JPS60231527A - Bending method of pipe - Google Patents
Bending method of pipeInfo
- Publication number
- JPS60231527A JPS60231527A JP8707284A JP8707284A JPS60231527A JP S60231527 A JPS60231527 A JP S60231527A JP 8707284 A JP8707284 A JP 8707284A JP 8707284 A JP8707284 A JP 8707284A JP S60231527 A JPS60231527 A JP S60231527A
- Authority
- JP
- Japan
- Prior art keywords
- bending
- mold
- die
- pipe
- movement
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D7/00—Bending rods, profiles, or tubes
- B21D7/02—Bending rods, profiles, or tubes over a stationary forming member; by use of a swinging forming member or abutment
- B21D7/024—Bending rods, profiles, or tubes over a stationary forming member; by use of a swinging forming member or abutment by a swinging forming member
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Bending Of Plates, Rods, And Pipes (AREA)
Abstract
Description
【発明の詳細な説明】
〈産業上の利用分野〉
この発明は、直状の管(テーパー管、角管、丸管など)
を円弧、放物線、楕円等の任意の曲線状に曲げる方法に
係υ、とくに高精度の加工かできる曲げ加工法に関する
。[Detailed description of the invention] <Industrial application field> This invention is applicable to straight pipes (tapered pipes, square pipes, round pipes, etc.)
The present invention relates to a method of bending υ into an arbitrary curved shape such as a circular arc, parabola, or ellipse, and particularly relates to a bending method that allows for highly accurate processing.
〈従来技術〉
管曲げの方法としては、従来より種々のものが知られる
。代表的なものを列挙すれば次のとおりである。<Prior Art> Various methods for bending tubes have been known in the past. Typical examples are listed below.
1)圧縮曲げ:第1図に示すように固定した曲げ型(4
)に対し管[F]をプレス型(ト)により押し付けなが
ら曲げ型の彎曲に沿わせるようにして曲げる方法。1) Compression bending: As shown in Figure 1, a fixed bending die (4
) is a method of bending the pipe [F] by pressing it against the press die (g) so that it follows the curvature of the bending die.
11)引曲げ:圧縮曲げにおけるプレス型の傾動を曲げ
型の回動に変更したようなもので、第2図((イ)は加
工前の状態、(ロ)は加工進行中の状態)に示すように
曲げ1fJJ(A)を可回転yなしとれに管■の特宇巨
を固定型(ロ)にて固定しこの状態で曲げ型い)を回動
させ、曲げ型とそれに対応するプレス型(ト)との間か
ら恰も管を順次引き出すようにして曲げる方法。11) Drawing bending: This is similar to changing the tilting of the press mold in compression bending to the rotation of the bending mold, and the bending shown in Figure 2 ((a) is the state before processing, (b) is the state in progress) As shown, bend 1fJJ (A) with the rotatable y and fix the pipe (■) with the fixed mold (b).In this state, rotate the bending mold (b), and then press the bending mold and its corresponding press. A method of bending by pulling out the tube one by one from between the mold (g).
必要に応じマンドレlv(至)が使用される。Mandrel lv (to) is used if necessary.
1iQプレス曲げ:第3図に示すように’t (p)を
左右一対の受座(至)(ト)に差し渡してセットしその
中央部をプレス型(ト)で押圧して曲げる方法。1iQ press bending: As shown in Figure 3, a method of setting 't (p) across a pair of left and right catches (to) (g) and pressing the center part with a press die (t) to bend it.
lv)ロール曲げ:第4図に示すように千鳥配置の3つ
の駆動成形ロール軸)@(イ)間にWCP)を通して順
次的げる方法。lv) Roll bending: As shown in Fig. 4, a method of sequentially passing WCP) between three driving forming roll shafts in a staggered arrangement.
■)引張り曲げ:第5図に示すように固定の曲げ型(A
)に管[F]を押し付けてその両端を引張りながら曲げ
る方法。■) Tensile bending: As shown in Figure 5, the fixed bending type (A
) is pressed against the tube [F] and bent while pulling on both ends.
Vl)ハンブルグ曲げ:第6図に示す如く先太シのキセ
ル状マンドレル(ハ)に定寸の管[F]をその基端側か
ら挿入し先端部を通過させて曲げる方法。Vl) Hamburg bending: As shown in Fig. 6, a pipe of fixed size [F] is inserted from the proximal end into a pipe-shaped mandrel (c) with a thick tip, and the tip is passed through and bent.
以上のような方法はしかし、それぞれに錘点がある。However, each of the above methods has its own weight.
とくに圧縮曲げやプレス曲げは、加工に伴う管の偏平化
やしわの発生が問題となる。ロール曲げ以外は何れの方
法も、曲げ半径等加工条件が変わる毎に金型(ハングル
グ曲げではマンドレル)のサイズ替えを行う種類のもの
で、多くの金型(マンドレル)を準備する必要があると
ともに段取シ替えに手間、時間がかかる。それにそもそ
もこの種の方法は、その本来の狙いが円弧曲げにあり、
他の、例えば楕円曲げ等については殆ど考慮されていな
い。またロール曲げについても、成形ロールの相互位置
関係を変えることで曲げ半径を調節することが可能では
あるが、曲げ半径の選択は比較的大きな値の範囲に限ら
れる。この他、とくにハンブルグ曲げなどは、予め定寸
に切断された短尺の管にしか適用できず、例えば長尺ポ
ールの一端側にだけ曲りを与える類いの加工などは全く
行い得す、との方法は専らエルボの製造にのみ利用され
ているのが実際である。In particular, compression bending and press bending pose a problem in that the tube becomes flattened and wrinkles occur during processing. In all methods other than roll bending, the size of the mold (or mandrel for hanging bending) is changed each time the bending radius or other processing conditions change, and it is necessary to prepare many molds (mandrels). Changing setups takes time and effort. Moreover, the original aim of this type of method is circular bending,
Other methods, such as elliptical bending, are hardly considered. Regarding roll bending, although it is possible to adjust the bending radius by changing the mutual positional relationship of the forming rolls, the selection of the bending radius is limited to a relatively large range of values. In addition, Hamburg bending, in particular, can only be applied to short pipes that have been cut to a certain size in advance; for example, processing that only bends one end of a long pole cannot be performed at all. In fact, the method is used exclusively for the production of elbows.
〈発明の目的〉
本発明は、円弧をはじめ、放物線や楕円等、あらゆる種
類の曲線に沿う管曲げを同一の設備にて金型変更等の段
取り替えなしで行うことができ、しかもとくに曲げ形状
の加工精度が良好で、曲げに伴う管の偏平化やしわ発生
に対しても有効な曲げ加工方法の提供を目的とする。<Purpose of the Invention> The present invention is capable of bending pipes along all kinds of curves, such as arcs, parabolas, and ellipses, using the same equipment without any setup changes such as changing molds. The purpose of the present invention is to provide a bending method that has good processing accuracy and is effective against flattening and wrinkles of the tube due to bending.
〈発明の構成〉
すなわち本発明は、特定の一平面上で任意の位置に移動
可能々把持装置により被曲げ管をその曲げようとする部
分以外の位置で掴持し、その被曲げ部分を前記把持装置
の移動平面と平行の面内で旋回する円形受型とこれと対
をなす直状の押型との間に挾み込むようにしてセットし
、その直状押型を円形受型に対し圧接状態を保ちつつそ
の外周に沿って漸進的に傾動させ、この傾動運動と前記
円形受型の旋回運動と把持装置の平面運動の各運動を司
どる駆動装置の速度制御系に目標曲げ形状からその各駆
動装置の応答遅れを予め加味して必要な指示速度として
割り出した速度値を指令信号として入力するとともに、
各駆動装置の駆動実績を連続的に検出しその実績値の目
標値に対する誤差を逐次求めて比例積分制御により前記
指示速度に補正を加えるようにして、直状押型9円形受
型。<Structure of the Invention> That is, the present invention grips a pipe to be bent at a position other than the part to be bent by a gripping device movable to any position on a specific plane, and holds the pipe to be bent at a position other than the part to be bent. It is set so as to be sandwiched between a circular receiving mold that rotates in a plane parallel to the plane of movement of the gripping device and a straight pressing mold paired with it, and the straight pressing mold is pressed against the circular receiving mold. The target bending shape is then gradually tilted along its outer periphery, and the speed control system of the drive device that controls this tilting motion, the rotating motion of the circular receiving mold, and the planar motion of the gripping device is controlled from the target bending shape to each drive. Input the speed value determined as the required command speed by taking into account the response delay of the device in advance as the command signal, and
The driving performance of each drive device is continuously detected, the error of the actual value with respect to the target value is sequentially determined, and the indicated speed is corrected by proportional-integral control.
把持装置の運動をそれぞれ目標曲げ形状に合致し相互に
同期するように管理しなから管曲げを遂行することを特
徴とする管の曲げ加工方法を要旨とする。本発明の成形
方法は基本的には、いわゆる圧縮曲げにロール曲げを組
合せたようなものであシ、円形受型と直状押型、それに
管そのものを保持する把持装置の3者に所要の運動を与
えなから管曲げを行うというものである。かかる方法で
は成形過程における上記3者の位置管理が加工精度上重
要な意味をもつことになり、したがって本発明では併せ
て、それら3者の位置を同期制御する方法をも特定した
ものである。The object of the present invention is to provide a method for bending a pipe, which is characterized in that the movements of the gripping devices are managed so that they match the target bending shape and are mutually synchronized before bending the pipe. The forming method of the present invention is basically a combination of so-called compression bending and roll bending. The method is to bend the pipe without giving any. In such a method, controlling the positions of the three members mentioned above during the molding process has an important meaning in terms of processing accuracy. Therefore, the present invention also specifies a method for synchronously controlling the positions of these three members.
〈実施例〉 以下、本発明の方法を具体的かつ詳細に説明する。<Example> Hereinafter, the method of the present invention will be explained specifically and in detail.
第7図は本発明の成形法を笑施するための装置を模式に
示す平面図である。FIG. 7 is a plan view schematically showing an apparatus for carrying out the molding method of the present invention.
図において、(1)は曲げようとする直状の管の(丸管
)を把持する把持装置で、これは固定片(2)と該固定
片に対し進退する可動片(3)との間に菅(財)をおき
油圧シリンダ(4)にて可動片(3)’(i−抑圧操作
して両片間に管を挟圧保持する構造である。この把持装
置は特定の一平面上で任意の位置に移動可能に設ける必
要がある。図示では、各々独立した駆動源(7)(9)
が付設されたヌクリュー軸(5)(6)を備える2つの
テープ)v(8)αOを組合せた構造がとられている。In the figure, (1) is a gripping device that grips a straight tube (round tube) to be bent, and this is a gripping device that is held between a fixed piece (2) and a movable piece (3) that moves forward and backward with respect to the fixed piece. The structure is such that the pipe is clamped and held between the two pieces by pressing the movable piece (3)' (i-) with the hydraulic cylinder (4). In the illustration, independent drive sources (7) and (9) are provided.
The structure is a combination of two tapes (5) and (6) with attached screw shafts (5) and (6).
すなわち、把持装置(1)はまずテープ/I/(8)の
スクリュー軸(5)にねじ係合し、同テーブル上のガイ
ド(8a)(8a)に沿って駆動され、更にこのテープ
/l/(8)自体が、それと直角配置のもう一つのテー
ブルαOのヌクリュー軸(6)に保合しそのテーブル(
10上のガイド(10a)(10a)に沿って駆動され
る構造である。駆動源(7) (9)としては制御性の
高いり、Cモータがよい。That is, the gripping device (1) first screws into the screw shaft (5) of the tape/I/(8), is driven along the guides (8a) (8a) on the same table, and further holds the tape/I/(8). / (8) itself is fixed to the screw shaft (6) of another table αO arranged at right angles to it, and that table (
It is a structure that is driven along guides (10a) (10a) on 10. As the driving source (7) (9), a C motor is preferable because it has high controllability.
以下、駆動源については全て同様である。The same applies to all drive sources hereinafter.
(イ)は上記把持装置と適当に離れて位置する円形の受
型で、外周に被曲げ官■の曲げようとする部分の外径に
対応する形状の半円溝α枠を有している。(A) is a circular receiving mold located at an appropriate distance from the above-mentioned gripping device, and has a semicircular groove α frame on the outer periphery of a shape corresponding to the outer diameter of the part to be bent of the part to be bent (2). .
図示はテーパ管を曲げ対象とした例である。この円形受
型はそれより大径の円形をなし外周に歯車(イ)を備え
た固定のベッドαaに同心的に置かれ、ベッド中央に固
定の軸α・を中心に旋回可能になっている。この受型の
旋回運動は、前記把持装置(1)の移動平面と平行の面
内で行われるようにする。この円形受型は外郭円と同心
の円形歯車(171を有し、これに前記ベッドα荀上に
設置の駆動源(ト)に減速機0りを介して結合した小歯
車(1)が噛み合わされて、駆動てれるよう設けられて
いる。The illustration shows an example in which a tapered pipe is to be bent. This circular receiving mold has a larger diameter and is placed concentrically on a fixed bed αa equipped with gears (A) on its outer periphery, and is rotatable around an axis α fixed at the center of the bed. . This pivoting movement of the receiving mold is made to occur in a plane parallel to the plane of movement of the gripping device (1). This circular receiving mold has a circular gear (171) concentric with the outer circle, and a small gear (1) connected to a drive source (G) installed on the bed α through a reducer gear meshes with this circular gear (171). It is set up and driven.
c!Dは上記円形金型(イ)と同軸回転する旋回架台で
、円形金型(2)の回転中心軸αQに基端部で回転可能
に支持されている。この架台(2])il−j:、その
上に設置した駆動源(イ)に減速機(イ)を介して結合
した小径の駆動歯車(ハ)が前記固定ベッド外周の大歯
車αOに噛み合わされ、駆動歯車(ハ)が大歯車a$に
沿ってベッド周囲を移動することにより旋回するよう設
けられている。c! Reference numeral D denotes a rotating mount that rotates coaxially with the circular mold (A), and is rotatably supported at its base end by the rotation center axis αQ of the circular mold (2). This frame (2]) il-j: A small-diameter drive gear (c) connected to a drive source (a) installed on it via a reducer (a) meshes with the large gear αO on the outer periphery of the fixed bed. A driving gear (c) is provided so as to rotate by moving around the bed along a large gear a$.
(ハ)゛は上記旋回架台(2])に設置した直状押型で
、円形金型と同じように被曲げ管■の曲げようとする部
分の外径に対応する形状の半円溝(イ)を有し、前記円
形受型αのとは互いの半円溝03(イ)を向き合わせた
格好になっている。この直状押型(ハ)は支持装置@を
介して旋回架台(2])上に設置してあり、この支持装
置(5)は架台121)に対しては当該架台の旋回軌跡
の法線方向に設けたガイド(21a)(21a)に沿っ
て、つまり円形受型θつの半径方向に摺動可能であシ、
また直状押型(ハ)に対しては該押型の上下両側面に対
応する計4個の支持ローフ(28a) (28a)によ
シ押型が自身の長手方向に沿ってスライドできるように
しである。すなわち、直状押型(ハ)は前記円形受型(
1つの半径方向に進退可能でかつ自身の長手方向に摺動
可能である。(c) `` is a straight die installed on the above-mentioned rotating frame (2]), and like the circular die, it has a semicircular groove (shaped) corresponding to the outer diameter of the part of the pipe to be bent (■) to be bent. ), and the semicircular grooves 03 (a) of the circular receiving mold α face each other. This straight die (c) is installed on the rotating pedestal (2]) via a support device @, and this support device (5) is attached to the pedestal 121) in the normal direction of the pivot trajectory of the pedestal. It is slidable along the guides (21a) (21a) provided in the circular receiving mold θ, that is, in the radial direction of the circular receiving mold θ,
In addition, for the straight die (c), a total of four support lobes (28a) (28a) corresponding to the upper and lower sides of the die are provided so that the die can slide along its own longitudinal direction. . In other words, the straight die (c) is the same as the circular receiving die (c).
It can move forward and backward in one radial direction and can slide in its own longitudinal direction.
直状押型(至)の背面にはラック歯■が長手方向に沿っ
て設けられ、これに旋回架台QD上の駆動源0])に結
合した小歯車0のが噛み合わされており、この小歯車0
2の駆動によシ直状押型(ハ)をスライドさせて任意の
位置に位置決め可能になっている。On the back side of the straight die (to), rack teeth are provided along the longitudinal direction, and a small gear 0 connected to a drive source 0 on the rotating mount QD is meshed with this. 0
By driving 2, the straight mold (c) can be slid and positioned at any desired position.
翰は上記直状押型(ハ)を円形受型の外周に押し付ける
抑圧機構で、前記支持装置(イ)に組込まれたローフ(
28’b)(28−b)を介して直状押型(ハ)の背面
を押圧するようになっている。云う迄もなくローラ(2
8b)は押型を長手方向可摺動に保った寸まで押圧換作
することを可能にするためのものである。この抑圧機構
−は、油圧・す・ダで、抑圧の作ならず、押型(ハ)を
円形受型(2)から離反させるのにも使用する。The kiln is a suppressing mechanism that presses the straight mold (c) against the outer periphery of the circular receiving mold, and the loaf (c) incorporated in the support device (a)
28'b) (28-b) to press the back side of the straight mold (c). Needless to say, Laura (2
8b) is for making it possible to press the mold to such a degree that it remains slidable in the longitudinal direction. This suppression mechanism is hydraulically operated and is also used to separate the press die (C) from the circular receiving die (2) without creating any suppression.
本発明の管曲げ方法は、以上のような構成になる装置を
用い、次のようにして曲げ加工を行うものである。In the tube bending method of the present invention, bending is performed in the following manner using the apparatus configured as described above.
■ まず所定の位置にセットした把持装置(1)に曲げ
ようとする管[F]をその曲げ対象部以外の個所で把持
させ、同時にその管曽)を円形受型0邊と直状押型(イ
)間に挾み込むようにしてセットする。この際、管口の
成形開始位置(財)外周が円形受型αηの半円溝03に
内接し、直状押型(ハ)は半円溝(ハ)がそのような管
[F]に軸方向に巾をもって対応しかつそのm1面が円
形受型αのの外周に接するようにする。図示のように曲
げ対象がテーパ管のような場合には、とくに成形開始位
置(財)に、同位置の外径と一致する内径の半円溝a3
(ハ)部位を正確に対応させるようにすることが肝心で
ある。このような受型、押型のセットは、それぞれ駆動
源08)0υを使って行えばよい。■ First, the gripping device (1) set at a predetermined position grips the pipe [F] to be bent at a point other than the part to be bent, and at the same time, the pipe (F) is placed between the circular receiving mold 0 side and the straight pressing mold ( b) Set it by putting it in between. At this time, the outer periphery of the molding start position (goods) of the pipe opening is inscribed in the semicircular groove 03 of the circular receiving mold αη, and the semicircular groove (c) of the straight die (c) is inscribed in such a pipe [F]. It corresponds to the direction with a width, and its m1 surface touches the outer periphery of the circular receiving mold α. As shown in the figure, when the object to be bent is a tapered pipe, a semicircular groove a3 with an inner diameter matching the outer diameter at the same position is especially placed at the forming start position.
(c) It is important to match the parts accurately. The setting of the receiving mold and the pressing mold may be performed using the driving source 08)0υ.
管と装置各部の位置関係をこのように設定した上で、抑
圧機構翰を働かせて直状押型(ハ)を円形受型αりの外
周に所定の力で押し付ける。After setting the positional relationship between the tube and each part of the device in this manner, the pressing mechanism is activated to press the straight mold (C) against the outer periphery of the circular receiving mold α with a predetermined force.
■ 上記セット完了後、旋回架台C!υを駆動源(ハ)
にて旋回でせ、直状押型(ハ)を円形受型Q21に対す
る圧接状態を保持芒せつつその外周に沿わせながら漸進
的に傾動きせてゆく。このとき、同時進行的に円形受型
(2)と把持装置(1)とを、駆動源α81 、 (7
)(9)によって駆動し、これらの運動、すなわち直状
押型(ハ)の傾動9円形受型(6)の旋回9把持装置(
1)の平面運動を、目標曲げ形状に合わせて管理する。■ After completing the above set, turn mount C! υ is the driving source (c)
The straight mold (c) is held in pressure contact with the circular receiving mold Q21 and is gradually tilted along the outer periphery of the circular receiving mold Q21. At this time, the driving sources α81 and (7
) (9), and these movements, i.e., the tilting of the straight die (c), the rotation of the circular receiving die (6), 9 the gripping device (
1) Planar motion is managed according to the target bending shape.
第8図、第9図はその管理の具体例を2つ示したもので
、第8図は円弧曲げ、第9図は楕円曲げ、の各場合を示
す。すなわち図において、P7− P、2・・は直状押
型(ハ)の円形受型αつの外周上への接触点の推移で直
状押型(ハ)の傾動運動を示し、Q/→Qν・・は円形
受型(1功の外周上の一点の推移、つまシ同受型の旋回
運動を、捷たMy−+Ms・・・は管に)の曲げ開始点
の推移で把持袋@(1)の平面運動を、それぞれ表わし
、P、Q、、M相互間において添字ナンバーが同じもの
は互いに同時点での位置を意味する。FIGS. 8 and 9 show two specific examples of this management, with FIG. 8 showing arc bending and FIG. 9 showing elliptical bending. That is, in the figure, P7-P, 2... indicates the tilting movement of the straight mold (C) due to the transition of the contact point of the straight mold (C) onto the outer periphery of the circular receiving mold α, and Q/→Qν・・ is the transition of a point on the outer circumference of the circular receiving mold (1 point on the outer periphery of the gripping bag @ (1 ), respectively, and the same subscript numbers among P, Q, , M mean positions at the same time.
このように直状押型(ハ)2円形受型a4および把持装
置(1)の運動を相互に同期芒せて管理することにより
、目標に合致した任意の曲線に沿う曲げ形状を出すこと
ができる。この場合成形後の管のヌプリングバック量を
予め考慮しその分を見込んで成形を行う必要があるのは
云う迄もない。In this way, by managing the movements of the straight press die (c), the circular receiving die a4, and the gripping device (1) in synchronization with each other, it is possible to produce a bent shape that follows an arbitrary curve that matches the target. . In this case, it goes without saying that it is necessary to consider in advance the amount of nupling back of the tube after molding and to carry out the molding taking into account this amount.
なお、上記成形過程において直状押型(ハ)はそれと圧
接状態にある円形受型αaの旋回動に合わせて長手方向
に7フイドてせるようにするものであるが、この運動に
ついては円形受型α功の動きによる従動、駆動源0υに
よる積極駆動の何れとしてもよい。たたし、加工精度の
点から云えば積極駆動とし円形受型Q鴎の運動に確実に
同調でせるようにするのが好ましい。円形受型αりの旋
回と直状押型(ハ)のスライド運動間における確実な同
期は、両型に相互噛み合いのフック歯を付設することに
よっても達成することができる。In addition, in the above-mentioned forming process, the straight mold (c) is made to move 7 widths in the longitudinal direction in accordance with the rotational movement of the circular receiving mold αa which is in pressure contact with it, but the circular receiving mold It may be driven either by the movement of α gong or actively driven by the driving source 0υ. However, from the point of view of machining accuracy, it is preferable to use active drive so that the movement can be reliably synchronized with the movement of the circular receiving mold Q. Reliable synchronization between the rotation of the circular receiving mold α and the sliding movement of the straight pressing mold (c) can also be achieved by providing both molds with interlocking hook teeth.
ところで、以上のような成形法においては、成形過程に
おける装置駆動系、つまり直状押型α4゜円形受型(ハ
)1把持装置(1)の運動の管理精度が加工精度を支配
することになるが、この3者の運動を相互に正確に同期
でせることは実際上非常に難しい。すなわち、■各運動
を司どる駆動源(D、Cモータ)の速度制御における応
答に遅れがあること、■各駆動系毎に慣性モーメントが
異なるため指示速度に対する実絨速度の遅れ時間がまち
まちであること、■駆動系単位で指示速度の灰化パター
ンも捷るで異なること、等がその原因と云うことができ
る。By the way, in the above-mentioned molding method, the processing accuracy is controlled by the control accuracy of the movement of the device drive system during the molding process, that is, the straight pressing mold α4° circular receiving mold (c) 1 and the gripping device (1). However, it is actually very difficult to synchronize the movements of these three parties accurately with each other. In other words, ■ there is a delay in the response in the speed control of the drive sources (D and C motors) that govern each movement, and ■ the delay time between the actual carpet speed and the commanded speed varies because the moment of inertia differs for each drive system. This can be said to be caused by the fact that the ashing pattern of the commanded speed differs depending on the drive system.
本発明に基く制御方法は、このような装置駆動系の運動
を高精度に同期制御することを可能にするものである。The control method based on the present invention makes it possible to synchronously control the movement of such a device drive system with high precision.
以下、その制御について詳細に説明する。The control will be explained in detail below.
上記装置駆動系の運動については、直状押型(ハ)の傾
動は前記旋回架台(2])の回転角(β)、円形受型σ
埠の旋回運動は自身の回転角(γ)、セして把持装置(
1)の平面運動は直交する2木のスクリュー軸(5)(
6)に沿う方向への変位(X)(Y)、にてそれぞれ規
定できる。つ丑り、4軸(β9γ、X、Y)に関する位
置変化でもって管曲げ形状を特定することができるもの
である。Regarding the movement of the device drive system mentioned above, the tilting of the straight die (c) is the rotation angle (β) of the rotating frame (2), the circular receiving die σ
The turning motion of the wharf is determined by its own rotation angle (γ), the gripping device (
The plane motion of 1) is the screw axis (5) of two orthogonal trees (
Displacement (X) (Y) in the direction along 6) can be defined respectively. The bending shape of the tube can be specified by positional changes with respect to the four axes (β9γ, X, Y).
ところで、一般に機械的装置における作動達れを解消す
るには予めその駆動系の応答遅れ特性を考慮して早めに
制御系への指示を出してやることである。By the way, in general, in order to eliminate operational delays in mechanical devices, it is necessary to take into account the response delay characteristics of the drive system in advance and issue instructions to the control system early.
そこで上記β、γ、X、Yの4軸についての駆動系の応
答特性を実測調査したところ、各モータへの速度指示に
対する応答の遅れは、第1O図に示すように、いわゆる
2次遅れ系の特性に酷似しており、2次遅れ系のモデル
として近似すれば制御精度上十分なものが得られること
が判った。Therefore, when we actually measured and investigated the response characteristics of the drive system for the four axes β, γ, It has been found that sufficient control accuracy can be obtained by approximating it as a second-order lag system model.
ここに、速度指示の入力と応答出力の関係を数式化すれ
ば、T式
o (t) −1(t) X g (t)o (t)
:時刻tにおける出力
1(t) :時刻tにおける入力
g (t) :入力と出力との間の関係を示す関数とな
る。これをラプフヌ変換すると、
0 (S) = 工(Sl x G (S)G (s)
:伝達関数(設備に固有)と表わされ、この式より目
標出力0(S)を得るには入カニ(S)をO(→’0(
S)とすればよいことが分る。したがって、0 (S)
/ G (S)を逆ヲプフヌ変換して目標量力を得るた
めの時刻tの入力1(t)を予め算出し、この速度値を
制御系に入力として与えてやるようにすれば、基本的に
はモータ速度の履歴が目標に一致し、(X、Y、β、γ
)の軌跡が目標に合致したものとなるはずである。Here, if the relationship between the speed instruction input and the response output is expressed mathematically, the T formula o (t) -1(t) X g (t) o (t)
: Output 1(t) at time t : Input g (t) at time t : A function indicating the relationship between input and output. If we convert this to Rapufnu, 0 (S) = Engineering (Sl x G (S) G (s)
: Expressed as a transfer function (specific to the equipment), and from this formula, to obtain the target output 0 (S), input crab (S) should be changed to O (→'0 (
It turns out that it is sufficient to do S). Therefore, 0 (S)
/ G (S) can be inversely transformed to obtain the target force by calculating the input 1(t) at time t in advance, and by giving this speed value as an input to the control system, basically The motor speed history matches the target and (X, Y, β, γ
) should match the target.
ところが、一般にモータの回転数は電圧変化。However, the rotational speed of a motor is generally determined by changes in voltage.
気温変化等の不可避的外乱のためにある程度のばらつき
は避けられないものであシ、したがって上記の予測制御
だけでは現実には十分な結果は望めない。Some degree of variation is unavoidable due to unavoidable disturbances such as temperature changes, and therefore, in reality, sufficient results cannot be expected from the above predictive control alone.
しかるに、上記予測制御を基に、いわゆる比例積分制御
の手法に従って、下式
%式%)
a、’b:定@(調整パラメータ)
△X:目標位瀘と大績位瞳の差
によりモータ指示速g t (taに補正音7Jl]え
る制a1を併用すれば、実用上十分な制御精度を得るこ
とが可能である。比例積分制御適用下では通常、目標値
の変化に対し実績値は遅れをもちつつ目標値に近づいて
ゆく形となシその意味での誤差は残ることになるが、予
め指示速度に糸それ自体の応答遅れが加味されていて実
績値が目標値にほぼ一致せられるときには、もともと外
乱に基く微小な誤差しか存在せず、このだめ比例積分制
御により高精度の制御が実現できるものである。However, based on the above predictive control and according to the method of so-called proportional-integral control, the following formula (% formula %) a, 'b: constant @ (adjustment parameter) △X: motor instruction based on the difference between the target position and the grand position pupil It is possible to obtain sufficient control accuracy for practical use by using the control a1 that increases the speed g t (correction sound 7Jl for ta).When proportional-integral control is applied, the actual value usually lags behind the change in the target value. In this sense, an error will remain, but since the response delay of the thread itself is taken into account in advance to the instructed speed, the actual value can almost match the target value. Sometimes, there are only minute errors originally caused by disturbances, and in this case, proportional-integral control can achieve highly accurate control.
すなわち、本発明に係る制御方法は以上の事実に基くも
の′;cあり、具体的な手法は次のとおりである。That is, the control method according to the present invention is based on the above facts, and the specific method is as follows.
前出第7図に制御に用いる機器を模式に示したが、同図
において、(88/ X83.2)・・・は曲は加工機
の前記X、Y、β、γの各軸に対応する駆動モータに結
合したパルス発生器で、駆動モータの実績回転量に応じ
た数のパルスを発振する。弼は上記各駆動モータの速度
制御系。0!51はこの速度制御系(財)に指示を与え
る計算機である。この計算機d処理内容を、第11図に
ブロックダイヤグラムにて示す。The equipment used for control is schematically shown in Figure 7 above. In the figure, (88/X83.2)... corresponds to the X, Y, β, and γ axes of the processing machine. A pulse generator connected to the drive motor generates a number of pulses corresponding to the actual rotation amount of the drive motor. The second one is the speed control system of each drive motor mentioned above. 0!51 is a computer that gives instructions to this speed control system. The contents of this computer d processing are shown in a block diagram in FIG.
加工に当っては壕ず、計算機(ハ)によシ予め与えられ
た曲げ形状に関する情報から、加工様の各駆動系の応答
遅れを加味して各駆動系への指示速度i:(t)を計算
する。すなわち、第11図のブロックダイヤグラムのA
部の演算を行う。During machining, the computer (c) uses information about the bending shape given in advance to give the instruction speed i: (t) to each drive system, taking into account the response delay of each drive system for machining. Calculate. That is, A in the block diagram of FIG.
Performs calculations on parts.
次いで、この演算にてめられた指示速度1(t)を、各
駆動モータの制御系■に入力して、各駆動モータを速曳
管理しながら作動式せる。このときその一方で、各駆動
モータに結合したパルス発生器(33/)(33x)・
・・からの出力パルヌを計算様(ハ)によシ逐一カウン
トし、(X、Y、β、γ)の実績位置を連続的に検出し
ておき、その実績値1+−の目標位置に対する誤差(△
X、△Y、△β、△γ)をめて比例積分制御により前記
指示速度1(t)に補正を加えるようにする。この演算
は第11図のB部に示される。Next, the commanded speed 1(t) determined by this calculation is input to the control system (2) of each drive motor, and each drive motor is activated while controlling the speed. At this time, on the other hand, a pulse generator (33/) (33x) coupled to each drive motor
The output PALNU from ... is counted one by one according to the calculation method (c), the actual position of (X, Y, β, γ) is continuously detected, and the error of the actual value 1+- with respect to the target position is calculated. (△
X, △Y, △β, △γ), and the commanded speed 1(t) is corrected by proportional-integral control. This calculation is shown in part B of FIG.
このような速度制御を、(X、Y、β、γ)が目標軌跡
の最終位置にくるまで紹(続して行いながら、管曲げを
遂行するものである。This kind of speed control is continued until (X, Y, β, γ) reaches the final position of the target trajectory to perform the pipe bending.
以上の本発明に基く制御方法の精度の高さを、具体的数
値を挙げて示せば以下のとおシである。The high accuracy of the control method based on the present invention described above can be shown by the following specific numerical values.
すなわち、第12図は通常の比例積分制御のみによった
場合の精度をシミュレーションで検討したその結果であ
り、他方第13図は上記本発明に基く制御を実機に適用
してその制御精度を調べた結果を示す。比例積分制御の
みの例では、β、γの精度が±2.3°以内、X、Yに
ついては15履以内ときわめて悪く笑際上笑用不可の結
果が出たが、本発明例ではβ、γば0.8°以内、X、
、Yも3腑以内と大巾な精度向上が認められ、実用上十
分な精度が得られた。In other words, Fig. 12 shows the results of a simulation study of the accuracy when using only normal proportional-integral control, while Fig. 13 shows the results of applying the control based on the present invention to an actual machine and examining the control accuracy. The results are shown below. In the example using only proportional-integral control, the accuracy of β and γ was within ±2.3°, and the accuracy of , γ within 0.8°, X,
, Y was also recognized to be significantly improved to within 3 degrees, and sufficient accuracy was obtained for practical use.
以上の説明から明らかなように本発明の方法によれば、
円弧をはじめ、楕円、放物線等、任意の曲線状に管曲け
を行うことか可能であり、しかも良好な精度の曲げ加工
が遂行できる他、管曲げの過程において管の曲げ進行中
の部位はつねに円形受型と直状押型との間に完全に包囲
でれた形となるから、加工に伴う管の偏平化やしわ発生
が効果的に防止される等、すぐれた効果が期待できるも
のである。As is clear from the above explanation, according to the method of the present invention,
It is possible to bend the pipe into any curved shape such as a circular arc, ellipse, parabola, etc. Moreover, the bending process can be performed with good precision. Because the shape is always completely enclosed between the circular receiving mold and the straight stamping mold, excellent effects can be expected, such as effectively preventing flattening and wrinkles of the tube during processing. be.
第1図は圧縮画げの説明図、第2図は4曲げの説明図で
、印は管セット状態、(0)は加工中の状態を各示す。
第3図はプレヌ曲げの説明図、第4図はロール曲げの説
明図、第5図は引張9曲げの説明図、第6図はハンプル
グ曲げの説明図、第7図は本発明法を実施するだめの曲
げ加工装置の模式平面図並びにその制御系を示すブロッ
ク図、第8図、第9図は本発明法によ!ll管曲げを行
う場合の同上装置各駆動系の管理のし方を示す説明図で
、第8図は円弧曲げ、第9図は楕円曲げ、の各個を示す
。第10図は第7図に示した加工装置の速度制御におけ
る応答遅れの状況を示す図、第11図は本発明の制御方
法に基く計算様処理を示すブロックダイヤグラム、第1
2図、第13図は第7図に示した装置の各駆動系(β、
γ、X、Y)に関する位置制御精度を示す図で、第12
図は比例積分制御のみの場合、第13図は本発明に基く
予測制御+比例積分制御適用の場合をそれぞれ示し、両
図とも(イ)はγ軸誤差、(ロ)はβ軸誤差、G/iは
X軸誤差、に)はX軸誤差、を表わす。
図中、l:把持装置、5,6:ヌクリュー軸、7.9:
駆動源、8,10:テーブル、12二円形受型、13二
半円溝、14:ベッド、18:駆動源、21:旋回架台
、22:駆動源、25:直状押型、26:半円溝、27
:支持機構、29:押圧機構、31:駆動源、3B:パ
ルヌ発生器、34:速度制御器、35:計算機
出願人 住友金属工業株式会社
出願人 住金鋼材工業株式会社
代理人弁理士 生 形 元 重
jII2図
(イ) (ロ)
第 6(支) 第 7図
第10図
第132tFIG. 1 is an explanatory diagram of compression stroke, and FIG. 2 is an explanatory diagram of four bends. The marks indicate the tube set state, and (0) indicates the state during processing. Fig. 3 is an explanatory diagram of plain bending, Fig. 4 is an explanatory diagram of roll bending, Fig. 5 is an explanatory diagram of tension 9 bending, Fig. 6 is an explanatory diagram of Hamburg bending, and Fig. 7 is an explanatory diagram of the method of the present invention. A schematic plan view of Sudame's bending device and a block diagram showing its control system, FIGS. 8 and 9, are based on the method of the present invention! FIG. 8 is an explanatory diagram showing how to manage each drive system of the same device when bending a pipe, FIG. 8 shows arc bending, and FIG. 9 shows elliptical bending. 10 is a diagram showing the response delay situation in speed control of the processing device shown in FIG. 7, FIG. 11 is a block diagram showing calculation-like processing based on the control method of the present invention,
Figures 2 and 13 show each drive system (β,
γ, X, Y);
The figure shows the case of only proportional-integral control, and Fig. 13 shows the case of applying predictive control + proportional-integral control based on the present invention. In both figures, (a) shows the γ-axis error, (b) shows the β-axis error, G /i represents the X-axis error, and ) represents the X-axis error. In the figure, l: gripping device, 5, 6: screw shaft, 7.9:
Drive source, 8, 10: Table, 12 Two circular receiving molds, 13 Two semicircular grooves, 14: Bed, 18: Drive source, 21: Swivel frame, 22: Drive source, 25: Straight press mold, 26: Semicircle ditch, 27
: Support mechanism, 29: Pressing mechanism, 31: Drive source, 3B: Parnu generator, 34: Speed controller, 35: Computer Applicant: Sumitomo Metal Industries, Ltd. Applicant: Sumikin Steel Industries, Ltd. Representative Patent Attorney Gen Kata Imao Heavy j II Figure 2 (A) (B) 6th (Support) Figure 7 Figure 10 Figure 132t
Claims (1)
装置によシ被曲げ管をその曲げようとする部分以外の位
置で掴持し、その被曲げ部分を前記把持装置の移動平面
と平行の面内で旋回する円形受型とこれと対をなす直状
の押型との間に挾み込むようにしてセラFし、その直状
押型を円形受型に対し圧接状態を保ちつつその外周に沿
って漸進的に傾動させ、この傾動運動と前記円形受型の
旋回運動そして把持装置の平面運動の各運動を司どる駆
動装置の速度制御系に目標曲げ形状からその各駆動装置
の応答遅れを予め加味して必要な指示速度として割9出
した速度値を指令信号として入力するとともに、各駆動
装置の駆動笑績を連続的に検出しその実績値の目標値に
対する誤差を逐次求めて比例積分制御によシ前記指示速
度に補正を加え2)−らr/rIイ 古伸禰冊 m泌旨
冊 他枇壮詔小運動をそれぞれ目標曲げ形状に対応し相
互に同期するように管理しなから管曲げを遂行すること
を特徴とする管の曲げ加工方法。(1) A gripping device movable to any position on a specific plane grips the pipe to be bent at a position other than the portion to be bent, and the portion to be bent is placed on the plane of movement of the gripping device. The Cera F is inserted between a circular mold rotating in a plane parallel to the circular mold and a straight mold forming a pair with it, and the straight mold is pressed against the circular mold while maintaining its outer periphery. The speed control system of the driving device that controls this tilting movement, the rotational movement of the circular receiving mold, and the planar movement of the gripping device is controlled to control the response delay of each driving device from the target bending shape. Input the speed value calculated in advance as the required command speed as the command signal, and continuously detect the driving performance of each drive device and sequentially calculate the error of the actual value with respect to the target value and calculate the proportional value. The above commanded speed is corrected by integral control, and the small movements are managed so as to correspond to the target bending shape and to be synchronized with each other. A pipe bending method characterized by performing pipe bending from scratch.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8707284A JPS60231527A (en) | 1984-04-27 | 1984-04-27 | Bending method of pipe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8707284A JPS60231527A (en) | 1984-04-27 | 1984-04-27 | Bending method of pipe |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60231527A true JPS60231527A (en) | 1985-11-18 |
JPH0520179B2 JPH0520179B2 (en) | 1993-03-18 |
Family
ID=13904736
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8707284A Granted JPS60231527A (en) | 1984-04-27 | 1984-04-27 | Bending method of pipe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60231527A (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0853511A1 (en) * | 1995-10-06 | 1998-07-22 | Pines Manufacturing Inc. | Low force auto-open tooling for tube bending machine |
JP2006181593A (en) * | 2004-12-27 | 2006-07-13 | Sumitomo Metal Ind Ltd | Method for stretch-bending deformed tube and worked automobile parts |
JP2006310125A (en) * | 2005-04-28 | 2006-11-09 | Auto Network Gijutsu Kenkyusho:Kk | Shielded conductive path, manufacturing method of shielded conductive path, shielding pipe, and bending process machine for shielding pipe |
JP2007301587A (en) * | 2006-05-10 | 2007-11-22 | Sumitomo Metal Ind Ltd | Method and apparatus for bending special pipe, and product bent by the same method and apparatus |
JP2008006448A (en) * | 2006-06-27 | 2008-01-17 | Sumitomo Metal Ind Ltd | Method of bending special shaped tube and worked automotive parts |
JP2008006450A (en) * | 2006-06-27 | 2008-01-17 | Sumitomo Metal Ind Ltd | Method and apparatus of bending special-shaped tube and worked automotive part |
JP2009045665A (en) * | 2007-08-22 | 2009-03-05 | Towa Kogyo:Kk | Bending method of tubular body with flare |
ITRM20080574A1 (en) * | 2008-10-28 | 2010-04-28 | Cml Int Spa | CURVATURI MACHINE WITH PERFECT TRANSMISSION OF THE MOTORCYCLE TO THE MATRIX |
JP4653856B1 (en) * | 2010-06-04 | 2011-03-16 | 武州工業株式会社 | Pipe bending machine and method for bending a spiral pipe using the pipe bending machine |
-
1984
- 1984-04-27 JP JP8707284A patent/JPS60231527A/en active Granted
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0853511A1 (en) * | 1995-10-06 | 1998-07-22 | Pines Manufacturing Inc. | Low force auto-open tooling for tube bending machine |
EP0853511A4 (en) * | 1995-10-06 | 1999-02-10 | Pines Manufacturing Inc | Low force auto-open tooling for tube bending machine |
JP2006181593A (en) * | 2004-12-27 | 2006-07-13 | Sumitomo Metal Ind Ltd | Method for stretch-bending deformed tube and worked automobile parts |
JP2006310125A (en) * | 2005-04-28 | 2006-11-09 | Auto Network Gijutsu Kenkyusho:Kk | Shielded conductive path, manufacturing method of shielded conductive path, shielding pipe, and bending process machine for shielding pipe |
JP2007301587A (en) * | 2006-05-10 | 2007-11-22 | Sumitomo Metal Ind Ltd | Method and apparatus for bending special pipe, and product bent by the same method and apparatus |
JP2008006448A (en) * | 2006-06-27 | 2008-01-17 | Sumitomo Metal Ind Ltd | Method of bending special shaped tube and worked automotive parts |
JP2008006450A (en) * | 2006-06-27 | 2008-01-17 | Sumitomo Metal Ind Ltd | Method and apparatus of bending special-shaped tube and worked automotive part |
JP2009045665A (en) * | 2007-08-22 | 2009-03-05 | Towa Kogyo:Kk | Bending method of tubular body with flare |
ITRM20080574A1 (en) * | 2008-10-28 | 2010-04-28 | Cml Int Spa | CURVATURI MACHINE WITH PERFECT TRANSMISSION OF THE MOTORCYCLE TO THE MATRIX |
EP2181780A1 (en) * | 2008-10-28 | 2010-05-05 | CML International S.P.A. | Pipe-bending machine having an improved movement transmission to a bending die |
JP4653856B1 (en) * | 2010-06-04 | 2011-03-16 | 武州工業株式会社 | Pipe bending machine and method for bending a spiral pipe using the pipe bending machine |
WO2011152440A1 (en) * | 2010-06-04 | 2011-12-08 | 武州工業株式会社 | Pipe bender and method for spiral pipe bending with the pipe bender |
JP2011251331A (en) * | 2010-06-04 | 2011-12-15 | Bushu Kogyo Kk | Pipe bending apparatus, and method for spiral pipe bending using the pipe bending apparatus |
CN102858477A (en) * | 2010-06-04 | 2013-01-02 | 武州工业株式会社 | Pipe bender and method for spiral pipe bending with the pipe bender |
US8650922B2 (en) | 2010-06-04 | 2014-02-18 | Busyu Kogyo Co., Ltd. | Pipe bender and method for spiral pipe bending with the pipe bender |
TWI482674B (en) * | 2010-06-04 | 2015-05-01 | Busyu Kogyo Co Ltd | Bending pipe processing machine and vortex pipe bending processing method by using said bending pipe processing machine |
CN102858477B (en) * | 2010-06-04 | 2015-09-16 | 武州工业株式会社 | Bending machine and use the bend pipe processing method of spiral type pipe of this bending machine |
Also Published As
Publication number | Publication date |
---|---|
JPH0520179B2 (en) | 1993-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3685526B2 (en) | Pipe bending machine | |
JPS6218245B2 (en) | ||
JPS60231527A (en) | Bending method of pipe | |
JP2009279653A (en) | Method for bending pipe, rod, profiled section and similar blank, and corresponding device | |
JPH0147249B2 (en) | ||
JP2001526116A (en) | Screw manufacturing method and apparatus for performing the method | |
JPS59212124A (en) | Bending device | |
JP2000126821A (en) | Method for bending and device therefor | |
US4123899A (en) | Method for bending chain links and chain link bending machine | |
JP2001239321A (en) | Steel pipe bending equipment and method thereof | |
JP2875947B2 (en) | End bending method and apparatus before spring forming of NC coiling machine | |
JPH05212450A (en) | Method for bending long material and device therefor | |
US2316049A (en) | Machine for bending pipes and the like | |
JPH11226656A (en) | Press-bending type hot bender | |
CN207257200U (en) | A kind of Drawing-Core tubing emebosser | |
JP2001137956A (en) | Bending apparatus for tube or bar | |
JP2000033426A (en) | Roll bending method and device therefor | |
JPS5874215A (en) | Bending device | |
JPH0247287B2 (en) | KINZOKUKANNOATSUSHUKUMAGEHOHOOYOBISONOSOCHI | |
JP3624017B2 (en) | Hot bending method for metal pipe | |
CN221453909U (en) | Sheet bending device | |
JPH03248719A (en) | Method and device for bending bar like member | |
JPS60240336A (en) | Method and device for bending work of pipe | |
JP2831234B2 (en) | Automatic bending control method and apparatus for bending equipment | |
JPH02263517A (en) | Adjuster for angle of straightening roll |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |