JPH0433460B2 JPH0433460B2 (en) 1992-06-03

Family

ID=16102982

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18156383A Granted JPS6072542A (en) 1983-09-28 1983-09-28 Light ray ct apparatus

Country Status (1)

Country Link
JP (1) JPS6072542A (en)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137227A (en) * 1984-07-31 1986-02-22 浜松ホトニクス株式会社 Living body observation apparatus
JPS62124443A (en) * 1985-11-26 1987-06-05 Hamamatsu Photonics Kk Device for obtaining information on inside of body with light
JPS62211042A (en) * 1986-03-11 1987-09-17 浜松ホトニクス株式会社 Apparatus for observing distribution of specific component in living body
JPS62277538A (en) * 1986-05-27 1987-12-02 Hamamatsu Photonics Kk Three-dimensional body measuring instrument
JPS6326555A (en) * 1986-07-18 1988-02-04 Hamamatsu Photonics Kk Three-dimensional measuring instrument for body internal structure using light
EP0280986A1 (en) * 1987-02-23 1988-09-07 Sumitomo Electric Industries, Ltd. Tissue metalbolism measuring apparatus
EP0329115A1 (en) * 1988-02-17 1989-08-23 Sumitomo Electric Industries, Ltd. Tissue metabolism measuring apparatus
JPH02110346A (en) * 1988-10-20 1990-04-23 Res Dev Corp Of Japan Visualizing apparatus of form and function
JPH02110345A (en) * 1988-10-20 1990-04-23 Res Dev Corp Of Japan Function visualizing apparatus
JPH02150747A (en) * 1988-12-01 1990-06-11 Res Dev Corp Of Japan Device for optical tomographic imaging
JPH02163634A (en) * 1988-12-19 1990-06-22 Otsuka Denshi Kk Method and device for measuring internal information of substance using light scattering
JPH02198338A (en) * 1989-01-27 1990-08-06 Komatsu Ltd Method for measuring human body
JPH02240545A (en) * 1989-03-14 1990-09-25 Res Dev Corp Of Japan Optical tomographic imaging device
JPH03111808A (en) * 1989-09-26 1991-05-13 Res Dev Corp Of Japan High-resolution light receiving system and optical tomographic image forming device using the system
JPH03146850A (en) * 1989-10-31 1991-06-21 Shimadzu Corp Phantom for optical scanning device
JPH03218443A (en) * 1989-11-21 1991-09-26 Toshiba Corp Tomographic image pickup method and device using beam
US5148022A (en) * 1989-02-15 1992-09-15 Hitachi, Ltd. Method for optically inspecting human body and apparatus for the same
WO1994005209A1 (en) * 1992-08-31 1994-03-17 Hitachi, Ltd. Optical ct apparatus
JPH07275251A (en) * 1993-11-12 1995-10-24 Hiroaki Kumagai Multiple laser beam scanning type living body radioscopic diagnostic and therapeutic device
JPH09152402A (en) * 1995-11-30 1997-06-10 Shimadzu Corp Measuring apparatus for light scattering object
US5803909A (en) * 1994-10-06 1998-09-08 Hitachi, Ltd. Optical system for measuring metabolism in a body and imaging method
US7047149B1 (en) 1998-04-28 2006-05-16 Hitachi, Ltd. Optical measurement instrument and optical measurement method
JP2016190052A (en) * 2011-11-11 2016-11-10 安東 秀夫 Biological activity measurement device, and photodetector
KR20180116488A (en) 2017-04-14 2018-10-25 나대석 A Scaffold for blocking wild animals from entering

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119232A (en) * 1980-02-04 1981-09-18 Energy Conversion Devices Inc Method and apparatus for diagnosis of biological substance
JPS5773656A (en) * 1980-10-26 1982-05-08 Yukio Yamamoto Double-frequency scanning type microwave computer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56119232A (en) * 1980-02-04 1981-09-18 Energy Conversion Devices Inc Method and apparatus for diagnosis of biological substance
JPS5773656A (en) * 1980-10-26 1982-05-08 Yukio Yamamoto Double-frequency scanning type microwave computer

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6137227A (en) * 1984-07-31 1986-02-22 浜松ホトニクス株式会社 Living body observation apparatus
JPS62124443A (en) * 1985-11-26 1987-06-05 Hamamatsu Photonics Kk Device for obtaining information on inside of body with light
JPS62211042A (en) * 1986-03-11 1987-09-17 浜松ホトニクス株式会社 Apparatus for observing distribution of specific component in living body
JPS62277538A (en) * 1986-05-27 1987-12-02 Hamamatsu Photonics Kk Three-dimensional body measuring instrument
JPS6326555A (en) * 1986-07-18 1988-02-04 Hamamatsu Photonics Kk Three-dimensional measuring instrument for body internal structure using light
EP0280986A1 (en) * 1987-02-23 1988-09-07 Sumitomo Electric Industries, Ltd. Tissue metalbolism measuring apparatus
EP0329115A1 (en) * 1988-02-17 1989-08-23 Sumitomo Electric Industries, Ltd. Tissue metabolism measuring apparatus
US4910404A (en) * 1988-02-17 1990-03-20 Sumitomo Electric Industries, Ltd. CT computed tomograph
JPH02110346A (en) * 1988-10-20 1990-04-23 Res Dev Corp Of Japan Visualizing apparatus of form and function
JPH02110345A (en) * 1988-10-20 1990-04-23 Res Dev Corp Of Japan Function visualizing apparatus
JPH02150747A (en) * 1988-12-01 1990-06-11 Res Dev Corp Of Japan Device for optical tomographic imaging
JPH02163634A (en) * 1988-12-19 1990-06-22 Otsuka Denshi Kk Method and device for measuring internal information of substance using light scattering
JPH02198338A (en) * 1989-01-27 1990-08-06 Komatsu Ltd Method for measuring human body
US5148022A (en) * 1989-02-15 1992-09-15 Hitachi, Ltd. Method for optically inspecting human body and apparatus for the same
JPH02240545A (en) * 1989-03-14 1990-09-25 Res Dev Corp Of Japan Optical tomographic imaging device
JPH03111808A (en) * 1989-09-26 1991-05-13 Res Dev Corp Of Japan High-resolution light receiving system and optical tomographic image forming device using the system
JPH03146850A (en) * 1989-10-31 1991-06-21 Shimadzu Corp Phantom for optical scanning device
JPH03218443A (en) * 1989-11-21 1991-09-26 Toshiba Corp Tomographic image pickup method and device using beam
US5408093A (en) * 1992-08-31 1995-04-18 Hitachi, Ltd. Optical computed tomography equipment having image inverting optical device
WO1994005209A1 (en) * 1992-08-31 1994-03-17 Hitachi, Ltd. Optical ct apparatus
JPH07275251A (en) * 1993-11-12 1995-10-24 Hiroaki Kumagai Multiple laser beam scanning type living body radioscopic diagnostic and therapeutic device
US7440794B2 (en) 1994-10-06 2008-10-21 Hitachi, Ltd. Optical system for measuring metabolism in a body and imaging method
US5803909A (en) * 1994-10-06 1998-09-08 Hitachi, Ltd. Optical system for measuring metabolism in a body and imaging method
US6128517A (en) * 1994-10-06 2000-10-03 Hitachi, Ltd. Optical system for measuring metabolism in a body and imaging method
US6282438B1 (en) 1994-10-06 2001-08-28 Hitachi, Ltd. Optical system for measuring metabolism in a body and imaging method
US8050744B2 (en) 1994-10-06 2011-11-01 Hitachi, Ltd. Optical system for measuring metabolism in a body and imaging method
US7286870B2 (en) 1994-10-06 2007-10-23 Hitachi, Ltd. Optical system for measuring metabolism in a body and imaging method
US7715904B2 (en) 1994-10-06 2010-05-11 Hitachi, Ltd. Optical system for measuring metabolism in a body and imaging method
JPH09152402A (en) * 1995-11-30 1997-06-10 Shimadzu Corp Measuring apparatus for light scattering object
US7359825B2 (en) 1998-04-28 2008-04-15 Hitachi, Ltd. Optical measurement instrument and optical measurement method
US7047149B1 (en) 1998-04-28 2006-05-16 Hitachi, Ltd. Optical measurement instrument and optical measurement method
JP2016190052A (en) * 2011-11-11 2016-11-10 安東 秀夫 Biological activity measurement device, and photodetector
KR20180116488A (en) 2017-04-14 2018-10-25 나대석 A Scaffold for blocking wild animals from entering

Also Published As

Publication number Publication date
JPH0433460B2 (en) 1992-06-03

Similar Documents

Publication Publication Date Title
JPS6072542A (en) Light ray ct apparatus
US5205291A (en) In vivo fluorescence photometer
US5818587A (en) Image measuring apparatus
US5451785A (en) Upconverting and time-gated two-dimensional infrared transillumination imaging
JP3745775B2 (en) Optical techniques for biological tissue examination.
US5218207A (en) Using led harmonic wavelengths for near-infrared quantitative
US5062431A (en) In vivo fluorescence photometer
US5477051A (en) Apparatus for measuring optical information in scattering medium and method therefor
CA1247397A (en) Spectrophotometric method and apparatus for the non- invasive determination of glucose in body tissues
US5131398A (en) Method and apparatus for distinguishing cancerous tissue from benign tumor tissue, benign tissue or normal tissue using native fluorescence
JP2007528500A (en) Methods and systems for tomographic imaging using fluorescent proteins
US5840035A (en) Method for the spectroscopic examination of a biological tissue
JPH06129984A (en) Method and device for absorption information measurement within scatterer-absorber
JP3664541B2 (en) Fluorescence diagnostic equipment
Shih et al. Noninvasive glucose sensing with Raman spectroscopy
JP2008197080A (en) Tooth decay detection method and device
JPS62503055A (en) differential imaging device
Giakos Novel multifusion optical imaging sensing principles
Profio Fluorescence diagnosis and dosimetry using porphyrins
JPH0641911B2 (en) Optical tomography system
Amerov et al. Kromoscopic measurement of glucose in the first overtone region of the near-infrared spectrum
JPH0620458B2 (en) High directivity imaging element and high directivity imaging device
JP2526388B2 (en) Method and apparatus for tomography using light
JP2644609B2 (en) Simultaneous detection of amplitude image and phase image using heterodyne detection light receiving system
JPH1082732A (en) Optical measuring equipment