JPS5931426B2 - Electroslag hot top method - Google Patents

Electroslag hot top method

Info

Publication number
JPS5931426B2
JPS5931426B2 JP54117790A JP11779079A JPS5931426B2 JP S5931426 B2 JPS5931426 B2 JP S5931426B2 JP 54117790 A JP54117790 A JP 54117790A JP 11779079 A JP11779079 A JP 11779079A JP S5931426 B2 JPS5931426 B2 JP S5931426B2
Authority
JP
Japan
Prior art keywords
slag
steel
est
steel ingot
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54117790A
Other languages
Japanese (ja)
Other versions
JPS5641066A (en
Inventor
豊 廣瀬
茂行 松藤
等 吉井
康治 守中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP54117790A priority Critical patent/JPS5931426B2/en
Publication of JPS5641066A publication Critical patent/JPS5641066A/en
Publication of JPS5931426B2 publication Critical patent/JPS5931426B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Description

【発明の詳細な説明】 本発明は、押湯内情鋼面の上に溶融スラグを供給すると
ともに、そのスラグ組成を最適に保持するエレクトロス
ラグホットトップ法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an electroslag hot top method that supplies molten slag onto the internal steel surface of a riser and maintains the slag composition optimally.

ギルド銅鋼塊については、凝固収縮に伴なう欠陥を防上
するために鋼塊頭部に押湯を付げる事が一般に行なわれ
、押湯の保温法には各種の工夫がなされている。
For guild copper steel ingots, a riser is generally attached to the head of the ingot to prevent defects caused by solidification shrinkage, and various methods have been devised to keep the riser warm. There is.

押湯内情鋼面の上に溶融スラグな乗せ、そのスラグ内に
電極を浸漬し、電極と鋼塊の間、或いは複数電極間に電
流を流し、スラグの抵抗発熱を利用して押湯内溶鋼を加
熱する方法がエレクトロスラグホラl−)ツブ法(ES
HT法、EST法とも云う)である。
Molten slag is placed on the steel surface of the feeder, an electrode is immersed in the slag, and a current is passed between the electrode and the steel ingot or between multiple electrodes, and the molten steel inside the feeder is heated using the resistance heat generated by the slag. The method of heating is the electroslag hole method (ES).
(also called HT method or EST method).

この方法はオースト!J−VEW社カブフエンベルク工
場の実例が報告されている。
This method is authentic! An actual example from J-VEW's Kabfuenberg factory has been reported.

(特公昭47−39817およびElectric
Furnace Proceeding Vol 3
3゜Dec、1975 pl、85/189)その他
イタリーの特殊鋼工場であるチル二社でも実施している
といわれている。
(Special Public Interest Publication No. 47-39817 and Electric
Furnace Proceedings Vol 3
3°Dec, 1975 pl, 85/189) It is said that other Italian special steel factories, Chill II, are also implementing this method.

カプフエンベルク工場ではこの方法をBEST法と称し
、その概要は第1図に示すとおりである。
At the Kapfuenberg factory, this method is called the BEST method, and its outline is shown in FIG.

即ち1は定盤、2は鋳型、3は押湯鋳型、4は電源、5
は電極、6はスラグ、7は凝固しつ\ある鋼塊である。
That is, 1 is a surface plate, 2 is a mold, 3 is a riser mold, 4 is a power supply, and 5
is an electrode, 6 is a slag, and 7 is a solidifying steel ingot.

エレクトロスラグホットトップ法(以下EST法と略記
する)を実施するには押湯内情鋼面の上に溶融スラグ層
がなければならない。
In order to carry out the electroslag hot top method (hereinafter abbreviated as EST method), there must be a molten slag layer on the steel surface of the riser.

この溶融スラグをつくるために、粉状或いは固形の造滓
剤を押湯的溶鋼面上に投入し、アークによって溶解して
溶融スラグに変える方法(コールドスタート法)も可能
であるが、固体スラグを溶融する期間は、本来のEST
法実施時間とは認められず、結果としてEST処理効果
を減殺する。
In order to create this molten slag, it is possible to use a method (cold start method) in which a powdered or solid slag-forming agent is poured onto the surface of the molten steel in a riser and melted by an arc to turn it into molten slag (cold start method). The period of melting is the original EST
This is not recognized as legal implementation time, and as a result, the EST treatment effect is diminished.

したがって、造塊終了後の鋼塊の押湯内情鋼面上に溶融
スラグを移注し、押湯加熱通電を行なう方法(ホットス
タート法)が望ましいが、そのスラグな別のスラグ溶解
炉で溶解し準備するとなるとそのための設備が必要とな
り、又スラグ溶解作業のための要員も必要となる。
Therefore, it is desirable to transfer molten slag onto the inner steel surface of the feeder of the steel ingot after ingot making and heat the feeder and energize it (hot start method), but the slag is melted in a separate slag melting furnace. Preparation requires equipment and personnel for slag melting work.

本発明は以上の点に鑑み鋭意研究の結果なされたもので
その要旨は造塊作業終了後の鍋内に残留する溶融電炉還
元期スラグを適宜手段を用いて押湯枠内の溶鋼上に移注
したのち、造滓剤の無添加若しくは適宜量の造滓剤を添
加してスラグ組成をCaO/SiO2重量比で1.5〜
5.0、(CaO十MgO)/ (S io2+AI2
0s )重量比で1.0〜3.0、CaF2<20重量
%、且つ(T、Fe十T、 Mn )< 2重量%以下
に保持することを特徴とするエレクトロスラグホットト
ップ法にある。
The present invention has been made as a result of intensive research in view of the above points, and the gist thereof is to transfer the molten electric furnace reduction stage slag remaining in the ladle after the completion of ingot making work onto the molten steel in the feeder frame using appropriate means. After pouring, the slag composition is adjusted to a CaO/SiO2 weight ratio of 1.5 to 1.5 by adding no slag-forming agent or adding an appropriate amount of slag-forming agent.
5.0, (CaO + MgO) / (S io2 + AI2
The electroslag hot top method is characterized by maintaining a weight ratio of 1.0 to 3.0, CaF2<20% by weight, and (T, Fe+T, Mn)<2% by weight.

但し、 (T、Fe)ニスラグに含まれる鉄(Fe)の全量即ち
金属鉄、酸化鉄(FeO1Fe304、Fe2O3を含
む)の中のFeの全量 (T、 Mn ) ニスラグに含まれるMnおよびMn
化合物中のMnの全量 そして本発明を適用することにより溶融スラグを別途準
備するための特別の作業及び設備が不要となると共にス
ラグ組成を調整することにより、エレクトロスラグホッ
トトップ法において期待される脱硫効果及び介在物清浄
度の向上が実現でき、同時に鋼塊中の水素含有量の増加
を防止可能となる。
However, (T, Fe) The total amount of iron (Fe) contained in the varnish slag, that is, the total amount of Fe in metallic iron and iron oxide (including FeO1Fe304, Fe2O3) (T, Mn) Mn and Mn contained in the varnish slag
By applying the total amount of Mn in the compound and the present invention, special work and equipment for separately preparing molten slag are not required, and by adjusting the slag composition, desulfurization expected in the electroslag hot top method can be achieved. It is possible to improve the effectiveness and cleanliness of inclusions, and at the same time, it is possible to prevent an increase in the hydrogen content in the steel ingot.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

電炉還元期スラグは溶鋼の出鋼につれて鍋内へ排出され
る。
Slag during electric furnace reduction is discharged into the ladle as molten steel is tapped.

この鍋内スラグはESTスラグとして適切であることが
本発明者らの検討の結果明らかとなった。
As a result of studies conducted by the present inventors, it has become clear that this in-pot slag is suitable as EST slag.

ESTスラグの所要特性としては(1)溶融状態におけ
る適当な電気抵抗、(2)適当な融点、(3)適当な流
動性、(4)化学組成の安定性、(5)脱硫能、(6)
脱酸能、(7)溶鋼中に懸濁している非金属介在物の吸
収能、(8)水素溶解度の低いこと、などが挙げられる
The required properties of EST slag are (1) appropriate electrical resistance in the molten state, (2) appropriate melting point, (3) appropriate fluidity, (4) stability of chemical composition, (5) desulfurization ability, (6) )
(7) ability to absorb nonmetallic inclusions suspended in molten steel; and (8) low hydrogen solubility.

これ等の要求の対応策は相互に矛盾を来たすものもある
Some of the measures to address these demands may be mutually contradictory.

ESTスラグの組成、特に塩基度の調整は重要な因子で
ある。
Adjustment of the composition of the EST slag, especially its basicity, is an important factor.

エレクトロスラグ再溶融法(ESR法)の経験からスラ
グ中のAl2O3、MgO等の含有率を高めると溶融ス
ラグの電気抵抗は大きくなるが、スラグの融点が高(な
り流動性が損われる。
From experience with the electroslag remelting method (ESR method), increasing the content of Al2O3, MgO, etc. in the slag increases the electrical resistance of the molten slag, but the melting point of the slag becomes high (and fluidity is impaired).

又スラク沖のCaO含有率を高くすれば、脱硫効果は太
き(なるが、鋼塊への水素の吸収増加の危険性が高まる
Furthermore, if the CaO content in the Surak offshore is increased, the desulfurization effect will be greater (although this will increase the risk of increased absorption of hydrogen into the steel ingot).

CaF2の配合はスラグの融点を下げ流動性を高める効
果があるが、過度に配合すると流動性がよくなりすぎ、
EST処理中に鋼塊と鋳型の間の空隙へ流入し、鋼塊割
れを誘発せしめる。
Blending CaF2 has the effect of lowering the melting point of the slag and increasing its fluidity, but if it is added too much, the fluidity becomes too good.
During the EST treatment, it flows into the gap between the steel ingot and the mold, causing cracking of the steel ingot.

又押湯枠をレンガ内張りした場合はその内張りレンガを
烈しく溶損しEST作業の継続を困難ならしめる。
Furthermore, if the feeder frame is lined with bricks, the lining bricks will be severely damaged by erosion, making it difficult to continue the EST work.

一方CaF2は他の造滓剤よりも高価であり、その配合
量は少ない方が経済的である。
On the other hand, CaF2 is more expensive than other slag-forming agents, and it is more economical to incorporate a smaller amount of CaF2.

次にESTスラグの所要特性について再考してみると、
脱硫効果を期待するためには重量比でCab/S i0
2>1.5、(CaO+Mg0)/(5i02+Al2
03)>1.0が必要である。
Next, if we reconsider the required characteristics of EST slag,
In order to expect a desulfurization effect, the weight ratio of Cab/S i0 is
2>1.5, (CaO+Mg0)/(5i02+Al2
03)>1.0 is required.

反面スラグの水素吸収、引いてはEST鋼塊の水素含有
量のピックアップを防止するためには、ESTSラスラ
グ中aO含有量は高すぎてはならない。
On the other hand, the aO content in the ESTS slag should not be too high in order to prevent the slag from absorbing hydrogen and thus picking up the hydrogen content of the EST steel ingot.

又ESTスラグの融点が高すぎないこと、流動性が適当
によいこと、という条件から重量比でCab/ S i
02 < 5.0、(CaO+Mg0)/(SiO3+
A’203)<3.0 でなければならない。
In addition, the weight ratio of Cab/Si
02 < 5.0, (CaO+Mg0)/(SiO3+
A'203)<3.0.

このようなスラグ組成の場合CaF2はスラグの流動性
を補助的に高める程度で充分でありその配合量は20%
以下でよい。
In the case of such a slag composition, it is sufficient that CaF2 supplementarily increases the fluidity of the slag, and its content is 20%.
The following is fine.

このような組成のESTスラグは組成的に安定しており
、脱硫能と共に脱酸能を有し、同時に溶鋼中に懸濁して
いる非金属介在物を捕捉吸収し得る。
EST slag with such a composition is compositionally stable, has desulfurization ability and deoxidizing ability, and can simultaneously capture and absorb nonmetallic inclusions suspended in molten steel.

Fe、Mn、Crなとの酸化物は溶鋼が充分脱酸されて
いない場合に非金属介在物の中に見出されるものであり
、キルド鋼溶鋼と接触すれば脱酸合金元素であるSi、
AIなどと反応する。
Oxides of Fe, Mn, Cr, etc. are found in nonmetallic inclusions when molten steel is not sufficiently deoxidized, and when they come into contact with killed molten steel, Si, which is a deoxidizing alloying element,
Reacts with AI etc.

ESTスラグにおいてもこれ等の組成は好ましいもので
はない。
These compositions are not preferable in EST slag either.

従ってFelMn酸化物はESTスラグ内では少な(な
ければならず、T、 Fe +T、 Mnの形の分析値
でく2重量%(以下全て重量%は単に%と称する)が望
ましい。
Therefore, FeIMn oxide must be present in a small amount in the EST slag, and it is desirable that the analytical value in the form of T, Fe + T, Mn is 2% by weight (hereinafter all % by weight is simply referred to as %).

以上の検討の結果1.5 < Cab/ S i 02
< 5.0.1、0 < (CaO十MgO) /
(S 102 + AI 203 )<3.0、CaF
2<20%(T、 Fe 十T、 Mn )く2%とい
うESTスラグの最適範囲があることを知見し得た。
As a result of the above consideration 1.5 < Cab/S i 02
< 5.0.1, 0 < (CaO + MgO) /
(S 102 + AI 203 )<3.0, CaF
It has been found that there is an optimum range of EST slag of 2<20% (T, Fe + T, Mn) and 2%.

このスラグ組成は電気炉還元期スラグ乃至電炉出鋼後の
鍋中スラグの組成範囲でもある。
This slag composition is also in the composition range of the slag during reduction in the electric furnace and the slag in the ladle after tapping in the electric furnace.

即ち電炉出鋼された鍋中スラグをそのまLESTスラグ
に使用することが可能であることが分った。
That is, it has been found that it is possible to use the slag in the ladle that has been tapped in the electric furnace as LEST slag.

鍋中スラグをESTスラグに使うことは、ESTのため
にスラグ溶解炉など特別の設備を併設することなく、又
造滓剤を別途消費することなく、更にスラグ予備溶解の
ために要員を配置する必要もなく、ESTをホラI・ス
タートさせることが出来て、極めて経済的である。
Using the slag in the pot as EST slag does not require special equipment such as a slag melting furnace for EST, and there is no need to separately consume a slag-forming agent, and there is no need to deploy personnel for preliminary slag melting. It is extremely economical to start the EST without having to worry about it.

鍋中スラグは押湯自溶鋼面に移注されればよい。The slag in the pot may be transferred to the self-melting steel surface of the riser.

直接鍋返ししてもよく、移注樋を通してもよい。It may be poured directly into the pot, or passed through a transfer gutter.

本発明において鍋中スラグを移注後ESTスラク゛とし
て利用するが、その際必要に応じ比較的少量のCaO1
その他の造滓剤添加によってスラグ組成の調整を行なう
事は、作業的に側管問題とならない。
In the present invention, the slag in the pot is used as the EST slag after being transferred, and at that time, if necessary, a relatively small amount of CaO1 is added.
Adjusting the slag composition by adding other slag-forming agents does not pose a side pipe problem in terms of operation.

本発明の主要点である鍋中スラグの押湯自溶鋼面への移
注およびスラグ組成に関する限定は押湯枠が水冷金型で
ある場合(カプフエンベルグ工場〕についても又耐人物
内張り押湯(チル−工場)の場合でも共に実施可能であ
る。
The main points of the present invention, such as the transfer of the slag in the ladle to the self-melting steel surface of the feeder and the limitations regarding the slag composition, also apply to the case where the feeder frame is a water-cooled mold (Kapfenberg factory). (chill factory).

EST法は押湯内情鋼面上に溶融スラグを置き長時間高
温に保つ。
In the EST method, molten slag is placed on the steel surface of the riser and kept at high temperature for a long time.

そのため、前述のカプフエンベルク工場では水冷金型押
湯枠を使用している。
For this reason, the Kapfenberg factory mentioned above uses a water-cooled die riser frame.

耐火物内張り押湯を使用する際には耐火物の材質につい
ての検討が必要である。
When using a refractory-lined riser, it is necessary to consider the material of the refractory.

クロマイトを含有する耐火物からはCrが還元され溶鋼
中に溶出する欠点があり、Al2O3系耐火物は高耐ス
ラグ性のものは高価である。
Chromite-containing refractories have the disadvantage that Cr is reduced and eluted into molten steel, and Al2O3-based refractories with high slag resistance are expensive.

EST押湯ライニング用としては試用試験の結果、マグ
−ドロ質のものが最適である事が分った。
As a result of a trial test, it was found that Magdrone is the most suitable material for lining the EST feeder.

以下に本発明の実施例を示す。Examples of the present invention are shown below.

実施例 1 溶鋼成分 0.29%C10,32%Si、0.69%
Mn、0.009%P、 0.006%S、 鋼塊重量 50 ton 使用電極 14 ″$黒黒鉛電極3 押押湯 マグ−ドロ煉瓦ライニング スラグ組成 CaF29.1%、Ca038.7%、5
i0219.8%、A120315.2%、MgO13
,4%、T、Fe<1%、 80.12% EST通電時間 22時間 EST電力原単位 230 Kwh / TEST処理
鋼塊の縦断面のザルファープリント(第2図) EST処理鋼塊の鋼塊軸芯上の介在物清浄度(第3図) 第2図から押湯部及び鋼塊軸芯上の頭部がサルファープ
リントで白くなっており、ESTO間に脱流されたこと
が実証される。
Example 1 Molten steel composition 0.29%C10, 32%Si, 0.69%
Mn, 0.009%P, 0.006%S, Steel ingot weight 50 tons Electrode used 14″$graphite electrode 3 Booster Mag-Doro brick lining slag composition CaF29.1%, Ca038.7%, 5
i0219.8%, A120315.2%, MgO13
,4%, T, Fe<1%, 80.12% EST energizing time 22 hours EST power consumption unit 230 Kwh / Zulfur print of longitudinal section of TEST treated steel ingot (Figure 2) Steel ingot of EST treated steel ingot Cleanliness of inclusions on the shaft (Figure 3) From Figure 2, the feeder part and the head on the steel ingot shaft are white with sulfur print, proving that they were drained during the ESTO. .

また第3図に示すとおり鋼塊ボトムの酸化物系介在物が
多く集まる沈澱高部においても清浄度が著しく向上して
いると共に全体的に介在物清浄度が高い。
Furthermore, as shown in FIG. 3, the cleanliness is significantly improved even in the high sedimentation area at the bottom of the steel ingot where many oxide inclusions gather, and the cleanliness of inclusions is high overall.

これらは本発明の方法の有効性を裏付けるものである。These confirm the effectiveness of the method of the present invention.

本発明のホットトップ法による鋼塊は特にその用途は特
定されないが、次にタービンローター向は鋼塊への適用
例を第2の実施例として示す。
Although the use of the steel ingot produced by the hot top method of the present invention is not particularly specified, an example of its application to a steel ingot for a turbine rotor will be shown as a second embodiment.

実施例 2 溶鋼成分 0.29%C10,25%Si、0.73%
Mn、 0.005%S、 ■、09%Cr、1.01%Mo。
Example 2 Molten steel composition 0.29%C10, 25%Si, 0.73%
Mn, 0.005%S, 09%Cr, 1.01%Mo.

0.22%■ 鋼塊重量 60.51−ン 使用電極 14″f黒鉛電極3本 押 湯 マグ−ドロ煉瓦ライニング スラグ組成 CaF212.0%、Ca038.5%5
i0217.7%、A120314..7%、Mg01
5.4%、T、FeO,7%、 T、 Mn 0.0% EST処理時間 22時間 EST電力原単位 226 Kwh/T EST処理鋼塊の縦断面サルファープリント(第4図) EST処理鋼塊の鋼塊軸芯上の介在物清浄度及びC並び
にSの偏析の従来法鋼塊との比較(第5図)該実施例2
は、高圧蒸汽タービンローター向は鋼塊に本発明EST
法を適用したものである。
0.22%■ Steel ingot weight 60.51-inch Electrodes used: 3 14"f graphite electrodes Riser Mag-Doro brick lining slag composition CaF212.0%, Ca038.5%5
i0217.7%, A120314. .. 7%, Mg01
5.4%, T, FeO, 7%, T, Mn 0.0% EST treatment time 22 hours EST power consumption 226 Kwh/T Longitudinal section sulfur print of EST treated steel ingot (Fig. 4) EST treated steel ingot Comparison of the cleanliness of inclusions on the axis of the steel ingot and the segregation of C and S with the conventional steel ingot (Figure 5) Example 2
The EST of the present invention is applied to steel ingots for high-pressure steam turbine rotors.
It is an application of the law.

第4図に見られる如(、凝固に件な5Sの濃化が見られ
ず鋼塊内に■偏析並びにザク性欠陥は認められない。
As seen in FIG. 4, there is no concentration of 5S, which is related to solidification, and no segregation or grain defects are observed in the steel ingot.

又■偏析は鋼塊最頂部に僅かに認められるのみで、従来
鋼塊に比べて鋼塊内部性状は格段に改善されている。
Furthermore, (2) Segregation was only slightly observed at the top of the steel ingot, and the internal properties of the steel ingot were significantly improved compared to conventional steel ingots.

また第5図に示す通り鋼塊ボトム部及び鋼塊本体上部の
介在物清浄度が向上し、又C偏析も正負偏析ともに従来
法鋼塊より好転している。
Furthermore, as shown in FIG. 5, the inclusion cleanliness of the bottom part of the steel ingot and the upper part of the steel ingot main body is improved, and both the positive and negative segregation of C is better than that of the conventional steel ingot.

なお、従来法鋼塊は、電気炉溶製し、真空タンク造塊し
たものである。
Note that the conventional steel ingot is produced by melting in an electric furnace and forming ingots in a vacuum tank.

この鋼塊の溶鋼成分組成(元素含有重量%)は次の通り この鋼塊は、単重60TONであり、例示したEST鋼
塊と近似の溶鋼成分、ならびに鋼塊単重のものでありE
ST鋼塊と同様に切断調査した結果をEST鋼塊と対比
のために示したものである。
The molten steel composition (element content weight %) of this steel ingot is as follows. This steel ingot has a unit weight of 60 TON, and has a molten steel composition similar to the EST steel ingot shown as an example, and a steel ingot unit weight of E.
The results of a cutting investigation similar to the ST steel ingot are shown for comparison with the EST steel ingot.

されにSが鋼塊押湯部にも濃化が認められないことは第
4図のサルファープリントからも認められるが、これは
EST処理効果の表われである。
Furthermore, it can be seen from the sulfur print in Figure 4 that no concentration of S is observed in the steel ingot feeder section, which is an indication of the effect of the EST treatment.

なお、第2図の炭素鋼と第4図のCr −Mo −■鋼
のサルファープリントにおける△偏析の出現状況に差が
あるのは、鋼塊の成分系の差であり、Cr −Mo −
V鋼塊は△偏析が炭素鋼よりも少なくなることは周知で
ある。
The difference in the appearance of Δ segregation in the sulfur prints of the carbon steel in Figure 2 and the Cr-Mo-■ steel in Figure 4 is due to the difference in the composition system of the steel ingot,
It is well known that V steel ingots have less Δ segregation than carbon steel.

しかし従来法鋼塊材のCr Mo ’V系のタービ
ンローターは△偏析に起因する成分欠陥が見出されてい
るが、本発明のEST処理を行なったローターは鋼塊欠
陥に起因する成品欠陥が全(認められないことを実用ロ
ーターで確認している。
However, while component defects due to △ segregation have been found in turbine rotors made of conventional steel ingots such as CrMo'V, the rotor subjected to the EST treatment of the present invention has no product defects due to steel ingot defects. (It has been confirmed with a practical rotor that this is not allowed.)

以上のように、本発明は工業的に極めて理想的な高級清
浄鋼塊を供給する方法であり、特に要求特性の厳しい蒸
気タービンローター、発電機用ローターシャフトなどの
製造に有用である。
As described above, the present invention is an industrially extremely ideal method for supplying high-grade clean steel ingots, and is particularly useful for manufacturing steam turbine rotors, rotor shafts for generators, etc., which have strict characteristics requirements.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はBEST法(B6hler Electr。 Slag Toppig法)の原理図。 第2図は、EST鋼塊縦断面のサルファープリントを示
す図。 第3図イ2口は、鋼塊軸芯上高さ方向の介在物清浄度を
示す図。 第4図は本発明により得られた鋼塊のサルファープリン
トを示す図。 第5図イ2口は、本発明による鋼塊と従来法による鋼塊
の品質性状比較図。 1・・・・・・定盤、2・・・・・・鋳型、計・・・・
・押湯鋳型、4・・・・・・電源、5・・・・・・電極
、6・・・・・・スラグ、7・・・・・・鋼塊、A・・
・・・・比較鋼塊(従来法)、B・・・・・・EST鋼
塊(本発明)。
FIG. 1 is a diagram showing the principle of the BEST method (B6hler Electr. Slag Toppig method). FIG. 2 is a diagram showing a sulfur print of a longitudinal section of an EST steel ingot. Figure 3 A2 is a diagram showing the inclusion cleanliness in the height direction on the axis of the steel ingot. FIG. 4 is a diagram showing a sulfur print of a steel ingot obtained according to the present invention. Figure 5 A2 is a comparison diagram of the quality and properties of the steel ingot according to the present invention and the steel ingot produced by the conventional method. 1...Surface plate, 2...Mold, total...
・Riser mold, 4...Power source, 5...Electrode, 6...Slag, 7...Steel ingot, A...
...Comparative steel ingot (conventional method), B...EST steel ingot (invention).

Claims (1)

【特許請求の範囲】 1 造塊作業終了後の鍋内に残留する溶融電炉還元期ス
ラグを適宜手段を用いて押湯枠内の溶鋼上に移注したの
ち、造滓剤の無添加若しくは適宜量の造滓剤を添加して
スラグ組成をCab/ S i 02重量比で1.5〜
5.0、(CaO+Mg0)/(5i02+Al203
)重量比で10〜301CaF2<20重量%、且つ(
T、 Fe +T、 Mn )〈2重量%以下に保持す
ることを特徴とするエレクトロスラグホットトップ法。 但し、 (T、Fe)ニスラグに含まれる鉄(Fe)の全量即ち
、金属鉄、酸化鉄(Fed、Fe3O4、Fe2O3を
含む)の中のFeの全量 (T、 Mn ) ニスラグに含まれるMnおよびMn
化合物中のMnの全量。
[Scope of Claims] 1. After the molten electric furnace reduction stage slag remaining in the ladle after the completion of the ingot-making operation is transferred onto the molten steel in the riser frame using an appropriate means, no slag-forming agent is added or the slag is added as appropriate. The slag composition is adjusted to a Cab/Si02 weight ratio of 1.5 to 1.5 by adding an amount of sludge forming agent.
5.0, (CaO+Mg0)/(5i02+Al203
) 10-301CaF2<20% by weight by weight, and (
T, Fe + T, Mn) <An electroslag hot top method characterized by maintaining the content at 2% by weight or less. However, (T, Fe) The total amount of iron (Fe) contained in the varnish slag, that is, the total amount of Fe in metallic iron and iron oxide (including Fed, Fe3O4, and Fe2O3) (T, Mn) Mn and Mn
Total amount of Mn in the compound.
JP54117790A 1979-09-13 1979-09-13 Electroslag hot top method Expired JPS5931426B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP54117790A JPS5931426B2 (en) 1979-09-13 1979-09-13 Electroslag hot top method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP54117790A JPS5931426B2 (en) 1979-09-13 1979-09-13 Electroslag hot top method

Publications (2)

Publication Number Publication Date
JPS5641066A JPS5641066A (en) 1981-04-17
JPS5931426B2 true JPS5931426B2 (en) 1984-08-02

Family

ID=14720358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP54117790A Expired JPS5931426B2 (en) 1979-09-13 1979-09-13 Electroslag hot top method

Country Status (1)

Country Link
JP (1) JPS5931426B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108315563A (en) * 2017-12-19 2018-07-24 重庆材料研究院有限公司 A kind of electroslag remelting slag of super-duplex stainless steel

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI844183L (en) * 1983-10-28 1985-04-29 Werner Schatz FOERFARANDE FOER FRAMSTAELLNING AV HAORDAEMNESPARTIKLAR INNEHAOLLANDE METALLBLOCK, -HALVFABRIKAT ELLER PROFILMATERIAL.

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108315563A (en) * 2017-12-19 2018-07-24 重庆材料研究院有限公司 A kind of electroslag remelting slag of super-duplex stainless steel

Also Published As

Publication number Publication date
JPS5641066A (en) 1981-04-17

Similar Documents

Publication Publication Date Title
JP3626278B2 (en) Method for producing Al-killed steel without clusters
JP6869261B2 (en) Gray cast iron inoculant
CN108193019A (en) A kind of hot investment casting smelting and pouring technique
JPS5931426B2 (en) Electroslag hot top method
JP5455193B2 (en) Stainless steel manufacturing method
JP5205799B2 (en) Method for melting Cr-containing low alloy steel
JP4074328B1 (en) Ladle refining method
CN116422853A (en) Die steel and continuous casting production method thereof
JPH082487B2 (en) Flux for addition in tundish
JPH0639635B2 (en) Electroslag remelting method for copper and copper alloys
US4133967A (en) Two-stage electric arc - electroslag process and apparatus for continuous steelmaking
CN108655370A (en) A kind of composite plate blanks casting method and device
JP3893785B2 (en) Melting method of high carbon steel for wire
US3993474A (en) Fluid mold casting slag
RU2002847C1 (en) Process for manufacturing ferro-silicon-manganese-aluminum alloy
JP3836249B2 (en) Method for melting high ferritic stainless steel with high Al content that suppresses refractory melting of refining vessel
JP3675094B2 (en) Ladle refining method for stainless molten steel
JP3840793B2 (en) Production method of steel containing B
JP3752740B2 (en) Heat raising method for molten steel in ladle
RU2102516C1 (en) Method of preparing ferrotitanium
SU1002392A1 (en) Reducer
JP3726599B2 (en) Method for refining molten steel using refractory scrap containing carbon
US4150979A (en) Method of continuous production of nodular cast iron
RU2026386C1 (en) Method of preparing of ingot from stainless steel stabilized with titanium
CN110257712A (en) A kind of Cutting free knife handle special-purpose steel and preparation method