JPS60208629A - Light deflector device - Google Patents
Light deflector deviceInfo
- Publication number
- JPS60208629A JPS60208629A JP59063414A JP6341484A JPS60208629A JP S60208629 A JPS60208629 A JP S60208629A JP 59063414 A JP59063414 A JP 59063414A JP 6341484 A JP6341484 A JP 6341484A JP S60208629 A JPS60208629 A JP S60208629A
- Authority
- JP
- Japan
- Prior art keywords
- mirror
- polyhedral
- dynamic pressure
- bearing part
- polyhedron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/10—Sliding-contact bearings for exclusively rotary movement for both radial and axial load
- F16C17/102—Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
- F16C17/105—Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one bearing surface providing angular contact, e.g. conical or spherical bearing surfaces
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C17/00—Sliding-contact bearings for exclusively rotary movement
- F16C17/10—Sliding-contact bearings for exclusively rotary movement for both radial and axial load
- F16C17/102—Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure
- F16C17/107—Sliding-contact bearings for exclusively rotary movement for both radial and axial load with grooves in the bearing surface to generate hydrodynamic pressure with at least one surface for radial load and at least one surface for axial load
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C25/00—Bearings for exclusively rotary movement adjustable for wear or play
- F16C25/02—Sliding-contact bearings
- F16C25/04—Sliding-contact bearings self-adjusting
- F16C25/045—Sliding-contact bearings self-adjusting with magnetic means to preload the bearing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C39/00—Relieving load on bearings
- F16C39/06—Relieving load on bearings using magnetic means
- F16C39/063—Permanent magnets
- F16C39/066—Permanent magnets with opposing permanent magnets repelling each other
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Magnetic Bearings And Hydrostatic Bearings (AREA)
- Dot-Matrix Printers And Others (AREA)
- Laser Beam Printer (AREA)
- Mechanical Optical Scanning Systems (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は、多面鏡を回転することKよりレーザ光を走査
する光偏向装置5に関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an optical deflection device 5 that scans a laser beam by rotating a polygon mirror.
近時、光偏向装置が、レーザ光によシ文字、記号を印字
するMI、子写真転写方式のプリンタ(レーザプリンタ
)における中枢機構として導入されている。Recently, optical deflection devices have been introduced as central mechanisms in MI and photo transfer type printers (laser printers) that print characters and symbols using laser light.
とのレーザプリンタにおいては、高速で印字を行わせる
ためにレーザ光を走査させる多面鏡を高速回転する必要
がある。そのため一般に、多面鏡が環装支持された回転
軸を磁気スラスト軸受部によシ非接触で浮上させるとと
もに、一対の動圧気体ジャーナル軸受部によシ軸支して
いる。そして。In such laser printers, it is necessary to rotate the polygon mirror that scans the laser beam at high speed in order to print at high speed. Therefore, generally, a rotating shaft on which a polygon mirror is supported is floated in a non-contact manner by a magnetic thrust bearing, and is supported by a pair of dynamic pressure gas journal bearings. and.
回転軸に装着されたロータと1回転軸に対して固定され
たステータとによシ回転軸を回転駆動するようにしてい
る。その結果、装置全体が大型化せざるを得す、光偏向
装置の軽量化、小型化志向の障害となっていた。さらに
上記多面鏡は、毎分数千〜敵方回転の高速回転を必要と
するので、軸変位の方向とその変位に対する復元力の方
向が一致していないことによって生じるハーフフレケン
シイ* 7− yv (HFW; Half Freq
uency Whirl )K基因して回転が不安定化
しやすい。そこで、上記動圧気体ジャーナル軸受部の寸
法精度及び両者の同心度を厳重に管理する必要がある。The rotating shaft is rotated by a rotor attached to the rotating shaft and a stator fixed to the rotating shaft. As a result, the overall size of the device has to be increased, which is an impediment to efforts to reduce the weight and size of the optical deflection device. Furthermore, since the above-mentioned polygon mirror requires high-speed rotation of several thousand rotations per minute, half frequency occurs due to the mismatch between the direction of axial displacement and the direction of the restoring force against that displacement. yv (HFW; Half Freq
rotation is likely to become unstable due to K. Therefore, it is necessary to strictly control the dimensional accuracy of the dynamic pressure gas journal bearing and the concentricity of both.
しかし、2種類以上の軸受が組込まれていることと、形
状が複雑で部品点数が多いことによシ、所望の加工精度
及〔発明の目的〕
本発明は、上記事情に着目してなされたもので。However, due to the fact that two or more types of bearings are incorporated, the shape is complex, and the number of parts is large, it is difficult to achieve the desired machining accuracy. Something.
回転精度が高く且つ製造が容易な光偏向装置を提供する
ことを目的とする。It is an object of the present invention to provide an optical deflection device that has high rotational accuracy and is easy to manufacture.
多面体部を磁気軸受部により直接的に浮遊させるととも
に、浮遊している多面体部を直接回転駆動し、さらに多
面体部に同軸かつ非接触で嵌入している固定軸との間に
発生し7た動圧により多面体部を非接触で軸支するよう
にしたものである。The polyhedral part is directly suspended by the magnetic bearing part, the floating polyhedral part is directly rotationally driven, and the movement generated between the polyhedral part and the fixed shaft that is coaxially and non-contactly fitted into the polyhedral part is The polyhedral part is supported non-contact by pressure.
以下1本発明の一実施例を図面を参照して詳述する。 An embodiment of the present invention will be described below in detail with reference to the drawings.
第1図及び第2図は1本実施例の光偏向装置を示してい
る。この光偏向装置は、円筒状の格納部(図示せず)と
、この格納部の中空部に格納され九円板状の多面体部(
1)と、この多面体部(1)を浮遊させ軸方向にかかる
力を支持する磁気軸受部(2)と。1 and 2 show one embodiment of the optical deflection device. This optical deflection device includes a cylindrical storage part (not shown) and a nine-disk-shaped polyhedral part (not shown) stored in the hollow part of this storage part.
1), and a magnetic bearing part (2) that suspends this polyhedral part (1) and supports the force applied in the axial direction.
多面体部(1)の軸方向に直交する径方向の力及び軸方
向の力を支持する動圧気体軸受部(3)と、多面体部(
1)を毎分敵方回転以上の高速で回転させる回転駆動部
(4)とから構成されている。上記格納部には。A hydrodynamic gas bearing part (3) that supports the radial force perpendicular to the axial direction of the polyhedral part (1) and the axial force;
1) at a high speed higher than the enemy rotation per minute. In the storage section above.
レーザ光を多面体部(1)に入光させ再び出光させるた
めの窓部(図示せず)が設けられている。また、上記多
面体部(1)は1例えば銅製であって、外周面が例えば
正8角形に形成されている。また、多面体部(1)の上
端面には、円柱状の取付部(1a)が同軸に突設されて
いる。一方、動圧気体軸受部(3)は。A window portion (not shown) is provided for allowing laser light to enter the polyhedral portion (1) and exit again. Further, the polyhedral portion (1) is made of copper, for example, and has an outer peripheral surface formed in a regular octagonal shape, for example. Furthermore, a cylindrical attachment portion (1a) is coaxially protruded from the upper end surface of the polyhedral portion (1). On the other hand, the hydrodynamic gas bearing section (3).
多面体部(1)の中心軸部に上端が大径側となって同軸
に穿設されたテーバ状の貫通孔(5)と、格納部の一部
をガす上部基体(6)に垂設され貫通孔(5)に非接触
で嵌合された固定軸(7)とからなっている。この固定
軸(7)は1貫通孔(5)の上端から下端まで嵌入され
ていて、嵌入部分(7a)の形状は1貫通孔(5)の形
状に照応して円錐台状に形成されている。そうして、嵌
入部分(7a)の外周面と貫通孔(5)の内周面との片
側間隙は、数μmないし数10μmとなるように設定さ
れている。また、嵌入部分(7a)の外周面には、最大
深さ数10pm以下の例えばヘリングボーン(Herr
inpbone )状の動圧発生溝(8)・・・が刻設
されている。さらに、磁気軸受部(2)は、取付部(1
a)に環装され且つ軸方向に磁化している第1の永久磁
石(9)と、この第1の永久磁石(9)に対向するよう
に上部基体(6)に固着され且つ軸方向に磁化している
第2の永久磁石Qlとからなっている。上記第1及び第
2の永久磁石(9)、(IIは、互に異極同志が対向し
。A tapered through hole (5) is coaxially drilled in the central axis of the polyhedral part (1) with the upper end facing the larger diameter side, and a vertically extending hole is provided in the upper base (6) that exposes a part of the storage part. and a fixed shaft (7) fitted into the through hole (5) without contact. This fixed shaft (7) is fitted into the first through hole (5) from the upper end to the lower end, and the fitted portion (7a) is formed into a truncated conical shape corresponding to the shape of the first through hole (5). There is. The gap on one side between the outer circumferential surface of the fitting portion (7a) and the inner circumferential surface of the through hole (5) is set to be several μm to several tens of μm. Further, the outer circumferential surface of the fitting portion (7a) is provided with, for example, a herringbone (herringbone) having a maximum depth of several tens of pm or less.
Dynamic pressure generating grooves (8) shaped like inpbones are carved. Furthermore, the magnetic bearing part (2) has a mounting part (1
a) a first permanent magnet (9) which is ring-encircled and magnetized in the axial direction; It consists of a magnetized second permanent magnet Ql. The first and second permanent magnets (9) and (II) have opposite polarities facing each other.
両者間に多面体部(1)を浮遊させる吸引力が発生する
ようになっていて、いわゆる吸引型の磁気スラスト軸受
を構成している。つまシ、多面体部(1)は。An attractive force is generated between the two to suspend the polyhedral part (1), forming a so-called attraction type magnetic thrust bearing. Tsumashi, polyhedron part (1).
磁気軸受部(2)により、非接触で懸吊される。しかし
て1回転駆動部(2)は、ブラシレスフラットモータ(
Brushless Flat Motor )であっ
て、多面体部(1)の上端面に一部を円環状に露出させ
て埋設されているロータQl)と、このロータ住υに対
向するように格納部の一部をなす下部基体(laに固設
されているステータQJ1とからなっている。It is suspended without contact by the magnetic bearing part (2). However, the one-rotation drive unit (2) is a brushless flat motor (
Brushless Flat Motor), which has a rotor Ql) embedded in the upper end surface of the polyhedral part (1) with a part exposed in an annular shape, and a part of the storage part facing the rotor housing υ. The stator QJ1 is fixed to the lower base body (la).
しかして、上記構成の光偏向装置において1回転駆動部
係)に給電して、磁気軸受部(2)によシ浮遊している
多面体部(1)を回転させると、動圧発生溝(8)・・
・によシ動圧が発生する。その結果、動圧気体軸受部(
3)にて、多面体部(1)の径方向及び軸方向の負荷が
非接触で支持される。したがって、多面体部(1)は、
高速回転下においても高い安定性をもって高精度で回転
することができる。ちなみに、多面体部(1)の回転数
が毎分1万回転で1回転ふれまわシが1μm以下となシ
、正確なレーザ光の走査が可能となる。In the optical deflection device having the above configuration, when power is supplied to the one-rotation drive unit (1-rotation drive unit) and the polyhedral part (1) floating on the magnetic bearing part (2) is rotated, the dynamic pressure generating groove (8 )・・
・Dynamic pressure is generated. As a result, the hydrodynamic gas bearing (
3), the loads in the radial and axial directions of the polyhedral portion (1) are supported without contact. Therefore, the polyhedral part (1) is
It can rotate with high stability and precision even under high speed rotation. Incidentally, if the rotation speed of the polyhedral part (1) is 10,000 revolutions per minute and the one-rotation deflection is 1 μm or less, accurate laser beam scanning is possible.
このように1本実施例の光偏向装置は、従来のように、
多面体部(1)本体に回転軸が同軸に連結されていす、
多面体部(1)単独での回転が可能となる。In this way, the optical deflection device of this embodiment, like the conventional one,
Polyhedral part (1) A chair in which a rotating shaft is coaxially connected to the main body,
Rotation of the polyhedral part (1) alone becomes possible.
したがって、多面体部(1)だけの加工精度で、高い回
転精度を維持できる。また、小型化が可能となるととも
に1組立及び調整がすこぶる容易となる。Therefore, high rotation accuracy can be maintained with the processing accuracy of only the polyhedral portion (1). Furthermore, it is possible to downsize the device, and it is extremely easy to assemble and adjust the device.
つぎに1本発明の他の実施例について第3図及び第4図
を参照して述べる。Next, another embodiment of the present invention will be described with reference to FIGS. 3 and 4.
本実施例の光偏向装置は1円筒状の格納部(図示せず)
と、この格納部の中空部に格納された円板状の多面体鏡
a荀と、この多面体部Iを浮遊させ軸方向にかかる力を
支持する磁気軸受部(151と、多面体#Ia委の軸方
向の力及び軸方向に直交する径方向の力を支持する動圧
気体軸受部aeと、多面体鋺(141を毎分致方回転以
上の高速で回転させる回転駆動部(Lηとから構成され
ている。上記格納部には。The optical deflection device of this embodiment has a cylindrical housing (not shown).
, a disk-shaped polyhedral mirror A stored in the hollow part of this storage part, a magnetic bearing part (151) that suspends this polyhedron part I and supports the force applied in the axial direction, and an axis of the polyhedron #Ia It is composed of a dynamic pressure gas bearing part ae that supports the force in the direction and the force in the radial direction orthogonal to the axial direction, and a rotation drive part (Lη) that rotates the polyhedral spatula (141) at a high speed of more than 100 revolutions per minute. In the storage section above.
レーザ光を多面体部(13に入光させ再び出光させるた
めの窓部(図示せず)が設けられている。上記多面体部
04)は1例えば銅製であって、外周面が例えば′iE
8角形に形成されている。また、多面体部Qくの上端面
には、円柱状の取付部α樽が同軸に突設されている。一
方、動圧気体軸受部tteは、多面体部Iの取付部α榎
に同軸に穿設された盲孔(11と、格納部の一部をなす
上部基体(4)に垂設され盲孔(11に非接触で嵌合さ
れた円柱状の固定軸Qυと、多面体部(14)の下端面
に円環状かつ同軸に突設された第1の対向部Q力と、格
納部の一部をなす下部基体(ハ)に対向部12邊に対峙
するように円環状に突設された第2の対向部(至)とか
らなっている。上記固定軸C!】)の盲孔α場に嵌入し
ている部分の外周面には、最大深さ数10.am以以下
へリングボーy (Herringbone )状の第
1の動圧発生溝Q最・・・が刻設されている。また。A window portion (not shown) is provided for allowing the laser beam to enter the polyhedral portion (13) and output it again.The polyhedral portion 1 is made of copper, for example, and has an outer peripheral surface of,
It is formed into an octagon. Furthermore, a cylindrical mounting portion α barrel is coaxially protruded from the upper end surface of the polyhedral portion Q. On the other hand, the dynamic pressure gas bearing part tte includes a blind hole (11) coaxially bored in the mounting part α of the polyhedral part I, and a blind hole (11) vertically provided in the upper base body (4) forming a part of the storage part. 11, a cylindrical fixed shaft Qυ that is fitted in a non-contact manner to the polyhedral part (14), a first opposing part Q force that is annularly and coaxially protruded from the lower end surface of the polyhedral part (14), and a part of the storage part. It consists of a second opposing part (to) protruding in an annular shape so as to face the opposing part 12 on the lower base (c).In the blind hole α field of the fixed axis C! A first dynamic pressure generating groove Q in the shape of a Herringbone is carved on the outer circumferential surface of the fitted portion to a maximum depth of several tens of am or less.
第2の対向部1j4)の上端面には、最大深さ数10μ
m以下のスパイラル状の第2の動圧発生溝C2Q・・・
が刻設されている。さらに、固定軸(21)の外周面と
盲孔a9の内局面との間隙及び第1の対向部12りと第
2の対向部(財)との間隙は、数μmないし数10μm
に設定されている。一方、磁気軸受部(I9は、多面体
部(14)の底面に同軸に埋設され軸方向に磁化された
第1の永久磁石Q7)と、この第1の永久磁石(5)に
対向するように下部基体(ハ)に固着され軸方向に磁化
された第2の永久磁石(2印とからなっている。と記第
1及び第2の永久磁石(5)、翰は、互に同極同志が対
向し。The upper end surface of the second opposing portion 1j4) has a maximum depth of several tens of μm.
Spiral-shaped second dynamic pressure generating groove C2Q with a diameter of m or less...
is engraved. Furthermore, the gap between the outer circumferential surface of the fixed shaft (21) and the inner surface of the blind hole a9 and the gap between the first opposing part 12 and the second opposing part are several μm to several tens of μm.
is set to . On the other hand, a magnetic bearing part (I9 is a first permanent magnet Q7 coaxially embedded in the bottom surface of the polyhedral part (14) and magnetized in the axial direction) and A second permanent magnet (2 marks) is fixed to the lower base (C) and magnetized in the axial direction. are facing each other.
両者間に多面体鏡α荀を浮遊させる反発力が発生するよ
うになっていて、いわゆる反発型の磁気スラスト軸受を
構成している。しかして1回転駆動部(17)は、ブラ
シL/ X 7 ラyトモ−p (Brush 1es
s FlatMotor)であって、多面体部Iの取付
部aυの外周に環装されているロータ(2)と、このロ
ータ(2)に対向するように上部基体ct3に固設され
ているステータ■とからなっている。A repulsive force is generated between the two that suspends the polyhedral mirror α, forming a so-called repulsion type magnetic thrust bearing. Therefore, the one-rotation drive unit (17) has a brush L/X7 light motor (Brush 1es
s Flat Motor), which includes a rotor (2) ring-mounted around the outer periphery of the attachment part aυ of the polyhedral part I, and a stator (2) fixed to the upper base body ct3 so as to face the rotor (2). It consists of
しかして、上記構成の光偏向装置において1回転駆動部
(lηに給電して、磁気軸受部α9によシ浮遊している
多面体部αくを回転させると、第1及び第2の動圧発生
溝(ハ)・・・、(イ)・・・によシ動圧が発生する。Therefore, in the optical deflection device having the above configuration, when power is supplied to the one-rotation drive unit (lη) and the polyhedral part α floating on the magnetic bearing part α9 is rotated, the first and second dynamic pressures are generated. Dynamic pressure is generated in the grooves (C)..., (B)...
その結果、固定軸(2υと盲孔α優とからなる部位にて
多面体部(14)の径方向の負荷が非接触で支持金れる
。As a result, the load in the radial direction of the polyhedral portion (14) is transferred to the support plate in a non-contact manner at the portion consisting of the fixed shaft (2υ) and the blind hole α.
他方、第1′8tび第2の対向部(2LC24)部位に
て、多面体鏡α滲の軸方向の負荷が非接触で支持される
。On the other hand, the load in the axial direction of the polyhedral mirror α is supported in a non-contact manner at the 1'8t and second opposing portions (2LC24).
したがって、多面体部(14)は、高速回転下において
も高精度かつ安定して回転することができる。 1この
ように、本実施例の光偏向装置は1回転軸が不斐となシ
多面体鏡(14)だけで回転することができる。したが
って、多面体部(14)だけの加工精度で。Therefore, the polyhedral portion (14) can rotate with high precision and stability even under high speed rotation. 1 In this manner, the optical deflection device of this embodiment can be rotated by only the polygon mirror (14), with the rotation axis being constant. Therefore, the processing accuracy is only for the polyhedral part (14).
高い回転精度を*jG持できる。また、小型化が可能と
なるとともに1組立及び調整がすこぶる容易となる。Can maintain high rotation accuracy of *jG. Furthermore, it is possible to downsize the device, and it is extremely easy to assemble and adjust the device.
なお、動圧発生溝(8)・・・は5貫通孔(5)の内周
面に形成してもよい。同様に、固定軸(7)の下端部は
。Note that the dynamic pressure generating grooves (8) may be formed on the inner circumferential surface of the five through holes (5). Similarly, the lower end of the fixed shaft (7).
円錐台状でなく円柱状に形成してもよい(貫通孔(5)
もこれに照応して穿設する。)。さらに、第1及びM2
の対向部aa’、 (24)を省略して、スラスト力を
すべて磁気軸受部(isに負担させるようにしてもよい
。It may be formed in a cylindrical shape instead of a truncated cone (through hole (5)
The holes will also be drilled accordingly. ). Furthermore, the first and M2
The opposing portion aa', (24) may be omitted so that the entire thrust force is borne by the magnetic bearing portion (is).
本発明の光偏向装置は、多面体部を回転軸なくして回転
させることができる。したがって、多面体部だけの加工
精度で、高い回転精度を維持することができる。しかも
、装置全体の小型化に大幅に寄与するこiができるとと
もに1組立及び調整がすこぶる容易となる。The optical deflection device of the present invention can rotate the polyhedral portion without a rotation axis. Therefore, high rotation accuracy can be maintained with the processing accuracy of only the polyhedral portion. Moreover, it can greatly contribute to miniaturization of the entire device, and assembly and adjustment are extremely easy.
第1図は本発明の一実施例の光偏向装置の要部断面図、
第2図は第1図のA−A線に沿った矢視図、第3図は本
発明の他の実施例の光偏向装置の要部断面図、第4図は
第3図のB−B線に沿った矢視図である。
(1)、α荀:多面体鏡、 (2)、α9:磁気軸受部
。
(3)、αf3:動圧気体軸受部、(4)、(17):
回転駆動部。
(力、(2υ:固定軸。
代理人 弁理士 則 近 憲 佑
(ほか1名)
第1I21
第2図FIG. 1 is a sectional view of a main part of an optical deflection device according to an embodiment of the present invention;
2 is a view taken along line A-A in FIG. 1, FIG. 3 is a cross-sectional view of a main part of an optical deflection device according to another embodiment of the present invention, and FIG. 4 is a view taken along line B--A in FIG. 3. It is an arrow view along the B line. (1), α9: Polyhedral mirror, (2), α9: Magnetic bearing part. (3), αf3: Dynamic pressure gas bearing section, (4), (17):
Rotation drive unit. (Force, (2υ: Fixed axis. Agent Patent attorney Noriyuki Chika (and 1 other person) 1I21 Fig. 2
Claims (1)
鏡と、この多面体鏡を磁気的に浮遊させる磁気軸受部と
、この磁気軸受部により浮遊している多面体鏡を回転駆
動する回転駆動部と、上記多面体鏡に対して同軸かつ非
接触で遊挿される固定軸を有し上記固定軸と上記多面体
鏡との間に発生した動圧によシ上記多面体鏡を非接触で
軸支する動圧気体軸受部とを具備することを特徴とする
光偏向装置。A cylindrical polyhedral mirror with a plurality of reflective surfaces formed on its outer circumferential surface, a magnetic bearing that magnetically suspends the polyhedral mirror, and a rotation drive that rotates the floating polyhedral mirror by the magnetic bearing. and a fixed shaft coaxially and loosely inserted into the polyhedral mirror, and pivotally supports the polyhedral mirror in a non-contact manner by the dynamic pressure generated between the fixed shaft and the polyhedral mirror. 1. An optical deflection device comprising: a dynamic pressure gas bearing section.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59063414A JPS60208629A (en) | 1984-04-02 | 1984-04-02 | Light deflector device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59063414A JPS60208629A (en) | 1984-04-02 | 1984-04-02 | Light deflector device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60208629A true JPS60208629A (en) | 1985-10-21 |
Family
ID=13228604
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59063414A Pending JPS60208629A (en) | 1984-04-02 | 1984-04-02 | Light deflector device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60208629A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62184222A (en) * | 1986-01-17 | 1987-08-12 | Ebara Res Co Ltd | Spiral groove bearing |
JPH02168218A (en) * | 1988-12-22 | 1990-06-28 | Copal Electron Co Ltd | Rotary polygon mirror type optical deflector |
WO2003095852A3 (en) * | 2002-05-07 | 2004-09-10 | Seagate Technology Llc | Fluid dynamic bearing with non-linear damping |
US7193811B2 (en) | 2002-05-07 | 2007-03-20 | Seagate Technology Llc | Fluid dynamic bearing with non-linear damping |
-
1984
- 1984-04-02 JP JP59063414A patent/JPS60208629A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62184222A (en) * | 1986-01-17 | 1987-08-12 | Ebara Res Co Ltd | Spiral groove bearing |
JPH02168218A (en) * | 1988-12-22 | 1990-06-28 | Copal Electron Co Ltd | Rotary polygon mirror type optical deflector |
WO2003095852A3 (en) * | 2002-05-07 | 2004-09-10 | Seagate Technology Llc | Fluid dynamic bearing with non-linear damping |
US7193811B2 (en) | 2002-05-07 | 2007-03-20 | Seagate Technology Llc | Fluid dynamic bearing with non-linear damping |
US8339731B2 (en) | 2002-05-07 | 2012-12-25 | Seagate Technology Llc | Fluid dynamic bearing with non-linear damping |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58224324A (en) | Rotating mirror optical deflector | |
KR940011647B1 (en) | Synchronous motor | |
JP2000004557A (en) | Spindle motor providing aerodynamic pressure bearing and rotating device using the motor as drive source | |
JP2001286116A (en) | Noncontact drive motor | |
JPS58142025A (en) | Spindle device | |
JPS5917019A (en) | Rotary body supporter | |
JPS60208629A (en) | Light deflector device | |
JP3406198B2 (en) | Spindle motor and rotating device using spindle motor | |
JP2637096B2 (en) | Air magnetic bearing type optical deflector | |
JPH0333247B2 (en) | ||
JPS60212717A (en) | Optical deflecting device | |
JP3095139B2 (en) | Fluid bearing device | |
JPS60186820A (en) | Optical deflector | |
JP3497366B2 (en) | Laser scanning motor | |
JPH0238095Y2 (en) | ||
JPH01307723A (en) | Holding structure for rotating polygon mirror | |
KR19980030897A (en) | Fluid bearing device | |
KR100207987B1 (en) | Hemispherical bearing system using magnetic material | |
JPH0416014Y2 (en) | ||
JPS6153617A (en) | Optical deflecting device | |
JP2000120659A (en) | Dynamic pressure air bearing, motor with the bearing, and light polarizer | |
JP2002276648A (en) | Spindle motor | |
JPH09250543A (en) | Bearing device, motor and scanner motor for driving polygon mirror | |
JPS61269115A (en) | Device for supporting rotary body | |
JPH0332764B2 (en) |