JPS59201009A - Auto focus detecting device - Google Patents
Auto focus detecting deviceInfo
- Publication number
- JPS59201009A JPS59201009A JP7710183A JP7710183A JPS59201009A JP S59201009 A JPS59201009 A JP S59201009A JP 7710183 A JP7710183 A JP 7710183A JP 7710183 A JP7710183 A JP 7710183A JP S59201009 A JPS59201009 A JP S59201009A
- Authority
- JP
- Japan
- Prior art keywords
- light
- subject
- distance
- photographed
- light receiving
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/28—Systems for automatic generation of focusing signals
- G02B7/30—Systems for automatic generation of focusing signals using parallactic triangle with a base line
- G02B7/32—Systems for automatic generation of focusing signals using parallactic triangle with a base line using active means, e.g. light emitter
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B3/00—Focusing arrangements of general interest for cameras, projectors or printers
- G03B3/10—Power-operated focusing
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Automatic Focus Adjustment (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はオートフォーカス検出装置に関し、特に発光装
置によりコントラストをつけた被写体を奉線距離計方式
によシ測距するように構成したオートフォーカス検出装
置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an autofocus detection device, and more particularly to an autofocus detection device configured to measure the distance of a subject to which contrast is added using a light emitting device using a distance meter method.
従来よシオートフォーカス検出装置として、アクティブ
方式およびパッシブ方式が知られているが、いずれの方
式も検出困難な被写体があるという被写体条件に関する
点あるいは組立精度を必要とする製造条件に関する点等
に一長一短があシ、各種カメラ各様のオートフォーカス
方式が採用されているのが現状である。Conventionally, active and passive methods have been known as autofocus detection devices, but each method has advantages and disadvantages in terms of subject conditions such as difficult-to-detect objects and manufacturing conditions that require assembly precision. Currently, various types of cameras use different autofocus methods.
特にアクティブ方式においては、一般に発光体からの光
束が所定距離隔てて配置された受光体の−どの部分に反
射してくるがで、すなわち三角測距方式が採用されてい
るため、前記被写体条件に関しては有利となるが発光体
と受光体の相対位置精度が非常に必要となシ精度管理の
ための製造コストが増大するという欠点がある。In particular, in the active method, it is difficult to determine which part of the light receiver placed at a predetermined distance the light beam from the light emitter will be reflected, in other words, a triangular distance measurement method is adopted, so the above-mentioned subject conditions are Although this is advantageous, it has the disadvantage that it requires very high precision in the relative position of the light emitting body and the light receiving body, which increases the manufacturing cost for precision control.
またノ々ツシブ方式においては、被写体が暗い場合のフ
ォーカス検出精度を上げるために被写体を照明する発光
体を備えたものも知られているが、原理的に被写体像の
ズレを検出するためフォーカス検出のための受光素子が
高価になるとか、被写体照明のための発光体に多くの電
力を必要としフォーカス検出時に電源電圧が減少するた
め特に共用電源の場合には他の共用回路に悪影響を与え
るといった欠点がある。In addition, in the Nonotsive method, some systems are known that are equipped with a light emitter that illuminates the subject in order to improve focus detection accuracy when the subject is dark, but in principle, focus detection is performed to detect deviations in the subject image. For example, the light-receiving element for illumination of the subject becomes expensive, and the light emitter for illuminating the subject requires a lot of power, and the power supply voltage decreases during focus detection, which has a negative impact on other shared circuits, especially in the case of a shared power supply. There are drawbacks.
したがって、本願発明は上記実情に鑑み、アクティブ方
式の被写体条件の優位性とパッシブ方式の製造条件の優
位性を備えたオートフォーカス検出装置を提供すること
を目的とし、この目的は被写体にコントラストを与える
よう配置された発光手段と、所定の基線距離隔てて配置
され被写体の像を形成する2個のレンズ手段と、これら
のレンズ手段の結像面に配置された2個の受光手段と、
前記発光手段の発光によシ出力される前記2個の受光手
段の出力比全求める演算手段とからなシ、この演算出力
によシ被写体距離を検出するように構成することによっ
て達成される。Therefore, in view of the above circumstances, it is an object of the present invention to provide an autofocus detection device that has the superiority of the subject conditions of the active method and the superiority of the manufacturing conditions of the passive method, and this purpose is to provide contrast to the subject. two lens means arranged at a predetermined baseline distance apart and forming an image of a subject; two light receiving means arranged on the imaging plane of these lens means;
This is achieved by including a calculation means for calculating the total output ratio of the two light receiving means outputted by the light emission of the light emitting means, and by configuring the object distance to be detected based on the calculation output.
以下、本発明を添付図面の一実施例に基づいて説明する
。Hereinafter, the present invention will be explained based on one embodiment of the accompanying drawings.
第1図は本発明オートフォーカス検出装置の原理図を示
し、PDl はレンズ系L1によシ撮影被写体の所定画
角内の被写体像が形成される位置に配置された受光素子
およびPD2はレンズ系L2によシ撮影被写体の所定画
角内の被写体像が形成される位置に配置された受光素子
であシ、これら2組の検出器(Ll、PDI および
L2、PD2 )はそれぞれ同一形態であるがただ所
定基線距離隔てて配設されている点でのみ異なる。した
がってこれら受光素子PDI、PD2間には当然のこと
ながら/4ララツクスが生じこのノ臂うラックスがフォ
ーカス検出のために用いられるのである。FIG. 1 shows a principle diagram of the autofocus detection device of the present invention, in which PDl is a light receiving element placed at a position where a subject image within a predetermined angle of view of the photographed subject is formed by lens system L1, and PD2 is a lens system. L2 is a light receiving element placed at a position where a subject image within a predetermined angle of view of the subject to be photographed is formed, and these two sets of detectors (L1, PDI and L2, PD2) have the same configuration. The only difference is that they are arranged at a predetermined baseline distance. Therefore, as a matter of course, a /4 lux is generated between these light receiving elements PDI and PD2, and this lux is used for focus detection.
またこれら受光素子PDIおよびPD2は後述する方式
によジストロが発光器STからの光にのみ感応し、検出
被写体は、前記受光素子間出力に差が出るように両受光
素子の間であって中心よシ偏倚した位置(第1図)ある
いは両受光素子の外側に配置された(図示せず)ストロ
が発光器STおよびレンズ系L3によシ撮影被写体の画
角内の所定照射角で照明されているものとする。In addition, these light receiving elements PDI and PD2 are arranged so that the dystro is sensitive only to the light from the light emitter ST using the method described later, and the detection object is located between the two light receiving elements and at the center so that there is a difference in the output between the light receiving elements. A strobe placed at a slightly biased position (FIG. 1) or outside both light receiving elements (not shown) is illuminated by the light emitter ST and lens system L3 at a predetermined illumination angle within the field of view of the subject to be photographed. It is assumed that
ここでd1位置に撮影被写体がある場合にはストロが発
光器STによシ照射された被写体像は受光素子PD2
にはほとんど結像されないが、受光素子PDI 上
には大部分が結像される。しかしながら、撮影被写体距
離がd2、d3と遠距離の方へ遠ざかると受光素子PD
I 上に結像される被写体像に対するストロyj?発光
器STによシ照射された被写体像の割合の増加率は、受
光素子PDZ 上に結像される被写体像に対するストロ
ブ発光器STによシ照射された被写体像の割合の増加率
よシ少ない。Here, if there is a photographic subject at position d1, the subject image irradiated by the flashlight by the light emitter ST will be transferred to the light receiving element PD2.
Although almost no image is formed on the light receiving element PDI, most of the image is formed on the light receiving element PDI. However, when the photographic subject distance moves away from d2 and d3, the light receiving element PD
I Stroyj for the object image formed on it? The rate of increase in the proportion of the subject image irradiated by the light emitter ST is smaller than the rate of increase in the proportion of the subject image irradiated by the strobe emitter ST to the subject image formed on the photodetector PDZ. .
したがって、これら受光素子PD1とPD2の光量比(
PDI/PD2)を求めると近距離側で大きく遠距離に
いくにしたがって1に近づいてくることとなり、この光
量比の算出によシフオーカス検出が行なえることが理解
される。これらの特性図は第2図に示されておシ、ここ
では横軸に距離、縦軸に前記受光組子PDIとPD2の
光量比(P D 1 / p D 2 )をそれぞれ座
標として示されている。Therefore, the light amount ratio (
PDI/PD2) is large on the short distance side and approaches 1 as the distance increases, and it is understood that focused focus detection can be performed by calculating this light amount ratio. These characteristic diagrams are shown in FIG. 2, where the horizontal axis represents the distance, and the vertical axis represents the light intensity ratio (P D 1 / p D 2 ) of the light-receiving muntons PDI and PD2, respectively. ing.
ここでd1〜d3は第1図に示す距離d1〜d3に対応
するものとする。Here, d1 to d3 correspond to the distances d1 to d3 shown in FIG.
以上は、外界の明るさを無視した条件のもとで認識され
るフォーカス検出原理であるため、実際のカメラに組込
むためには、この条件を略満足できるような検出方式(
例えば、受光素子PDI、PD2 の出力をストロブ発
光器にのみ感応するように構成)を採用する必要がある
ことは言うまでもない。The above is a focus detection principle that is recognized under conditions that ignore the brightness of the outside world, so in order to incorporate it into an actual camera, a detection method that can approximately satisfy this condition (
For example, it goes without saying that it is necessary to adopt a configuration in which the outputs of the light receiving elements PDI and PD2 are sensitive only to the strobe light emitter.
第3図は上記原理のフォーカス横倒装置を採用したカメ
ラの正面図、第4図は第3図のフォーカス検出装置の横
断面図、第5図は第3図のフォーカス横倒装置の回路結
像図のそれぞれを示し、同一符号は同一物を示すものと
する。Figure 3 is a front view of a camera that employs the focus horizontal tilting device based on the above principle, Figure 4 is a cross-sectional view of the focus detection device shown in Figure 3, and Figure 5 is a circuit diagram of the focus horizontal tilting device shown in Figure 3. The same symbols refer to the same objects.
第3図、第4図を参照して、カメラ本体1の上部にオー
トフォーカスユニット10が取付けられ、このユニット
10は所定画角内の被写体像を受光素子PDI 上に
結像するレンズ系L1、所定画角内の被写体像を受光素
子PD2 上に結像するレンズ系L2、ストロが発光器
8Tの光束を撮影被写体にコントラストを付けるように
撮影画角内の所定画角、内に拡散させるレンズ系L3、
によ多構成されている。Referring to FIGS. 3 and 4, an autofocus unit 10 is attached to the upper part of the camera body 1, and this unit 10 includes a lens system L1 that focuses a subject image within a predetermined angle of view onto a light receiving element PDI; A lens system L2 that forms an image of the subject within a predetermined angle of view onto the light receiving element PD2, and a lens that diffuses the luminous flux of the light emitter 8T within the predetermined angle of view within the photographic angle of view so as to add contrast to the photographed subject. System L3,
It is composed of many parts.
これら受光素子PDI、PD2 の受光出力は後述す
る処理回路によp光量比が算出されレンズ鏡胴2の撮影
レンズ3のフォーカス調整が行なわれるかあるいはファ
インダ4内に前記光量比に基づいて算出される距離情報
が表示され半自動的にフォーカス調整が行なわれる。The light receiving outputs of these light receiving elements PDI and PD2 are used to calculate a p light amount ratio by a processing circuit which will be described later and adjust the focus of the photographing lens 3 of the lens barrel 2, or are calculated based on the light amount ratio in the viewfinder 4. Distance information will be displayed and focus will be adjusted semi-automatically.
これらフォーカス制御機構は如何様にも設計できること
は言うまでもない。It goes without saying that these focus control mechanisms can be designed in any manner.
第5図は上記フォーカスユニットの処理回路を示し、受
光素子PDI、PD2 の受光出力は光電流増幅器5
0.53によシ増幅され、この受光出力の変化分のみを
通過さ、せる微分回路51.54を介−てサンプルホー
ルド回路52.55に入力される。このサンプルホール
ド回路52.550ホ一ルド時点は、ストロボ電源回路
5Tおよびス、トロが受光器ISTぐ゛らν′1°21
置(7))+J″−!″″cxF)生成さ些、この発光
器STからの光束が被写体を介して受光素子PDI、P
D2 に帰つ、てくる間の受光出力の変化分をホール
ドするように設定されている。した、かって、これ、ら
ホールド回路52.55は前記変化分を積算ホールド又
はス)I=l/発光−B 、Tがらの反射光のみを積分
ホールドしても良いし、所定時間の変化分の出力そのも
のをホールドしても良いことは言うまでもない。またこ
の変化分の出力を発光器STの略発光時にホールドする
ことは外界の明るさによる受光素子PDI、PD2への
影響を少なくするためのものであって、このフォーカス
検出原理から必要な処理で娶ることは前述したとおシで
ある。しかしながら、このホールド作用は後述する演算
回路56の処理後に行なうように構成しても良い。FIG. 5 shows the processing circuit of the focus unit.
The signal is amplified by 0.53, and is input to a sample-and-hold circuit 52.55 via a differentiation circuit 51.54 that allows only the change in the received light output to pass through. At this point in time when the sample and hold circuit 52.550 is held, the strobe power supply circuit 5T and the light receiver IST are ν′1°21
(7))+J″-!″″cxF) The luminous flux from the light emitter ST passes through the subject to the light receiving elements PDI, P.
It is set to hold the change in the received light output during the time between returning to and returning to D2. The hold circuits 52 and 55 may integrate and hold only the reflected light from the above, or may integrate and hold only the reflected light from T, or may integrate and hold only the reflected light from the It goes without saying that the output itself may be held. Also, holding the output of this change when the light emitter ST is almost emitting light is to reduce the influence of external brightness on the light receiving elements PDI and PD2, and based on this focus detection principle, it is necessary to perform the necessary processing. Marriage is the same as mentioned above. However, this hold action may be configured to be performed after processing by the arithmetic circuit 56, which will be described later.
(この場合は、サンプルホールド回路は1個ですむが、
前記した積算作用は困難となる)これらホールドされた
ホールド出方は演算回路56によシ除算され、すなわち
受光素子PDI の変化分出力を受光素子PD2
の変化分出力で割った値が算出される。(In this case, only one sample and hold circuit is required, but
(The above-mentioned integration effect becomes difficult.) These held outputs are divided by the arithmetic circuit 56, that is, the change output of the light receiving element PDI is divided by the output of the light receiving element PD2.
The value divided by the change in output is calculated.
この算出値は第2図に示すように被写体距離と対応した
値を有しているため、所定距離の被写体に対して更正す
れば至近距離から遠距離に至る被写体距離との対応関係
が容易に求められる。As shown in Figure 2, this calculated value has a value that corresponds to the subject distance, so if you correct it for a subject at a predetermined distance, you can easily see the correspondence with subject distances from close range to far distance. Desired.
以上の構成における作用を第31図ないし第5図を参照
、して以下に説明する。The operation of the above configuration will be explained below with reference to FIGS. 31 to 5.
カメラ1のレリーズがタン5を押圧すると、7オーカ不
ユニツトに電源が供給されストロが電源回路5Tのメイ
ンコンデンサ(図示せず)が急速充電され(このフォー
カス検出用の充電量は詰常撮影のストロブ充電量に対し
て少なくてすむため可能となるが、常時充電するように
構成しても良い)、この充電後トリガー信号が与えられ
る。このトリガー信号によシストロゴ発光器STは発光
し被写体を所定画角のもとで照明する。この所定画角は
被写体にコントラストを付けるためのものであるから撮
影画角よシも少なく設定されてい′る。したがって、第
1図に示す原理によシ受光素子PDI、PD2 には
被写体距離に応じた異なる割合で発光管STからの光束
であって被写体を介した光束が入射されることになる。When the release of the camera 1 presses the button 5, power is supplied to the 7-focus unit and the main capacitor (not shown) of the power supply circuit 5T is rapidly charged (this amount of charge for focus detection is not enough for normal shooting). This is possible because the amount of charge required for the strobe is small, but it may be configured to charge constantly), and the trigger signal is given after this charging. In response to this trigger signal, the cystologo emitter ST emits light and illuminates the subject under a predetermined angle of view. Since this predetermined angle of view is for adding contrast to the subject, the angle of view for photographing is also set to be smaller. Therefore, according to the principle shown in FIG. 1, the light flux from the arc tube ST that passes through the subject is incident on the light receiving elements PDI, PD2 at different rates depending on the distance to the subject.
この入射光量は微分回路51.54により変化分のみが
取出され、すなわちストロが発光器STからの光束によ
る出方分−が取出され、サンプルホールド回路52.5
5にてホールドされる。これらのホールド出方は演算回
路56によシ前記受光素子PDI、PD2 の光量比と
して算出され被写体距離情報が求められる。The differential circuit 51.54 extracts only the amount of change in the amount of incident light, that is, the amount of light emitted from the light emitter ST by the sample and hold circuit 52.5.
It is held at 5. These hold outputs are calculated by the arithmetic circuit 56 as the light amount ratio of the light receiving elements PDI and PD2, and object distance information is obtained.
この被写体距離情報は図示せぬフォーカス制御機構例え
ばサー?駆動機構あるいはバネ等ニヨるレンズ駆動機構
による撮影レンズ3の駆動信号として用いられ自動的に
フォーカス調整されるかあるいは被写体距離情報として
ファインダ4内に表示される。This object distance information is transmitted to a focus control mechanism (not shown), such as a sensor. The signal is used as a drive signal for the photographing lens 3 by a drive mechanism or a lens drive mechanism such as a spring to automatically adjust the focus, or is displayed in the finder 4 as object distance information.
以上の説明において、受光素子PDI、 PD2がスト
ロゴ発光器STのみの光束に感じるように電気的処理回
路で行なっているが、他の方法として発光器に赤外光発
光ストロ〆、受光素子に赤外光受光素子あるいは赤外光
透過フィルタを受光素子の前に配置するように構成して
も良い。In the above explanation, the electric processing circuit is used to make the light receiving elements PDI and PD2 sense the luminous flux of only the strobe light emitter ST, but another method is to use an infrared light emitting strobe for the light emitter and a red flash for the light receiving element. An external light receiving element or an infrared light transmitting filter may be arranged in front of the light receiving element.
またストロが発光器として撮影用のストロが装置を兼用
することも可能であシ、この際には発光器のメインコン
デンサをフォーカス検出用と撮影用と2個設け、時系列
的に発光制御することで可能となるが、ストロが発光器
の発光分布は可視光領域も含むものとする必要がある。It is also possible for the flash to function as a light emitter and the flash for photography to also function as a device. In this case, two main capacitors are provided for the light emitter, one for focus detection and one for photography, and the light emission is controlled in chronological order. However, the light emission distribution of the light emitter needs to include the visible light region.
以上説明したように、本発明オートフォーカス検出装置
によれば、受光素子の光量比と被写体距離との対応を電
気的に補正できるため、レンズ、受光素子およびスト四
M装置の空間的調整は不要となシ飛躍的に生産性が向上
する。As explained above, according to the autofocus detection device of the present invention, the correspondence between the light intensity ratio of the light receiving element and the subject distance can be electrically corrected, so there is no need for spatial adjustment of the lens, the light receiving element, and the 4M device. Productivity improves dramatically.
また発光器を用いるためノ臂ツシプ方式における暗い被
写体の場合にフォーカス検出能力が低下するといった問
題も解決され、両受光素子の光量比であるためアクティ
ブ方式における発光管の位置精度も必要としない。Furthermore, since a light emitter is used, the problem of reduced focus detection ability when photographing a dark subject in the arm-to-shoulder method is solved, and the positional accuracy of the arc tube in the active method is not required because it is based on the light amount ratio of both light-receiving elements.
さらに発光管にストロが発光管を用いた場合には受光素
子出力が大きいため出力低下による誤動作も少なくなる
と共にストロが発光時に電流を消費しないため各回路間
へノイズが入らないという効果も生じてくる。Furthermore, when a light emitting tube is used as a light emitting tube, the light-receiving element has a large output, which reduces malfunctions caused by a drop in output, and since the light does not consume current when emitting light, it also prevents noise from entering between each circuit. come.
このように本発明装置によれば非常に簡単な構成であシ
ながら、実用性の高いオートフォーカス検出装置が提供
できるのであシ、効果の点においても従来にない工業生
産性の高いオートフォーカス検出装置が提供できる。As described above, according to the device of the present invention, it is possible to provide an autofocus detection device with a very simple configuration but with high practicality. Equipment can be provided.
第1図は本発明装置の原理を示す説明図、第2図はこの
原理に基づく被写体距離と光量比の関係を示す図、第3
図は本発明装置を組込んだカメラの正面図、第4図は本
発明装置の横断面図、および第5図は本発明装置の処理
回路結線図をそれぞれ示す。
Ll、L2、L3 ・・・レンズ系
PDI、PD2 ・・・受光素子
ST・・・ストロが発光管
1・・・カメラ
2・・・レンズ鏡胴
3・・・撮影レンズ
4・・・ファインダ
5・・・レリーズがタン
50.53・・・光電増幅器
51.54・・・微分回路
52.55・・・サンプルホールド回路56・・・演算
回路
出願人 富士写真光根株式会社
’l/ 図
第3 図Figure 1 is an explanatory diagram showing the principle of the device of the present invention, Figure 2 is a diagram showing the relationship between subject distance and light amount ratio based on this principle, and Figure 3 is a diagram showing the relationship between subject distance and light amount ratio.
The figure shows a front view of a camera incorporating the device of the invention, FIG. 4 shows a cross-sectional view of the device of the invention, and FIG. 5 shows a processing circuit connection diagram of the device of the invention. Ll, L2, L3... Lens system PDI, PD2... Light receiving element ST... Stroke is arc tube 1... Camera 2... Lens barrel 3... Taking lens 4... Finder 5 ...Release button 50.53...Photoelectric amplifier 51.54...Differential circuit 52.55...Sample and hold circuit 56...Arithmetic circuit Applicant: Fuji Photo Hikane Co., Ltd./Fig. 3 diagram
Claims (1)
手段と、所定の基線距離隔てて配置され前記被写体の像
を形成する2個のレンズ手段と、これらのレンズ手段の
結像面に配置された2個の受光手段と、前記発光手段の
発光によシ出力される前記2個の受光手段の出力比を求
める演算手段とからなシ、この演算出力によシ被写体距
離を検出するように構成したことを特徴とするオートフ
ォーカス検出装置。 2) 発光手段としてストロゴ装置を用いたことを特徴
とする特許請求の範囲第1項記載のオートフォーカス検
出装置。 3) 発光手段として赤外光発光装置を用いたことを特
徴とする特許請求の範囲第1項記載のオートフォーカス
検出装置。 4)受光手段として赤外光にのみ感応する素子を用いた
ことを特徴とする特許請求の範囲第1項記載のオートフ
ォーカス検出装置。 5)、、、、発光手段として撮影用のストロゴ装置を兼
男したことを特徴とする特許請求の範囲第1項町載のオ
ートフォーカス検出装置。[Scope of Claims] l) A light emitting means arranged to give a contrast to a subject, two lens means arranged at a predetermined baseline distance apart and forming an image of the subject, and an image forming method of these lens means. Two light-receiving means arranged on a surface, and a calculating means for calculating the output ratio of the two light-receiving means output by light emission from the light-emitting means. An autofocus detection device characterized by being configured to detect. 2) The autofocus detection device according to claim 1, characterized in that a strobe device is used as the light emitting means. 3) The autofocus detection device according to claim 1, characterized in that an infrared light emitting device is used as the light emitting means. 4) The autofocus detection device according to claim 1, wherein an element sensitive only to infrared light is used as the light receiving means. 5) An autofocus detection device according to claim 1, characterized in that the light emitting means also serves as a strobe device for photographing.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7710183A JPS59201009A (en) | 1983-04-30 | 1983-04-30 | Auto focus detecting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7710183A JPS59201009A (en) | 1983-04-30 | 1983-04-30 | Auto focus detecting device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS59201009A true JPS59201009A (en) | 1984-11-14 |
Family
ID=13624392
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7710183A Pending JPS59201009A (en) | 1983-04-30 | 1983-04-30 | Auto focus detecting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS59201009A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63265230A (en) * | 1987-04-23 | 1988-11-01 | Hitachi Ltd | Automatic focusing device |
US4800409A (en) * | 1986-04-28 | 1989-01-24 | Minolta Camera Kabushiki Kaisha | Control device for use in a camera having an objective lens |
JPS6432240A (en) * | 1987-07-28 | 1989-02-02 | Konishiroku Photo Ind | Automatic focusing camera with electronic flash |
US6711351B2 (en) | 2001-06-29 | 2004-03-23 | Fuji Photo Optical Co., Ltd. | Camera |
US6748167B2 (en) | 2001-06-29 | 2004-06-08 | Fuji Photo Optical Co., Ltd. | Camera with auxiliary light emission and auto-focus |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4853717A (en) * | 1971-11-02 | 1973-07-28 | ||
JPS57182112A (en) * | 1981-05-01 | 1982-11-09 | Ricoh Co Ltd | Range detector |
JPS5827004A (en) * | 1981-08-11 | 1983-02-17 | Kyocera Corp | Device for detecting light spot positions |
-
1983
- 1983-04-30 JP JP7710183A patent/JPS59201009A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4853717A (en) * | 1971-11-02 | 1973-07-28 | ||
JPS57182112A (en) * | 1981-05-01 | 1982-11-09 | Ricoh Co Ltd | Range detector |
JPS5827004A (en) * | 1981-08-11 | 1983-02-17 | Kyocera Corp | Device for detecting light spot positions |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4800409A (en) * | 1986-04-28 | 1989-01-24 | Minolta Camera Kabushiki Kaisha | Control device for use in a camera having an objective lens |
JPS63265230A (en) * | 1987-04-23 | 1988-11-01 | Hitachi Ltd | Automatic focusing device |
JPS6432240A (en) * | 1987-07-28 | 1989-02-02 | Konishiroku Photo Ind | Automatic focusing camera with electronic flash |
US6711351B2 (en) | 2001-06-29 | 2004-03-23 | Fuji Photo Optical Co., Ltd. | Camera |
US6748167B2 (en) | 2001-06-29 | 2004-06-08 | Fuji Photo Optical Co., Ltd. | Camera with auxiliary light emission and auto-focus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4445029A (en) | Distance detector using a photopotentiometer and a continuous detecting system | |
JPH0380290B2 (en) | ||
US5315342A (en) | Automatic focus and indirect illumination camera system | |
US4593987A (en) | Method and device for automatic exposure control by programs | |
JP2001311619A (en) | Apparatus and method for measuring distance | |
JPS59201009A (en) | Auto focus detecting device | |
US5541704A (en) | Camera with LED photometer | |
US4831404A (en) | Automatic focusing camera | |
JPH08184881A (en) | Camera | |
JPH1096851A (en) | Range finder for camera | |
JPS5842006A (en) | Zone-type auto-focus detecting device | |
CN110149481B (en) | Camera pilot lamp signal detection module and aerial photographing control system | |
JP2888492B2 (en) | Distance information output device | |
JPS5887543A (en) | Automatic range finding device of camera | |
JPH03253829A (en) | Back light detecting device for camera | |
EP1041428A1 (en) | Exposure control device and distance measuring device | |
JP2731159B2 (en) | Camera multipoint ranging device | |
JPH01222235A (en) | Camera | |
KR200170178Y1 (en) | Auto-distance measuring apparatus of passive type using added flash | |
JPH026430Y2 (en) | ||
JPH1138487A (en) | Camera | |
JP3411835B2 (en) | Active ranging device | |
JPS6248202B2 (en) | ||
JPH082658Y2 (en) | Camera with backlight compensation | |
JPH0593849A (en) | Device for complying with remote control of camera |