JPS60212234A - Honeycomb shaped deodorizing catalyst - Google Patents

Honeycomb shaped deodorizing catalyst

Info

Publication number
JPS60212234A
JPS60212234A JP59066759A JP6675984A JPS60212234A JP S60212234 A JPS60212234 A JP S60212234A JP 59066759 A JP59066759 A JP 59066759A JP 6675984 A JP6675984 A JP 6675984A JP S60212234 A JPS60212234 A JP S60212234A
Authority
JP
Japan
Prior art keywords
catalyst
oxide
dust
exhaust gas
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59066759A
Other languages
Japanese (ja)
Other versions
JPH049581B2 (en
Inventor
Shinya Tanaka
信也 田中
Akira Inoue
明 井上
Futoshi Kinoshita
木下 太
Tetsutsugu Ono
哲嗣 小野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Shokubai Co Ltd
Original Assignee
Nippon Shokubai Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Shokubai Co Ltd filed Critical Nippon Shokubai Co Ltd
Priority to JP59066759A priority Critical patent/JPS60212234A/en
Publication of JPS60212234A publication Critical patent/JPS60212234A/en
Publication of JPH049581B2 publication Critical patent/JPH049581B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled catalyst receiving no deterioration in its capacity at the time of the treatment of dust-containing exhaust gas and capable of being prevented from clogging, by molding a composition containing oxide of Ti or Si and oxide of copper or Cr to form an integral structure having a large number of piercing pores. CONSTITUTION:A catalyst composition, which contains both of at least one kind of oxide of a metal selected from a group consisting of Ti, Si and Zr as a catalytic component A and at least one kind of oxide of a metal selected from a group consisting of copper, Cr, iron, V, W, Mn, Ni, Co and Mo as a catalytic component B, is molded to obtain an integral structure having a large number of piercing pores and the average diameter of said piercing pores is set to a range of 3-12mm.. In this case, the amount of the component A is adjusted to 33- 99wt% as oxide and that of the component B to 1-70wt% as oxide. This catalyst can employ a linear speed higher than that of a conventional product and is not deteriorated in its capacity due to the abrasion and release of the catalytic substances when dust-containing exhaust gas is especially treated and can be further prevented from clogging by dust.

Description

【発明の詳細な説明】 本発明はハニカム型脱臭触媒に関する。詳しく述べると
本発明は種々の臭気発生源から発生する、ダストを大量
に含む悪臭排ガスをダストによる触媒成分の摩耗、剥離
による性能劣化なくかつ目詰シなく該排ガスを接触的に
無害、無臭のガスに変換除去するノ・ニカム型脱臭触媒
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a honeycomb type deodorizing catalyst. To be more specific, the present invention is capable of converting foul-smelling exhaust gas containing a large amount of dust, which is generated from various odor sources, into a harmless, odorless material without deteriorating performance due to abrasion or peeling of catalyst components caused by dust, and without clogging. This relates to a no-nikum type deodorizing catalyst that converts into gas and removes it.

近年、印刷、塗装、樹脂加工、表面処理等の工場から発
生する有機溶剤系悪臭排ガスまたゴミ焼却炉、スクラッ
プ予熱炉等から発生する含ダスト悪臭排ガス等各種悪臭
排ガスが労働衛生上の観点からばかシでなく環境衛生上
も問題となっており、公害防止の見地からこれら悪臭成
分の除去が急務とされてきている。
In recent years, various types of foul-smelling exhaust gases, such as organic solvent-based foul-smelling exhaust gases generated from printing, painting, resin processing, and surface treatment factories, as well as dust-containing foul-smelling exhaust gases generated from garbage incinerators, scrap preheating furnaces, etc., have become increasingly important from an occupational health perspective. These odor components have become a problem not only in terms of pollution, but also in terms of environmental hygiene, and from the standpoint of pollution prevention, there is an urgent need to remove these foul-smelling components.

従来、これら悪臭排ガスの除去法としては(1)臭突に
よる大気拡散法(2)直接燃焼法(31スクラバーによ
る洗浄法(4)活性炭等の吸着剤による吸着法等が行わ
れているが、それぞれ次の様な欠点を有している。即ち
(1)法は悪臭発生量が微量の場合以外効果なく、(2
1法は750〜900℃の高温を要し、燃料費が高く不
利であると同時に窒素酸化物(NOx )副生等二次公
害の恐れがあり、(31法は廃水処理に費用がかさむこ
と、(4)法は吸着剤の再生、交換等の煩雑な操作がと
もなうことなどである。
Conventionally, methods for removing these foul-smelling exhaust gases include (1) atmospheric diffusion using odor stacks, (2) direct combustion method (cleaning method using a 31 scrubber, and (4) adsorption method using adsorbents such as activated carbon. Each method has the following disadvantages: (1) method is ineffective except when the amount of bad odor generated is minute;
Method 1 requires high temperatures of 750 to 900°C, which is disadvantageous due to high fuel costs, and at the same time there is a risk of secondary pollution such as nitrogen oxide (NOx) by-products (Method 31 requires high costs for wastewater treatment) , (4) methods involve complicated operations such as regeneration and replacement of the adsorbent.

以上の様な理由からこれらの方法は脱臭法の決め手とし
て実用化されている例は極めて少ない。
For the reasons mentioned above, there are very few cases in which these methods have been put into practical use as decisive methods for deodorization.

−力、前記の欠点を改良した方法として触媒燃焼式脱臭
法があり、この方法は比較的低温(150〜45(l 
U )で効果を発揮するため燃料費が安い、廃水処理等
の二次処理の必要がない、低温度で処理するためNOx
副生の心配がない等の利点があシ現在実用化されている
There is a catalytic combustion deodorizing method that improves the above-mentioned drawbacks, and this method uses relatively low temperatures (150 to 45
U ), fuel costs are low because it is effective, there is no need for secondary treatment such as wastewater treatment, and NOx is reduced because it is treated at low temperatures.
It has the advantage of not having to worry about by-products, and is currently in practical use.

この触媒燃焼式脱臭法に使用される触媒としては粒状の
活性アルミナに白金、パラジウム等の貴金属や銅、クロ
ム、鉄等の卑金属が担持されたもの、また最近では自動
車排ガス浄化用触媒に使用されるような孔径の小さいコ
ージェライト質ハニカム型担体に活性アルミナを担持し
その上に白金、パラジウム等の貴金属を表層薄く担持さ
せた触媒が実用化されている。しかし粒状触〃Vは通気
抵抗が大きく排ガスを高線速度で処理できず、従って排
ガス流断面積を大きくとる必要があり反応器占有面積が
大きくなってしまうとか、またダスト含有排ガスを処理
する場合目詰シによシ通気抵抗が増大しランニングコス
トの上昇を招くという欠点を有している。一方、コージ
ェライト質ハニカム型和体を使用した触媒も、ダスト含
有排ガスを処理する場合、表層薄く担持された貴金属触
媒物質がダスト中の硬い微粉末によシ摩耗、剥離され、
そのために活性低下を起す、またその孔径が小さいため
に目詰シによる通気抵抗増大を起す、さらに該触媒に数
r/Nm3のダストを含む排ガスを通気すると通気1〜
2日で使用に耐えない程度に目詰りを起す等の欠点を有
している。
The catalysts used in this catalytic combustion deodorization method are granular activated alumina supported with noble metals such as platinum and palladium, and base metals such as copper, chromium, and iron.Recently, catalysts used in automobile exhaust gas purification have also been used. Catalysts have been put into practical use in which activated alumina is supported on a cordierite honeycomb carrier with a small pore diameter, and noble metals such as platinum and palladium are supported in a thin layer on the surface. However, granular catalyst V has a large ventilation resistance and cannot process exhaust gas at a high linear velocity.Therefore, it is necessary to have a large exhaust gas flow cross-sectional area, which increases the area occupied by the reactor, and when treating exhaust gas containing dust. This has the disadvantage that the clogging increases ventilation resistance and increases running costs. On the other hand, when using a catalyst using a cordierite honeycomb type body, when treating dust-containing exhaust gas, the noble metal catalyst substance thinly supported on the surface is worn away and peeled off by the hard fine powder in the dust.
This causes a decrease in activity, and the small pore diameter causes an increase in ventilation resistance due to clogging.Furthermore, when exhaust gas containing several r/Nm3 of dust is vented to the catalyst, ventilation 1 to
It has drawbacks such as clogging that becomes unusable within two days.

さらに具体的に述べると以下の如くである。More specifically, it is as follows.

従来、脱臭用に用いられている粒状活性アルミナを担体
として用い、これに白金、パラジウム等の貴金属や銅、
クロム、鉄等の卑金属を担持させた触媒は、一般的に2
〜6胡φの粒径のものが選ばれている。しかしこの粒状
触媒は、空間速度10.000〜30.000Hr l
で使用する場合、触媒層通気抵抗の関係上その触媒層長
は200割程度が限度で、そのため反応器設置断面積が
大きくなってしまう0さらにスクラップ予熱炉排ガス、
ゴミ焼却炉排ガス、焼結炉排ガス、鋳物工場排ガス等ダ
ストを多量に含む悪臭排ガスを処理する場合、100町
程度の層長でも短期間の間にダスト目詰シにより通気抵
抗が増大し、ランニングコストの上昇とか頻繁な触媒の
クリーニング、触媒交換等の煩雑な操作を必要とした。
Granular activated alumina, which has conventionally been used for deodorization, is used as a carrier, and precious metals such as platinum and palladium, copper,
Catalysts supporting base metals such as chromium and iron are generally 2
A grain size of ~6 mm is selected. However, this granular catalyst has a space velocity of 10.000 to 30.000 Hr l.
When using the catalyst layer, the catalyst layer length is limited to about 200% due to the ventilation resistance of the catalyst layer, which results in a large reactor installation cross-sectional area.In addition, scrap preheating furnace exhaust gas,
When processing foul-smelling exhaust gas containing a large amount of dust, such as garbage incinerator exhaust gas, sintering furnace exhaust gas, foundry exhaust gas, etc., even if the layer length is about 100 square meters, airflow resistance increases due to dust clogging in a short period of time, causing running problems. This increases costs and requires complicated operations such as frequent catalyst cleaning and catalyst replacement.

そして従来のノ・二カム型脱臭触媒についても、その孔
数がインチ平方当り100〜300個、孔径が1〜2胡
のコージェライト質ノhニカム型担体に活性アルミナを
担持させ、さらにその上に白金、パラジウム等の貴金属
を表層薄く担持させたものが一般的に使用されている。
Regarding the conventional Ni-Cam type deodorizing catalyst, activated alumina is supported on a cordierite-based Ni-Cam type carrier with a pore number of 100 to 300 per square inch and a pore diameter of 1 to 2 mm. Generally used are metals with a thin layer of precious metals such as platinum or palladium supported on the surface.

この触媒も前記ダスト含有悪臭排ガスを処理するために
使用した場合、ダストによる表層貴金属触媒の摩耗、剥
離による性能劣化さらにその孔径が小さいだめの目詰り
による通気抵抗上昇等の問題がある。このノ・ニカム型
触媒も空間速度を10.000〜50.000Hr ”
で使用する場合、触媒層通気抵抗の関係上その触媒層は
400鵡程度が限界であシ、粒状触媒と同様に装置が大
規模になってしまう欠点がある@触媒層長を短くしなけ
ればならないということ、つまり、排ガスを高線速度で
処理できないということは触媒孔内のガス流れがより層
流れになり、乱れの少ないガス流れになってしまいそれ
がダスト目詰シの原因の1つともなる。ダストの目詰シ
対策とし、ては電気集塵器、バッグフィルター等を使用
し除塵後脱臭する方法も考えられるが、たとえばバッグ
フィルターを使用する場合、その耐熱温度が低いため排
ガスを一度冷却してから除塵するので触媒層へ入る前に
再度排ガスを処理温度までブタン等の燃料を燃焼させて
加熱する必要があり、燃料費がかさみその分ランニング
コストが上昇することにもなり、むしろ排ガスをダスト
含みで脱臭する方がきわめて有利である。また脱臭用触
媒担体として比較的孔径の大きい(孔径4那程度)ハニ
カム状のムライト質、アルミナ質担体も公開されており
、これらの担体に触媒物質を直接担持した触媒も考えら
れるが、しかしムライト負担体を使用した場合には触媒
の物性面で問題がある。
When this catalyst is used to treat the above-mentioned dust-containing foul-smelling exhaust gas, there are problems such as abrasion of the surface noble metal catalyst by dust, performance deterioration due to peeling, and increased ventilation resistance due to clogging of the small pore size. This type of catalyst also has a space velocity of 10.000 to 50.000 Hr.
When used in a catalytic converter, the limit for the catalyst layer is about 400 mm due to the ventilation resistance of the catalyst layer, and as with granular catalysts, the device has the disadvantage of becoming large-scale.@The catalyst layer length must be shortened. In other words, the fact that the exhaust gas cannot be processed at a high linear velocity means that the gas flow inside the catalyst pores becomes more laminar and less turbulent, which is one of the causes of dust clogging. It also becomes. As a countermeasure against dust clogging, it is possible to use an electric precipitator, a bag filter, etc. to remove dust and deodorize it, but when using a bag filter, for example, the exhaust gas must be cooled once because its heat resistance is low. Since the exhaust gas is then removed from dust, it is necessary to heat the exhaust gas again by burning a fuel such as butane to the treatment temperature before it enters the catalyst layer, which increases fuel costs and running costs. It is extremely advantageous to deodorize by containing dust. Honeycomb-shaped mullite and alumina carriers with relatively large pores (about 4 mm pore diameter) have also been disclosed as deodorizing catalyst carriers, and catalysts in which catalyst materials are directly supported on these carriers are also considered, but mullite When a carrier is used, there are problems with the physical properties of the catalyst.

つまシ、この担体ではBET表面積がLm”/f以下、
細孔容積が0 、25 cc/ を以下と小さく、触媒
性能的に十分満足のいくものとすることが困難であシ、
またアルミナ質担体を使用した場合にも排ガス中に含ま
れる研黄化合物(SOx)による被毒およびダストに対
する耐摩耗性で問題がある。
In this carrier, the BET surface area is less than Lm”/f,
The pore volume is as small as 0.25 cc/ or less, and it is difficult to achieve sufficient catalytic performance.
Further, even when an alumina carrier is used, there are problems in terms of wear resistance against poisoning and dust caused by SOx contained in exhaust gas.

かくして本発明は上記欠点に鑑みこれら従来品よυ高純
速度を採用でき、またとくにダスト含有排ガスを処理す
る場合に触媒物質の摩耗、剥離による性能劣化がなく、
さらにダストによる目詰シを防止できるハニカム型脱臭
触媒を提供することを目的とする。
Thus, in view of the above-mentioned drawbacks, the present invention can adopt a higher purity rate than these conventional products, and there is no performance deterioration due to abrasion or peeling of the catalyst material, especially when treating dust-containing exhaust gas.
Another object of the present invention is to provide a honeycomb type deodorizing catalyst that can prevent clogging due to dust.

本発明は以下の如く特定されてなるものである。The present invention is specified as follows.

触媒A成分と【て、チタン、ケイ素およびジルコニウム
よりなる群から選はれた少なくとも1種の酸化物ならび
に触媒B成分として銅、クロム、鉄、バナジウム、タン
グステン、マンガン、ニッケル、コバルト、モリブデン
および鉛よりなる群から選ばれた少なくとも1棟の酸化
物をそれぞれ含んでなる触媒組成物でありかつこれが複
数の貫通孔を有する一体構造物に成型され、その平均孔
直径が3〜12IIIII+の範囲であることを特徴と
するハニカム型脱臭触媒。
Catalyst A component is at least one oxide selected from the group consisting of titanium, silicon, and zirconium, and catalyst B component is copper, chromium, iron, vanadium, tungsten, manganese, nickel, cobalt, molybdenum, and lead. A catalyst composition each comprising at least one oxide selected from the group consisting of: a catalyst composition formed into an integral structure having a plurality of through holes, the average pore diameter of which is in the range of 3 to 12III+ A honeycomb type deodorizing catalyst characterized by:

以下さらに具体的に本発明を説明する。The present invention will be explained in more detail below.

ハニカム型触媒はその孔径(貫通孔相当直径)を大きく
すれば通気抵抗はそれに比例し小さくな9ダストによる
目詰りも防止できるが、それと同時に触媒の幾伺学的表
面積も小さくなり、ある一定の処理効率を発揮するには
孔径を大きくした分触媒蓋を多くする必要があるので、
その孔径は処理効率および触媒性能との関係から限定さ
れるものである。
For honeycomb catalysts, if the pore diameter (through-hole equivalent diameter) is increased, the ventilation resistance is proportional to the diameter, and clogging due to small particles can be prevented, but at the same time, the geometrical surface area of the catalyst is also reduced, and a certain level of In order to achieve treatment efficiency, it is necessary to increase the number of catalyst lids by increasing the pore size.
The pore size is limited in relation to treatment efficiency and catalyst performance.

本発明者らは、触媒物質の選択も含め鋭意検討した結果
、A成分の酸化物から選択された少なくとも1種とB成
分の酸化物から選択された少なくとも1種を含む触媒で
ハニカム型に一体化成型されかつその孔径が3〜12m
の範囲を有してなる触媒が触媒性能を満足し、ダストに
よる触媒物質の摩耗、剥離が原因の性能劣化がなくかり
目詰を防止でき、さらに高空間速度を採用できることを
見出し、本発明に到達したものである。
As a result of extensive studies including the selection of catalyst materials, the present inventors discovered that a catalyst containing at least one selected from the oxides of component A and at least one selected from the oxides of component B was integrated into a honeycomb shape. Chemically molded with a pore diameter of 3 to 12 m
It has been discovered that a catalyst having a range of It has been reached.

A成分としては、アルミニウムも使用可能であるが、ア
ルミニウム単独で使用する場合は排ガス中に含まれるS
Oxによる被毒およびダストに対する耐摩耗性の面で問
題があシ、アルミニウムを使用する場合は他A成分との
混合系で使用すると本発明の目的を満足する。尚、本発
明に採用される貫通孔の形としては四角形、六角形、波
型等いずれの形でもその相当直径が上記の範囲であれば
本目的に適用しうる。
Aluminum can also be used as the A component, but when aluminum is used alone, S contained in the exhaust gas
There are problems in terms of wear resistance against oxygen poisoning and dust, but when aluminum is used, it satisfies the purpose of the present invention when used in a mixed system with other component A. The shape of the through hole employed in the present invention may be square, hexagonal, wavy, or any other shape as long as its equivalent diameter is within the above range.

本発明触媒に用いる触媒成分の比率はA成分が酸化物の
形で30〜99重量パーセント、好ましくは40〜90
重量パーセント、B成分は酸化物の形で1〜70重量パ
ーセント、好ましくは10〜60重量パーセントの範囲
が適当である。
The ratio of the catalyst components used in the catalyst of the present invention is 30 to 99% by weight, preferably 40 to 99% by weight of component A in the form of oxide.
Suitable weight percentages for component B in oxide form range from 1 to 70 weight percent, preferably from 10 to 60 weight percent.

酸化物の出発原料としては酸化物、水酸化物、無機酸塩
、有機酸塩などとくにアンモニウム塩、硝酸塩、硫酸塩
あるいはハロゲン化物等から適当に選ぶことができる。
The starting material for the oxide can be appropriately selected from oxides, hydroxides, inorganic acid salts, organic acid salts, etc., especially ammonium salts, nitrates, sulfates, and halides.

本発明触媒は前記の様に触媒物質を一体化成型している
ため触媒物質が内部まで均一に分布しておル、ダストに
よル表層部が摩耗、剥離されても新しい触媒面が露出し
てくるため、摩耗、剥離による性能劣化はなく寿命的に
満足できる触媒である。
Since the catalyst of the present invention is integrally molded with the catalyst material as described above, the catalyst material is uniformly distributed throughout the catalyst, and even if the surface layer is worn away or peeled off by dust, a new catalyst surface will not be exposed. Because of this, there is no performance deterioration due to wear or peeling, and the catalyst has a satisfactory lifespan.

本発明触媒の通気抵抗は、粒状触媒の1 / 100以
下、そして従来よく使用されている比較的孔径の小さい
ハニカム型触媒の1/1o以下であり、このハニカム触
媒層のガス空塔速度1耐/秒に対し本発明触媒は約10
m/秒の空塔速度をとることができ、従って触媒反応器
の設計が容易となシ縦長で排ガス流断面積を小さくした
コンパクトな反応器を作ることができる。
The ventilation resistance of the catalyst of the present invention is 1/100 or less of that of a granular catalyst, and 1/10 or less of a conventionally used honeycomb catalyst with a relatively small pore size. /sec, whereas the catalyst of the present invention has a speed of about 10
A superficial velocity of m/sec can be obtained, and therefore the design of the catalytic reactor is easy, and a compact reactor with a vertically elongated structure and a small exhaust gas flow cross-sectional area can be manufactured.

尚、本発明触媒の調製法としてTtOz−V2O3系、
t’cはT i O2S t 02 V 20 s 系
テ示セtf 下記の通シである。まずT t 02また
はTtOz 5i02を調製する。TtOzの場合は、
たとえば四塩化チタンまたは借酸チタンなどのチタン塩
にアンモニアを添加し沈殿を生成せしめ、この沈殿を洗
滌、乾燥後150〜850Cで焼成せしめまずTtOz
をえる。TiO□−8i O2の場合は、同様に四塩化
チタンまたは硫酸チタンなどのチタン塩をシリカゾルと
共に混合し、アンモニアを添加[7て沈殿を生成せしめ
、この沈殿を洗滌、乾燥後150〜850℃で焼成せし
め二元系TiO2’5in2酸化物をえる。上記の方法
でえられたT i 02またはTjOz−8iOz と
バナジウム化合物を含む水溶液もしくは修酸あるいは塩
酸水溶液を混合し、さらに焼成時に分解飛散しうる有機
物の成型剤たとえばメチルセルローズ、ポリエチレンオ
キサイド、ポリアクリルアマイド、ポリビニルアルコー
ル、澱粉および適量の水を加え十分混練した後ハニカム
型に押出成型する。
In addition, as a method for preparing the catalyst of the present invention, TtOz-V2O3 system,
t'c is the T i O2S t 02 V 20 s system display tf. First, T t 02 or TtOz 5i02 is prepared. In the case of TtOz,
For example, ammonia is added to a titanium salt such as titanium tetrachloride or titanium borrowed acid to form a precipitate, and this precipitate is washed, dried, and then calcined at 150 to 850C.
I get it. In the case of TiO□-8i O2, similarly, titanium salt such as titanium tetrachloride or titanium sulfate is mixed with silica sol, and ammonia is added [7 to form a precipitate. This precipitate is washed and dried at 150 to 850°C. A sintered binary TiO2'5in2 oxide is obtained. T i 02 or TjOz-8iOz obtained by the above method is mixed with an aqueous solution containing a vanadium compound or an oxalic acid or hydrochloric acid aqueous solution, and an organic molding agent that can be decomposed and scattered during firing is added, such as methyl cellulose, polyethylene oxide, polyacrylic. Amide, polyvinyl alcohol, starch and an appropriate amount of water are added and thoroughly kneaded, followed by extrusion molding into a honeycomb mold.

その他触媒強度を高めるためにガラス繊維やガラス粉末
等を加えることも可能である。しがる後この成型体は5
0〜150で乾燥されさらに適度に酸素濃度を調節され
た雰囲気下300〜700℃、好ましくは350〜60
0’Cで5〜10時間、好ましくは2〜6時間焼成処理
されることによって所望の触媒かえられる。これ以外に
もTjOsまたはTtO,−8t、、の粉体と酸化バナ
ジウムの粉体を直接混練する方法で触媒を調製すること
もできる。
It is also possible to add glass fiber, glass powder, etc. to increase the strength of the catalyst. After tightening, this molded body is 5
Dry at 0 to 150°C and further under an atmosphere with an appropriately controlled oxygen concentration at 300 to 700°C, preferably 350 to 60°C.
A desired catalyst can be obtained by calcining at 0'C for 5 to 10 hours, preferably 2 to 6 hours. In addition to this, the catalyst can also be prepared by directly kneading powder of TjOs or TtO, -8t, and powder of vanadium oxide.

触媒成分を多成分化するような場合たとえばTtO2−
V2O11CuOまたはTiO2−8tew V2O5
−CuO系触媒について記せけバナジウム化合物および
銅化合物を含む溶液にT i 02またはT!0z−8
jOz粉体を加えて前記記載の方法によって調製できる
。かくして前記記載方法によって調製された本発明触媒
のBET表面積は30〜180 m”/?、細孔容積0
.3〜0 、5 cc/ ?を有している。
When the catalyst components are multi-component, for example, TtO2-
V2O11CuO or TiO2-8tew V2O5
-CuO-based catalyst: T i 02 or T! in a solution containing a vanadium compound and a copper compound. 0z-8
It can be prepared by the method described above with the addition of jOz powder. Thus, the BET surface area of the catalyst of the present invention prepared by the method described above is 30 to 180 m"/?, and the pore volume is 0.
.. 3~0,5 cc/? have.

本発明の触媒が使用される処理の対象となる排排ガスの
如くクレゾール、フェノール、ホルマリン、キシレン、
トルエン、ベンゼン等の有i jI 剤を含有する排ガ
ス、合成繊維製造工程中に排出されるホルムアルデヒド
含有排ガス、無水フタル酸、無水マレイン酸製造プロセ
スからの刺激臭の強い種々の可燃性有機化合物含有排ガ
ス、樹脂加工ガス、での他裂蛾土楊、胸造工場、都市−
掃施設等から排出される悪臭排ガスであるが、とくに本
発明触媒はスクラップ予熱炉排ガス、ゴミ焼却炉排ガス
等ダスト含量が多く(5〜4097m” )かつそのダ
スト中に酸化鉄など硬い金属酸化物が含まれるような悪
臭排ガスを処理するのに優れた効果を発揮する。
The exhaust gas to be treated using the catalyst of the present invention includes cresol, phenol, formalin, xylene,
Exhaust gas containing additives such as toluene and benzene, formaldehyde-containing exhaust gas emitted during the synthetic fiber manufacturing process, and exhaust gas containing various flammable organic compounds with strong pungent odors from the phthalic anhydride and maleic anhydride manufacturing process. , Resin Processing Gas, Other Craftsman Toyang, Chest Factory, City-
The catalyst of the present invention is a foul-smelling exhaust gas emitted from cleaning facilities, etc., and the catalyst of the present invention has a high dust content (5 to 4097 m'') such as scrap preheating furnace exhaust gas and garbage incinerator exhaust gas, and hard metal oxides such as iron oxide are contained in the dust. It is highly effective in treating foul-smelling exhaust gases that contain

実施例 1 チタンおよびケイ素を含む2元系酸化物(TiO□S 
i Oz )を以下に述べる方法でP;11製し、た。
Example 1 Binary oxide containing titanium and silicon (TiO□S
P;11 was prepared using the method described below.

水8゜tに四塩化チタン[TiCl4:l l 1.4
にりを水冷攪拌下、徐々に滴下し、次にスノーテックス
−〇(日量化学製シリカゾル8402として20〜21
重量パーセント含有)4.5に9を加えた。これを温度
約30℃に維持しつつ、よく攪拌しながらアンモニア水
を徐々に滴下し、pHが7になるまで加え、さらにその
まま放置して2時間熟成しに0がくしてえられたTiO
25t02ゲルを漣過水洗後120℃でlO@間乾燥し
、さらに水洗した後50(Ic、にて3時間焼成E、た
。えられた粉体の組成は酸化′。′物゛と′してTj0
2/S to2=4 (モル比)であった。
Titanium tetrachloride [TiCl4:l l 1.4
Garlic was gradually added dropwise while stirring with water cooling, and then Snowtex-〇 (20 to 21
9 was added to 4.5 (weight percent content). While maintaining the temperature at about 30°C, aqueous ammonia was gradually added dropwise while stirring well, until the pH reached 7, and the mixture was left to mature for 2 hours.
The 25t02 gel was washed with water, dried at 120°C for 10 hours, and after further washing with water, it was calcined for 3 hours at 50°C.The composition of the resulting powder was oxidized. Tj0
2/S to2=4 (molar ratio).

シュウ酸420tを水900−に溶解し、これにメタバ
ナジン酸アンモニウム214fを加え溶解した液に、上
記粉体1500Fさらに澱粉759を加え、よく混合し
、ニーグーでよく練シ合わせた。さらに適量の水を加え
つつ練った後、それぞれ孔径(貫通孔の相当直径) 4
 am、6 tm、 8 wnで開孔率各々64%の3
種類のハニカム型に押出成型し120℃で6時間乾燥し
た後酸素濃度を15パーセント以下に調節された雰囲気
下450Cで6時間焼成した。えられた完成触媒の組成
は酸化物としての重量百分率でTiO25jOz:V2
0B=90:10でBET表面積120 ?F+2/l
 、細孔容積o、ascc/rであった。
420 t of oxalic acid was dissolved in 900 g of water, 214 f of ammonium metavanadate was added thereto, and to the dissolved solution, 1500 F of the above powder and 759 starch were added, mixed well, and kneaded well with a Nigu. After kneading while adding an appropriate amount of water, each hole diameter (equivalent diameter of the through hole) 4
am, 6 tm, 8 wn, each with a pore area of 64% 3
The product was extruded into a honeycomb mold of various types, dried at 120°C for 6 hours, and then fired at 450°C for 6 hours in an atmosphere with an oxygen concentration of 15% or less. The composition of the finished catalyst obtained was TiO25jOz:V2 in weight percentage as oxide.
0B=90:10 and BET surface area 120? F+2/l
, pore volume o, ascc/r.

本触媒を用いダスト濃度10 t /N m 3、空塔
線速度35m/秒の空気流下で強制摩耗、剥離テストを
100時間実施し、テスト前後の触媒を主たる悪臭物質
であるアセトアルデヒドの処理テスト(実験−A)に供
した。また本触媒をダスト濃度15t/N、”、空塔線
速度15および30m/秒で強制目詰シテスト(実験−
B)に供した。比較のため従来タイプのハニカム触媒で
も同様のテストを実施した。
Using this catalyst, forced abrasion and peeling tests were carried out for 100 hours under an air flow with a dust concentration of 10 t/N m3 and a superficial linear velocity of 35 m/sec. It was used for experiment-A). In addition, this catalyst was subjected to a forced clogging test (experiment-
B). For comparison, a similar test was conducted using a conventional type of honeycomb catalyst.

従来タイプのハニカム触媒は貫通孔の相当直径1.5m
m(210セル/平方インチ)のコージェライト質ハニ
カム担体に活性アルミナを担持し触媒物質としてパラジ
ウムを0.3重量パーセント(22Pd/l)担持した
ものを使用した。
Conventional type honeycomb catalyst has an equivalent diameter of through holes of 1.5 m.
A cordierite honeycomb carrier of m (210 cells/square inch) on which activated alumina was supported and 0.3 weight percent (22 Pd/l) of palladium as a catalyst material was used.

表 1 試験結果(実験−A) テスト条件 5V=10,000 h r 1.温度3
5(1、ガス組成:アルデヒド 300 ppm。
Table 1 Test results (Experiment-A) Test conditions 5V=10,000 hr 1. temperature 3
5 (1, gas composition: aldehyde 300 ppm.

H*0 20% 残シ空気 ダスト:平均粒径13μ(主成分酸化鉄)上記テスト結
果よシ本発明触媒においてはダストによる摩耗、剥離に
よる性能劣化は認められなかったのに対し、従来触媒は
性能劣化が著るしかった。
H*0 20% Residual air dust: average particle size 13μ (main component iron oxide) According to the test results above, the catalyst of the present invention showed no performance deterioration due to wear or peeling due to dust, whereas the conventional catalyst The performance deterioration was noticeable.

表 2 試験結果(実験−B) 上記テスト結果よシ本発明触媒においては、目詰勺およ
び通気抵抗上昇は認められなかったのに対し、従来触媒
の通気抵抗上昇は著るしかった。
Table 2 Test Results (Experiment-B) According to the above test results, no clogging or increase in ventilation resistance was observed in the catalyst of the present invention, whereas the increase in ventilation resistance in the conventional catalyst was significant.

実施例 2 酸化チタン(TiO2)を以下に述べる方法で調製した
。水sotに四塩化チタン[’l’tC14:) 11
.4に9を水冷攪拌下、徐々に滴下し、これを温度約3
0℃に維持しつつ、よく撹拌しながらアンモニア水を徐
々に滴下しpHが7になるまで加え、さらにそのまま放
置L〜て2時間熟成した。かくしてえられたT t 0
2ゲルを沖過水洗後120℃で10時間乾燥し、さらに
水洗した後SOO℃にて3時間焼成した。シュウ酸42
07を水900 m/に溶解し、これにメタバナジン酸
アンモニウム214fを加え溶解した液に、上記粉体1
500f’さらに澱粉75fを加えよく混合し、ニーダ
−でよく練り合わせた。さらに適量の水を加えつつ練っ
た後、孔径(貫通孔の相当直径) 4 m、6 van
、8 tmvで開孔率者々64%の3種類のハニカム型
押出成型し120℃で6時間乾燥した後酸素濃度を15
%以下に調節した雰囲気下450℃で6時間焼成した。
Example 2 Titanium oxide (TiO2) was prepared by the method described below. Titanium tetrachloride ['l'tC14:) 11
.. 9 was gradually added dropwise to 4 while stirring with water cooling, and the mixture was heated to a temperature of about 3.
While maintaining the temperature at 0° C. and stirring well, aqueous ammonia was gradually added dropwise until the pH reached 7, and the mixture was left to mature for 2 hours. Thus obtained T t 0
2 gels were washed with water, dried at 120°C for 10 hours, further washed with water, and then baked at SOO°C for 3 hours. Oxalic acid 42
07 was dissolved in 900 m of water, and 214f of ammonium metavanadate was added to the solution.
500f' and 75f of starch were added and mixed well, and kneaded well with a kneader. After kneading while adding an appropriate amount of water, the pore diameter (equivalent diameter of the through hole) was 4 m, 6 van.
, 8 tmv, three types of honeycomb molds with porosity of 64% were extruded, and after drying at 120°C for 6 hours, the oxygen concentration was reduced to 15%.
% or less at 450° C. for 6 hours.

えられた完成触媒の組成は酸化物としての重量百分率−
’c TiO2: V20==9o : lo −t’
 BET表面積60m2/l、細孔容積o、a2cc/
rであった。
The composition of the finished catalyst obtained is the weight percentage as oxides -
'c TiO2: V20==9o: lo -t'
BET surface area 60m2/l, pore volume o, a2cc/
It was r.

本触媒をもちい実施例1と同様の処理テストを行った。A treatment test similar to that in Example 1 was conducted using this catalyst.

表3 試験結果 実施例 3〜5 実施例1で用いたと同じT + 02− S j 02
粉体を使用し、実施例1の調製法に準じ、TiO2−8
in2に添加する触媒成分を変えて触媒を調製した。出
発原料としては鞘酸銅、硝酸コバルト、硝酸鉄を用いた
。見られた完成触媒の組成は酸化物として重量百分率で
それぞれTJO2−8i02:CuO−9o: 1o、
TiO2−8j02−CoO=90:10、TiO2−
8iO□:Fe203=90:10でB E T fi
面積はすべて約125m 2/ ?、細孔容積もすべて
約o、37cc/yテあった。
Table 3 Test results Examples 3 to 5 Same as used in Example 1 T + 02- S j 02
Using powder, according to the preparation method of Example 1, TiO2-8
Catalysts were prepared by changing the catalyst components added to in2. Copper sheath acid, cobalt nitrate, and iron nitrate were used as starting materials. The composition of the finished catalyst found was TJO2-8i02:CuO-9o: 1o, respectively in weight percentage as oxides.
TiO2-8j02-CoO=90:10, TiO2-
8iO□:Fe203=90:10 B E T fi
The total area is approximately 125m2/? The pore volumes were all approximately 37 cc/y.

該触媒を用い実施例1と同様の処理テストを行った。A treatment test similar to that in Example 1 was conducted using the catalyst.

表4 試験結果Table 4 Test results

Claims (1)

【特許請求の範囲】[Claims] (1) 触媒A成分として、チタン、ケイ素およびジル
コニウムよシなる群から選ばれた少なくとも1fiJi
の酸化物ならびに触媒B成分として、銅、クロム、鉄、
バナジウム、タングステン、マンガン、ニッケル、コバ
ルト、モリブデンおよび鉛よυなる群から選ばれた少な
くとも1棹の酸化物をそれぞれ含んでなる触媒組成物で
あり、かつこれが複数の貫通孔を有する一体構造物に成
型され、その平均孔直径が3〜12+mの範囲であるこ
とを特徴とするハニカム型脱臭触媒。
(1) As the catalyst A component, at least 1fiJi selected from the group consisting of titanium, silicon, and zirconium.
Copper, chromium, iron,
a catalyst composition each comprising at least one oxide selected from the group consisting of vanadium, tungsten, manganese, nickel, cobalt, molybdenum, and lead; A honeycomb-type deodorizing catalyst characterized in that it is shaped and has an average pore diameter in the range of 3 to 12+ m.
JP59066759A 1984-04-05 1984-04-05 Honeycomb shaped deodorizing catalyst Granted JPS60212234A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59066759A JPS60212234A (en) 1984-04-05 1984-04-05 Honeycomb shaped deodorizing catalyst

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59066759A JPS60212234A (en) 1984-04-05 1984-04-05 Honeycomb shaped deodorizing catalyst

Publications (2)

Publication Number Publication Date
JPS60212234A true JPS60212234A (en) 1985-10-24
JPH049581B2 JPH049581B2 (en) 1992-02-20

Family

ID=13325128

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59066759A Granted JPS60212234A (en) 1984-04-05 1984-04-05 Honeycomb shaped deodorizing catalyst

Country Status (1)

Country Link
JP (1) JPS60212234A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266143A (en) * 1986-05-12 1987-11-18 Kobe Steel Ltd Catalyst molded body
JPS63181764A (en) * 1987-01-22 1988-07-26 株式会社日本触媒 Deodorizing method
JPS63182032A (en) * 1987-01-21 1988-07-27 Nippon Shokubai Kagaku Kogyo Co Ltd Deodorizing catalyst
JPS63267440A (en) * 1987-04-24 1988-11-04 Nippon Shokubai Kagaku Kogyo Co Ltd Deodorizing catalyst
JPS63267362A (en) * 1987-04-24 1988-11-04 Nippon Shokubai Kagaku Kogyo Co Ltd Deodorizing method by ozone
JPH0659388B2 (en) * 1989-05-01 1994-08-10 アライド―シグナル・インコーポレーテッド Catalytic destruction of organic halogen compounds
JP2006068662A (en) * 2004-09-03 2006-03-16 Nippon Shokubai Co Ltd Treatment method for exhaust gas containing odor component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4520491B2 (en) * 2007-07-09 2010-08-04 オリンパス株式会社 Capsule medical system

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5277878A (en) * 1975-12-24 1977-06-30 Ngk Insulators Ltd Method of removing nitrogen oxides from exhaust gases
JPS52147589A (en) * 1976-06-03 1977-12-08 Mitsubishi Chem Ind Ltd Production of vanadium oxide catalyst

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5277878A (en) * 1975-12-24 1977-06-30 Ngk Insulators Ltd Method of removing nitrogen oxides from exhaust gases
JPS52147589A (en) * 1976-06-03 1977-12-08 Mitsubishi Chem Ind Ltd Production of vanadium oxide catalyst

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62266143A (en) * 1986-05-12 1987-11-18 Kobe Steel Ltd Catalyst molded body
JPS63182032A (en) * 1987-01-21 1988-07-27 Nippon Shokubai Kagaku Kogyo Co Ltd Deodorizing catalyst
JPS63181764A (en) * 1987-01-22 1988-07-26 株式会社日本触媒 Deodorizing method
JPH0371903B2 (en) * 1987-01-22 1991-11-14 Nippon Shokubai Kagaku Kogyo Kk
JPS63267440A (en) * 1987-04-24 1988-11-04 Nippon Shokubai Kagaku Kogyo Co Ltd Deodorizing catalyst
JPS63267362A (en) * 1987-04-24 1988-11-04 Nippon Shokubai Kagaku Kogyo Co Ltd Deodorizing method by ozone
JPH0528148B2 (en) * 1987-04-24 1993-04-23 Nippon Catalytic Chem Ind
JPH0586253B2 (en) * 1987-04-24 1993-12-10 Nippon Catalytic Chem Ind
JPH0659388B2 (en) * 1989-05-01 1994-08-10 アライド―シグナル・インコーポレーテッド Catalytic destruction of organic halogen compounds
JP2006068662A (en) * 2004-09-03 2006-03-16 Nippon Shokubai Co Ltd Treatment method for exhaust gas containing odor component
JP4499512B2 (en) * 2004-09-03 2010-07-07 株式会社日本触媒 Method for treating exhaust gas containing odor components

Also Published As

Publication number Publication date
JPH049581B2 (en) 1992-02-20

Similar Documents

Publication Publication Date Title
JP3326836B2 (en) Catalyst body and method for producing catalyst body
JP4860076B2 (en) Process for producing a catalyst for selective catalytic reduction of nitrogen oxides
JP2730987B2 (en) Catalyst for removing nitrogen oxides and method for removing nitrogen oxides using the catalyst
KR101982018B1 (en) Catalyst- Coated Filters Which Have Increased Catalytic Activity By Adding Lithium Element
EP3393630A1 (en) A catalyst bed and method for reducing nitrogen oxides
JPS60212234A (en) Honeycomb shaped deodorizing catalyst
KR100518957B1 (en) Process for purification of exhaust gases
EP3393629A1 (en) A catalyst bed and method for reducing nitrogen oxides
JPS60220148A (en) Honeycomb shaped deodorizing catalyst
JP2916377B2 (en) Ammonia decomposition catalyst and method for decomposing ammonia using the catalyst
JP3604740B2 (en) Ozone decomposition catalyst and ozone decomposition method
JP3091820B2 (en) Exhaust gas deodorization and denitration catalyst and deodorization and denitration method using the catalyst
JP2001286734A (en) Method for decomposing chlorinated organic compound and method for treating combustion exhaust gas
JP2005342711A (en) Denitration method of diesel engine exhaust gas
JPH09220468A (en) Catalyst for removal of nox in exhaust gas, its production and method for removing nox in exhaust gas using same
JP3639790B2 (en) Catalyst filter
JP2982623B2 (en) Detoxification method of ammonia-containing exhaust gas
JPS61230748A (en) Catalyst for purifying nitrogen oxide
JP3825216B2 (en) Exhaust gas treatment method and catalyst-carrying ceramic filter
JPH04108542A (en) Ozone decomposing catalyst
JP3761139B2 (en) Exhaust gas purification equipment
JP4348912B2 (en) Catalyst for decomposing chlorinated organic compound and method for decomposing chlorinated organic compound
JP2006116537A (en) Method for treating waste gas
JP2005081283A (en) Oxidation catalyst for removing harmful gas
KR20180121848A (en) Catalyst- Coated Filters Which Have Increased Catalytic Activity By Adding Lithium Element

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees