JPS60107121A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS60107121A
JPS60107121A JP58216771A JP21677183A JPS60107121A JP S60107121 A JPS60107121 A JP S60107121A JP 58216771 A JP58216771 A JP 58216771A JP 21677183 A JP21677183 A JP 21677183A JP S60107121 A JPS60107121 A JP S60107121A
Authority
JP
Japan
Prior art keywords
power supply
integrated circuit
voltage
control signal
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58216771A
Other languages
Japanese (ja)
Inventor
Masafumi Yamaguchi
雅史 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP58216771A priority Critical patent/JPS60107121A/en
Publication of JPS60107121A publication Critical patent/JPS60107121A/en
Pending legal-status Critical Current

Links

Landscapes

  • Direct Current Feeding And Distribution (AREA)
  • Logic Circuits (AREA)
  • Power Sources (AREA)

Abstract

PURPOSE:To attain a stable working of a semiconductor IC device in a rise mode of a power supply by controlling the power supply control signal in response to the rise dhraracteristics of a logical circuit having a low-speed power supply rise when the semiconductor IC is changed to a high voltage working from a low voltage working. CONSTITUTION:A power supply control signal 6 is set at zero when an IC1 is changed to a high voltage working from a low voltage working. Both outputs of an inverter 14 and an NOR circuit 15 are set at zero when a transistor TR11 is on. While a control signal 7 of a DC/DC converter 2 is set at 1. Then the voltage value of a power supply terminal of the IC1 is increased up to the output voltage 8 of the converter 2 from the voltage level of a battery 3. In this case, a capacitor 13 which is charged by the TR11 is provided. Then the charge rise characteristics of the charging circuit of the capacitor 13 are set equal to the rise characteristics of a logical circuit having a low response speed of the power supply within the IC1. This charging voltage is decided by the inverter 14 to control the signal 6.

Description

【発明の詳細な説明】 〔発明の技術分野〕 この発明は、高電圧動作と低電圧動作の2つの動作モー
ドを有するC−MOSマイクロコンピュータ等の半導体
集積回路において、低電圧動作から高電圧動作への遷移
時における半導体集積回路の論理誤動作をなくするよう
にした半導体集積回路装置に関するものである。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a semiconductor integrated circuit such as a C-MOS microcomputer that has two operating modes, high-voltage operation and low-voltage operation. The present invention relates to a semiconductor integrated circuit device that eliminates logical malfunctions of a semiconductor integrated circuit during transition to .

〔従来技術〕[Prior art]

マイクロコンピュータ等の半導体集積回路において、低
電圧動作(いわゆるHALTt731能)と高電圧動作
の2種類の動作を実行する装置として、従来第1図に示
すものがあった。図において、1は集積回路(LSI)
、2はDC−DCコンバータ、3は電池、4,5ばダイ
オード、6は電源制御信号、14はインバータ、7ばD
(、−DCコンバータ2の制御信号、8はDC−DCコ
ンバータ2の出力、9は集積回路1の電源端子、10は
集積回路1及びDC−DCコンバータ2のグランド端子
である。
2. Description of the Related Art In semiconductor integrated circuits such as microcomputers, there has conventionally been a device shown in FIG. 1 that performs two types of operations: low voltage operation (so-called HALTt731 function) and high voltage operation. In the figure, 1 is an integrated circuit (LSI)
, 2 is a DC-DC converter, 3 is a battery, 4 and 5 are diodes, 6 is a power supply control signal, 14 is an inverter, 7 is a D
(, - the control signal of the DC converter 2, 8 is the output of the DC-DC converter 2, 9 is the power supply terminal of the integrated circuit 1, and 10 is the ground terminal of the integrated circuit 1 and the DC-DC converter 2.

次に動作について説明する。Next, the operation will be explained.

まず、集積回路1が様々な処理を実行している時、DC
−DCコンバーク2はオン状態であり、電源端子9に向
けて集積回路1の定格電圧が出力される。この定格電圧
値を例えば5vと仮定する。
First, when the integrated circuit 1 is executing various processes, the DC
- The DC converter 2 is in an on state, and the rated voltage of the integrated circuit 1 is output toward the power supply terminal 9. Assume that this rated voltage value is, for example, 5V.

このように集積回路1は通常は5■で高電圧動作を行な
っているが、処理がすべて終了し、内部のデータのみを
保持したい時、集積回路1は電源制御信号6をu1゛に
することにより、DC,−DCコンバータ制御信号7を
“0″として、DC−DCコンバータ2をオフ状態とす
る。するとDC−DCコンバータ出力8が0■となるた
め、電源端子9には電池3からの電圧が供給され、集積
回路1は低電圧動作を実行する。この時の電池3の電圧
値は例えば1.5Vである。
In this way, the integrated circuit 1 normally performs high voltage operation at 5■, but when all processing is completed and only the internal data is desired to be retained, the integrated circuit 1 sets the power supply control signal 6 to u1'. As a result, the DC, -DC converter control signal 7 is set to "0", and the DC-DC converter 2 is turned off. Then, since the DC-DC converter output 8 becomes 0■, the voltage from the battery 3 is supplied to the power supply terminal 9, and the integrated circuit 1 performs a low voltage operation. The voltage value of the battery 3 at this time is, for example, 1.5V.

以上のような動作はC−MOSマイクロコンピュータ等
で一般的な動作であり、消費電力をより低減させる目的
で上記低電圧動作への切換えを行なうものである。
The operation described above is a common operation in C-MOS microcomputers and the like, and the switching to the low voltage operation is performed in order to further reduce power consumption.

次に、集積回路」が何らかの処理を・実行したいと判断
した時には、電源制御信号6を0”にすることにより、
DC−DCコンバータ2をオン状態とし、この時電源端
子9には高電圧5.0Vが供給される。
Next, when the integrated circuit determines that it wants to perform some kind of processing, it sets the power supply control signal 6 to 0.
The DC-DC converter 2 is turned on, and at this time, a high voltage of 5.0V is supplied to the power supply terminal 9.

従来の半導体集積回路装置は以上の様に構成されており
、DC−DCコンバーク2より電源が供給されている時
には、負荷の大小により電源電圧の立上り速度が決る。
The conventional semiconductor integrated circuit device is constructed as described above, and when power is supplied from the DC-DC converter 2, the rise speed of the power supply voltage is determined by the size of the load.

ところで、(、−MOS Lsr等の負荷は小さい為、
瞬時に電源電圧が立上ってしまい、LSI内部の論理回
路の応答が追従できない場合、論理回路の誤動作を誘起
するという欠点があった。そこでこのような論理回路の
誤動作をなくするために、電源回路に抵抗や容量を付加
して電源電圧の立上り特性を充分大きくなまらせねばな
らなかった。
By the way, since the load on (,-MOS Lsr, etc.) is small,
There is a drawback that if the power supply voltage rises instantaneously and the response of the logic circuit inside the LSI cannot follow it, the logic circuit may malfunction. In order to eliminate such malfunctions of logic circuits, it has been necessary to add resistance and capacitance to the power supply circuit to sufficiently blunt the rise characteristics of the power supply voltage.

〔発明の楯要〕[Keystone of the invention]

この発明は上記のような従来のものの欠点を除去するた
めになされたもので、半導体集積回路が低電圧動作から
高電圧動作に移行するとき、該集積回路より出力される
電源制御信号を該集積回路内の電源立上り速度の遅い論
理回路の立上り特性に応じてオンオフ制御することによ
り、外部回路を付加することなく、電源電圧の立上り特
性を集積回路内の各論理回路が充分追従できる程度にな
まらせることができる半導体集積回路装置を提供するこ
とを目的としている。
This invention was made to eliminate the drawbacks of the conventional ones as described above, and when a semiconductor integrated circuit transitions from low voltage operation to high voltage operation, the power control signal output from the integrated circuit is transferred to the integrated circuit. By controlling on/off according to the rise characteristics of logic circuits with slow power supply rise speeds in the circuit, it is possible to make the rise characteristics of the power supply voltage smooth to the extent that each logic circuit in the integrated circuit can sufficiently follow the rise characteristics of the power supply voltage without adding an external circuit. The object of the present invention is to provide a semiconductor integrated circuit device that can be used in a variety of ways.

〔発明の実施例〕[Embodiments of the invention]

以下、この発明の一実施例を図について説明する。第2
図において、■は集積回路(LSI)、2はDC−DC
コ7バータ、3は電池、4,5はダイオード、6は電源
制御信号、7は電池3の電圧1.5Vを電圧変換して5
vを得るDC−DCコンバータ2の制御信号、8はDC
,−DCコンバータ2の出力、9は集積回路1の電源端
子、1oは集積回路1及びDC−DCコンバータ2のグ
ランド端子である。また20は低電圧動作から高電圧動
作への遷移時に上記集積回路1がら出力される電源制御
信号6をこの集積回路1内の応答速度の遅い論理回路の
電源立上り特性に応じて制御する電源制御信号制御回路
であり、該電源制御信号制御回路20は、PチャネルM
O3)ランジスタ11、該トランジスタ11と直列接続
されたコンデンサ13、上記ト・ランジスタ11とコン
デンサ13との接続点電位を電源電圧に応じて変化する
それ自身のしきい値でもって比較判定するインバータ1
4、該インバータ14出力及び上記電源制御信号6が入
力される2人力NOR回路15からなる。
An embodiment of the present invention will be described below with reference to the drawings. Second
In the figure, ■ is an integrated circuit (LSI), and 2 is a DC-DC
converter 7, 3 is a battery, 4 and 5 are diodes, 6 is a power supply control signal, 7 is a voltage converter of the voltage 1.5V of battery 3, and 5
Control signal of DC-DC converter 2 to obtain v, 8 is DC
, - the output of the DC converter 2, 9 is the power supply terminal of the integrated circuit 1, and 1o is the ground terminal of the integrated circuit 1 and the DC-DC converter 2. Further, 20 is a power supply control for controlling a power supply control signal 6 outputted from the integrated circuit 1 at the time of transition from low voltage operation to high voltage operation according to the power supply start-up characteristics of the logic circuit with a slow response speed within this integrated circuit 1. The power supply control signal control circuit 20 is a signal control circuit, and the power supply control signal control circuit 20 is a P-channel M
O3) A transistor 11, a capacitor 13 connected in series with the transistor 11, and an inverter 1 that compares and determines the potential at the connection point between the transistor 11 and the capacitor 13 using its own threshold value that changes according to the power supply voltage.
4. It consists of a two-man powered NOR circuit 15 into which the output of the inverter 14 and the power supply control signal 6 are input.

次に動作について説明する。Next, the operation will be explained.

集積回路1が、低電圧動作から高電圧動作に遷移する時
、まず電源制御信号6を“0”とする。
When the integrated circuit 1 transitions from low voltage operation to high voltage operation, first the power supply control signal 6 is set to "0".

この時PチャネルMO3)ランジスタ11はゲーl−電
極がアース電位Vssに接続されているのでオン状態で
あり、信号12は“1”となる。従ってインバータ]4
の出力は0″となり、NOR回路15の2つの入力が共
にパ″0”であるので、DC−DCコンハーク制御信号
7は“1″となり、DC−DCコンバータ2はオン状態
となる。その結果築積回路1の電源端子9の電圧値が電
池電圧1.5VからDC−DCコンバータ2の出力電圧
5゜0■へと増加し、これに伴ってインバータ14のし
きい値も上昇するが、この電源電圧の立上り特性が早く
て、PチャネルMO3)ランジスタ11によるコンデン
サ13への電荷供給の速度が遅い場合、コンデンサ13
の電圧がインバータ14のしきい値に追いつくのが遅く
なるため、インバータ14は信号12を0”と判定して
その出力は1”となる。従ってDC−DCコンバータ制
御信号7は“0″となってDC−DCコンバータ2はオ
フ状態となり、電源9の電圧値はその時点で増加を停止
する。次に、このように電圧増加が停止したので、Pチ
ャネルMOSトランジスタ11によってコンデンサ13
は充分充電されてインバータ14の出力は0″となり、
DC−DCコンバータ制御信号7が“1”、即ちD(>
DCコンバータ2はオン状態となり、電源端子9の電圧
値は再び増加する。この動作を5■迄繰り返すことによ
りDC−DCコンバータ2の立上り特性を、通常の急峻
な立」−り特性と異なり、PチャネルMOSトランジス
タ11とコンデンサ13とで定義される充電量」二り特
性に一致させることが可能となる。
At this time, the P-channel MO3) transistor 11 is in an on state because its gate electrode is connected to the ground potential Vss, and the signal 12 becomes "1". Therefore, the inverter]4
Since the output of is 0'' and the two inputs of the NOR circuit 15 are both 0, the DC-DC converter control signal 7 is 1, and the DC-DC converter 2 is turned on. The voltage value of the power supply terminal 9 of the building circuit 1 increases from the battery voltage of 1.5V to the output voltage of the DC-DC converter 2 of 5°0■, and the threshold of the inverter 14 also rises accordingly. If the rise characteristic of this power supply voltage is fast and the speed of charge supply to the capacitor 13 by the P-channel MO3) transistor 11 is slow, the capacitor 13
Since the voltage of the inverter 14 catches up with the threshold value of the inverter 14 slowly, the inverter 14 determines the signal 12 to be 0'' and its output becomes 1''. Therefore, the DC-DC converter control signal 7 becomes "0", the DC-DC converter 2 is turned off, and the voltage value of the power supply 9 stops increasing at that point. Next, since the voltage increase has stopped in this way, the capacitor 13 is
is sufficiently charged and the output of the inverter 14 becomes 0'',
The DC-DC converter control signal 7 is “1”, that is, D(>
The DC converter 2 is turned on, and the voltage value at the power supply terminal 9 increases again. By repeating this operation up to 5 times, the rise characteristic of the DC-DC converter 2 is changed from the normal steep rise characteristic to the charge amount defined by the P-channel MOS transistor 11 and the capacitor 13. It is possible to match the

このように、本実施例ではPチャネルMos+・ランジ
スク11とコンデンサ13とによる充電回路を設け、こ
の充電回路の充電立上り特性を集積回路1内の電源応答
速度の遅い論理回路の立上り特性と同様の特性に設定し
、この充電電圧をインバータで判定するようにしたので
、集積回路の各論理動作を破壊することのない電源立上
り特性を持つ半導体集積回路装置を得ることができる。
As described above, in this embodiment, a charging circuit including a P-channel Mos+ transistor 11 and a capacitor 13 is provided, and the charging start-up characteristic of this charging circuit is made similar to the start-up characteristic of a logic circuit with a slow power supply response speed in the integrated circuit 1. Since the charging voltage is determined by the inverter, it is possible to obtain a semiconductor integrated circuit device having a power supply start-up characteristic that does not destroy each logical operation of the integrated circuit.

なお、上記実施例ではコンデンサを集積回路内に内蔵し
たものについて説明したが、電源立上り特性をより大き
くする為にコンデンサを集積回路り■に外付LJするよ
うにしてもよい。
In the above embodiment, the capacitor is built into the integrated circuit, but the capacitor may be externally connected to the integrated circuit (LJ) in order to further improve the power supply start-up characteristics.

また、上記実施例では正電源のものを示したが、負電源
であってもよく、このときはPチャネルM○S lラン
ジスタ11をNチャネルMO3)ランジスタとすれば良
い。
Further, in the above embodiment, a positive power source is shown, but a negative power source may be used. In this case, the P channel M○S1 transistor 11 may be replaced with an N channel MO3) transistor.

〔発明のv)果〕[v) Results of the invention]

1以−にのように、本発明によれば、半導体集積回路が
低電圧動作から高電圧動作に移行するとき、該集積回路
より出力される電源制御信号を該集積回路内の電源立上
り速度の遅い論理回路の立上り特性に応して制御するよ
うにしたので、外部回路を設けることなく、電源立上り
時に安定した論理回路動作が可能となる9JJ果がある
As described above, according to the present invention, when a semiconductor integrated circuit transitions from low voltage operation to high voltage operation, the power supply control signal output from the integrated circuit is adjusted to match the power supply rise speed within the integrated circuit. Since the control is performed in accordance with the slow rise characteristics of the logic circuit, there is a 9JJ effect that allows stable logic circuit operation at power-up without providing an external circuit.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体集積回路装置を示す回路図、第2
図は本発明の一実施例による半導体集積回路装置を示す
回路図である。 1・・・半導体集積回路、2・・・DC−DCコンバー
タ、3・・・電池、4.5・・・ダイオード、6・・・
電源制御信号、7・・・DC−DCコンバータ制御信号
、8・・・DC−DCコンバーク出力、20・・・電源
制御信号制御回路、11・・・PチャネルMO3)ラン
ジスク、13・・・コンデンサ、14・・・インバータ
(論理回路)、15・・・2人力NOR回路。 なお図中、同一符号は同−又は相当部分を示す。 代理人 大 岩 増 hiL 第1図 5 第2図
Figure 1 is a circuit diagram showing a conventional semiconductor integrated circuit device, Figure 2 is a circuit diagram showing a conventional semiconductor integrated circuit device;
The figure is a circuit diagram showing a semiconductor integrated circuit device according to an embodiment of the present invention. DESCRIPTION OF SYMBOLS 1... Semiconductor integrated circuit, 2... DC-DC converter, 3... Battery, 4.5... Diode, 6...
Power supply control signal, 7... DC-DC converter control signal, 8... DC-DC converter output, 20... Power supply control signal control circuit, 11... P channel MO3) Ranjisk, 13... Capacitor , 14... Inverter (logic circuit), 15... 2-manpower NOR circuit. In the drawings, the same reference numerals indicate the same or equivalent parts. Agent Masu Oiwa hiL Figure 1 5 Figure 2

Claims (2)

【特許請求の範囲】[Claims] (1)低電圧動作と高電圧動作の2つの動作モートを有
する半導体集積回路に該集積回路の動作モードに応じて
2種類の電源電圧を供給するようにしてなる半導体集積
回路装置であって、上記半導体集積回路の低電圧動作か
ら高電圧動作への遷移時に該集積回路より出力される電
源制御信号に応して低電圧動作用の電源電圧を電圧変換
して得られる高電圧動作用の電源電圧を出力するDC−
DCコンバータと、上記低電圧動作から高電圧動作への
遷移時に電源電圧の立上りが該集積回路内の立」−り速
度の遅い論理回路の立上り特性よりもゆるやかになるよ
う上記電源制御信号を制御する電源制御信号制御回路と
を備えたことを特徴とする半導体集積回路装置。
(1) A semiconductor integrated circuit device configured to supply two types of power supply voltages to a semiconductor integrated circuit having two operating modes of low-voltage operation and high-voltage operation, depending on the operating mode of the integrated circuit, comprising: A power supply for high-voltage operation obtained by converting the power supply voltage for low-voltage operation in accordance with a power supply control signal output from the integrated circuit when the semiconductor integrated circuit transitions from low-voltage operation to high-voltage operation. DC- output voltage
The DC converter and the power supply control signal are controlled so that the rise of the power supply voltage at the time of transition from the low voltage operation to the high voltage operation is slower than the rise characteristic of the logic circuit in the integrated circuit, which has a slow rise speed. 1. A semiconductor integrated circuit device comprising: a power supply control signal control circuit.
(2)上記電源制御信号制御回路が、上記半導体集積回
路の電源端子とアース間に直列接続されたトランジスタ
とコンデンサからなる充電回路と、上記トランジスタと
コンデンサとの接続点電位を電源電圧に応じて変化する
それ自身のしきい値でもって比較判定するインパークと
、該インバータの出力に応じて上記電源制御信号をオン
オフ制御する2人力NOR回路とからなるものであるこ
とを特徴とする特許請求の範囲第1項記載の半導体集積
回路装置。
(2) The power supply control signal control circuit controls a charging circuit consisting of a transistor and a capacitor connected in series between the power terminal of the semiconductor integrated circuit and the ground, and a potential at a connection point between the transistor and the capacitor in accordance with the power supply voltage. The invention is characterized in that it is comprised of an impark that makes a comparative judgment using its own threshold value that changes, and a two-man NOR circuit that controls on/off the power supply control signal according to the output of the inverter. A semiconductor integrated circuit device according to scope 1.
JP58216771A 1983-11-15 1983-11-15 Semiconductor integrated circuit device Pending JPS60107121A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58216771A JPS60107121A (en) 1983-11-15 1983-11-15 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58216771A JPS60107121A (en) 1983-11-15 1983-11-15 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS60107121A true JPS60107121A (en) 1985-06-12

Family

ID=16693638

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58216771A Pending JPS60107121A (en) 1983-11-15 1983-11-15 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS60107121A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7376848B2 (en) 1997-06-27 2008-05-20 Broadcom Corporation Battery powered device with dynamic power and performance management

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7376848B2 (en) 1997-06-27 2008-05-20 Broadcom Corporation Battery powered device with dynamic power and performance management
US7900067B2 (en) 1997-06-27 2011-03-01 Broadcom Corporation Battery powered device with dynamic and performance management
US8504852B2 (en) 1997-06-27 2013-08-06 Broadcom Corporation Battery powered device with dynamic power and performance management

Similar Documents

Publication Publication Date Title
US5193198A (en) Method and apparatus for reduced power integrated circuit operation
TWI635693B (en) Semiconductor integrated circuit
US5559464A (en) Signal voltage level conversion circuit and output buffer circuit
JP2555379B2 (en) TTL / CMOS compatible input buffer with Schmitt trigger
US6329874B1 (en) Method and apparatus for reducing standby leakage current using a leakage control transistor that receives boosted gate drive during an active mode
JP2772522B2 (en) Power-on signal generation circuit
WO1993009602A1 (en) Logic level shifter
JP3259283B2 (en) Inverter device and signal level conversion circuit thereof
JPH10322192A (en) Level-converting circuit
JPH0436606B2 (en)
KR950000499B1 (en) Semiconductor memory device
JP2704459B2 (en) Semiconductor integrated circuit device
CN108631575A (en) A kind of soft starting circuit applied to Switching Power Supply
JPH0923150A (en) Voltage converting circuit of semiconductor device
CN217506424U (en) Low dropout regulator with soft start circuit
JPS60107121A (en) Semiconductor integrated circuit device
JPH06141538A (en) Voltage inverter circuit fitted with high-efficiency driver
JPH07143737A (en) Undervoltage lockout circuit for primary side driver and interface integrated circuit
JPH06152383A (en) Signal voltage level converting circuit and output buffer circuit
JPH03175728A (en) Semiconductor memory device
JPH0793987A (en) Semiconductor integrated circuit device
US11901804B2 (en) Power supplying circuit and power supplying method
CN212115152U (en) Precise timing circuit for realizing soft start port and output overvoltage and short circuit protection multiplexing
US20240275282A1 (en) Circuit and method for start-up of reference circuits in devices with a plurality of supply voltages
JP2745619B2 (en) Output circuit