JPS59120940A - Infrared ray type moisture measuring apparatus - Google Patents

Infrared ray type moisture measuring apparatus

Info

Publication number
JPS59120940A
JPS59120940A JP57227690A JP22769082A JPS59120940A JP S59120940 A JPS59120940 A JP S59120940A JP 57227690 A JP57227690 A JP 57227690A JP 22769082 A JP22769082 A JP 22769082A JP S59120940 A JPS59120940 A JP S59120940A
Authority
JP
Japan
Prior art keywords
light
moisture
measured
wavelength
absorption band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57227690A
Other languages
Japanese (ja)
Inventor
Kunio Sukigara
鋤柄 邦男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Corporate Research and Development Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Corporate Research and Development Ltd filed Critical Fuji Electric Corporate Research and Development Ltd
Priority to JP57227690A priority Critical patent/JPS59120940A/en
Publication of JPS59120940A publication Critical patent/JPS59120940A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3554Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for determining moisture content

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To always measure highly precisely an average moisture quantity of an object to be measured having necessary thickness without being influenced by a moisture quantity at a surface part of the object layer to be measured by measuring light transmitted through the object layer to be measured. CONSTITUTION:The light reflected and condensed at a concave mirror 20 is transmitted through a light transmittable supporter 30, made incident to a powder sample layer 26, and is emitted as the transmitted light to oposite side of the layer 26 while reflecting among the powder particles. This transmitted light is converted to an electrical signal at a photodetector 34 through an infrared transmission filter 32. In this case, the moisture quantity of the powder sample layer cn be measured by measuring Imes (signal of the detector 34 due to the light of the wavelength of the peak of a water absorption band), Iref (signal of the detector 34 due to the light of the wavelength of the valley deviated from the water absorption band) and Io (incident intensity of the light of reference wavelength to the layer 26).

Description

【発明の詳細な説明】 この発明は、例えば粉ミルク、テンプン等の食品粉体中
に含まれている水分量全測定する赤外線式水分測定装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an infrared moisture measuring device for measuring the total amount of moisture contained in food powders such as powdered milk and starch.

従来より、水分に対する赤外給の吸収′1′Aを測定す
ることによシ水分測定を行う装置が知られている。一般
に、この種の赤lA線を使用した光学式の水分計副手段
として、被測定対象物からの反射光を測定し、水分量を
求める方法が採用されている。しかし、この方法によれ
ば、aU 1711+定対象物でるる約体地の凹凸、例
えはコンベヤで粉体を輸送する際のコンベヤ上の粉体J
C’+の凹凸等によシ、ff111定精度が低下したシ
、あるいは粉体層の上114部と下層部で水分量が異な
る場合に胎にまたがる平均的な水分h)−が測定できな
い等、実線の粉体乾燥70セスにおいて多くの欠点が指
摘されている。
Conventionally, apparatuses have been known that measure moisture by measuring the absorption '1'A of infrared radiation with respect to moisture. Generally, as a sub-means of this kind of optical moisture meter using the red IA line, a method is adopted in which the reflected light from the object to be measured is measured to determine the moisture content. However, according to this method, aU 1711 + the irregularities of the surface of the target object, for example, the powder J on the conveyor when the powder is transported by the conveyor.
Due to unevenness of C'+, ff111 accuracy has decreased, or the average water content h)- across the womb cannot be measured if the moisture content is different between the upper and lower parts of the powder layer. , many drawbacks have been pointed out in the solid line powder drying process of 70 steps.

例えば、従来において光学式粉体中水分測定装置として
一般的に使用されているものとして、第1図に示すよう
な反射形水分剖が知られている。仁の反射形水分計は、
光臨ioと、集光レンズ1.2と、回転チョッパ/l:
、光バントパスフィルタ/2と、反射鏡/rと、凹面鏡
−〇と、赤外線透過フィルタλλと、光検出器、2弘と
から構成されている。次に、この水分計の作用について
説明する。まず、光(jL410から放射される光は、
集光レンズ/2で集光されて回転チョッパフグに入射す
る。回転チョッパl≠は。
For example, a reflection type moisture analyzer as shown in FIG. 1 is known as a conventional optical powder moisture measuring device that is generally used. Jin's reflective moisture meter is
Optical lens io, condensing lens 1.2, and rotating chopper/l:
, an optical bandpass filter /2, a reflecting mirror /r, a concave mirror -0, an infrared transmission filter λλ, and a photodetector 2hiro. Next, the function of this moisture meter will be explained. First, light (the light emitted from jL410 is
The light is condensed by condenser lens /2 and enters the rotating chopper puffer fish. Rotating chopper l≠.

円盤状回転体として形成しモータ駆動により一定周期で
回転するよう構成すると共に元が通過する位負に光バン
ドパスフィルタ/lを少なくとも2枚以上設置する。こ
の場合、光バンドパスフィルタ/乙の波長を設足するに
際しては、所定の光波長領域における水の吸収帯慣性を
考慮する必要がある。例えは、泥λ図は/〜Vμm波長
領域における水の吸収スペクトルを示したものであシ、
この場合、水の吸収帯行性として、/9.211m 、
 /、4’ J’ l1m 、 /、 Fj Ilmお
よび、2. F j ltmでそれぞれピークを有して
いる。従って、粉体中水分量を測冗するための光として
、一つの光束は光バンドパスフィルタ/乙によシ前把≠
つの波長のうちの一つ(例えば/、23μm)のみの波
長を含む光にすると七が沖J足感度の点から有効である
。まだ、他の一つの光束としては、光源10の光強度の
変動等を補正するために比較波長として、水の吸収帯と
は無関係な波長(例えは7.70−μmまたはコ、≠O
ttm)の光を含むように光バンドパスフィルタ/z′
を選定し、この光バンドパスフィルタ/l′を通過した
光束と前記光バンドパスフィルタ/2を通過した測定波
長を含む光束から得られる信号を演算して水分量を求め
る。なお、晶鞘度な測定をする場合には、比較波長とし
て水の吸収帯の前後の水の吸収帯とは無関係な2つの波
長(例えば7.70μntとλ、≠μm)の光を第3の
光バンドパスフィルタ16“を使用して測定すれば好適
である。
It is formed as a disc-shaped rotating body and is configured to rotate at a constant period by driving a motor, and at least two optical bandpass filters/l are installed at the negative position through which the light passes. In this case, when setting the wavelength of the optical bandpass filter/B, it is necessary to consider the absorption band inertia of water in a predetermined optical wavelength region. For example, the Mud λ diagram shows the absorption spectrum of water in the /~Vμm wavelength range.
In this case, the absorption band of water is /9.211m,
/, 4'J' l1m, /, Fj Ilm and, 2. Each has a peak at F j ltm. Therefore, as light for redundantly measuring the moisture content in the powder, one luminous flux is sent to the optical bandpass filter/object.
When using light that includes only one of the three wavelengths (for example, 23 μm), 7 is effective from the standpoint of Oki Jashi sensitivity. However, as another luminous flux, a wavelength unrelated to the absorption band of water (for example, 7.70-μm or ≠O
ttm) to include the light of
The moisture content is determined by calculating the signal obtained from the light beam passing through this optical band-pass filter /l' and the light beam including the measurement wavelength passing through the optical band-pass filter /2. In addition, when measuring the crystal sheath degree, light of two wavelengths unrelated to the absorption band of water before and after the absorption band of water (for example, 7.70 μnt and λ, ≠ μm) is used as a comparison wavelength. It is preferable to measure using an optical bandpass filter 16''.

このように、通過光束の波長を設定した光バントパスフ
イルり/A、/lr’および必要に1巳〜にて/4“に
より、これを通過しだ光束は断続う“しとな9.逐次反
射鏡1gによシ反射8れて靭体試料層2乙に到達する。
In this way, the wavelength of the light beam passing through it is set by the light band pass filter /A, /lr' and if necessary at 1mm~/4'', the light beam passes through it and becomes intermittent. It is reflected 8 by the successive reflecting mirror 1g and reaches the tough body sample layer 2B.

光は、粉体h(料)(>4.21゜の表面部で反射され
るが、この反射光の中で一次反射光は試料層−2乙の表
面で幾イ1す光学的に単純に反射された光であるので、
殆んど水分による吸収を受けず、この光を検出すると感
バ1−は著しく低下する。従って、通弗この一次反射ブ
f、は反射鏡7g等により遮う°Cする等光字配積を工
夫して、検出器、2弘に入射しないようにしである。
The light is reflected by the surface of the powder h (material) (>4.21°), but among this reflected light, the primary reflected light is optically simple on the surface of the sample layer-2. Since the light is reflected by
It is hardly absorbed by moisture, and when this light is detected, the sensitivity decreases significantly. Therefore, this primary reflecting beam f is blocked by a reflecting mirror 7g, etc., so that it does not enter the detector 2 by devising a uniform arrangement.

一方、水分測定を行うためには、試料層、2乙の表面で
乱反射され、粉体粒子間を反射を繰返えして出てきた反
射光を集光することが有効かつ必要である。そこで、こ
れらの乱反射光は、凹面鏡2Qで集光し、赤外kM過フ
ィルタ、22を通過させて光検出器−グに入射し、電気
イt;ぢとして取出すことができる。
On the other hand, in order to measure moisture, it is effective and necessary to collect the reflected light that is diffusely reflected on the surface of the sample layer 2 and repeatedly reflected between powder particles. Therefore, these diffusely reflected lights are condensed by the concave mirror 2Q, passed through the infrared kilometer filter 22, and are incident on the photodetector, where they can be extracted as electric light.

このようにa’t 既きれた従来の水分測定方式によれ
ば、粉体試料層2乙の表面部で反射される一次反射光を
雑光してこれを検出器、21/−に入射させないように
することが必要であるが、粉体試料の場合に前記−次反
射光を先金に除去することは試料表面がミクロ的には先
金な平面でないことから困虻でめシ、しかも通當−次反
射光は乱反射光に比較して反射光全体に占める割合が大
きく、従って粉体試料表面の状態のイかかな変化によっ
て検出器コ弘に入射する一次反射光強厩が変化し、水分
量に関係なく信号の変化を生じる。捷た、乱反射光につ
いても、粉体試料層2乙の極く表面に近い所にある粉体
粒子による乱反射光による割合が大きいので、試料層2
乙の上層部と中心部あるいは下層部で水分量が異なる場
合、例えば上層部から徐々に乾燥してきている場合には
、層の平均的な水分量を測定できない難点がある。
In this way, according to the existing conventional moisture measurement method, the primary reflected light reflected from the surface of the powder sample layer 2B is mixed up and is not allowed to enter the detector 21/-. However, in the case of a powder sample, it is difficult and difficult to remove the above-mentioned reflected light at the tip because the sample surface is not microscopically flat. The normally reflected light occupies a larger proportion of the total reflected light than the diffusely reflected light, and therefore the intensity of the primary reflected light incident on the detector changes due to slight changes in the surface condition of the powder sample. , the signal changes regardless of the moisture content. Regarding the scattered and diffusely reflected light, a large proportion is due to the diffusely reflected light from the powder particles located very close to the surface of the powder sample layer 2B.
If the moisture content differs between the upper layer and the center or lower layer, for example, if the upper layer is gradually drying out, there is a problem in that the average moisture content of the layer cannot be measured.

そこで、本発明渚は、i1j述した従来の水分測定装亀
の問題点を克服すべく楯々恨討七本ねたね呆、私計j厘
対象物層を透焉した光金側短し、しかも4ji、伸j定
幻鮫物1缶・の厚さおよびそのWi裏を軸止することに
より、被損1」矩対象物鳩の凹凸によシ生じる両足軸度
の低下を回赴すると共eζ板担i」にえll&物lヒ内
に2ける水分量の分イbの影愉乞無くして平均水分量の
漏和展な曲j定をb」能とし、前記問題点を絹消し祷る
ことケ突き止めた。
Therefore, in order to overcome the problems of the conventional moisture measuring device mentioned above, the present invention was developed by the Kogane side, which transparently penetrates the target layer of personal finance. In addition, by fixing the thickness of the 1 can of elongated fish and the back of the can, it is possible to eliminate the loss of both foot axis caused by the unevenness of the damaged 1" rectangular object. The problem mentioned above can be solved by defining the equation of the average water content as "b", which is the equation of the water content divided by 2 in "eζ board carrier i", and eliminating the shadow of "b". I have found something to pray for.

従って2本発明の目的は*:4!、測定対象慟崩を透過
する元+C測足することにより、也側尾対比物励の表面
部に2ける水分量の変化に彫物?受けることなく、祁に
所安N、さの扱両足刈苑牲の平均水分量を高bkに泥足
することかでさる赤外軸式水分計j定装附金価供するに
おる。
Therefore, the purpose of the present invention is *:4! By measuring the element + C that passes through the water to be measured, it is possible to determine the change in water content on the surface of the contrast object. Without having to worry about it, we can provide an infrared shaft type moisture meter with a fixed price by adding the average moisture content of the two-legged grass to the high bk.

前記の目的を達成するため1本発明においては、赤外に
光源と、この光源から放射艷れる元より特定の波長の光
を選択的に取出しこれを様測定対象物に尋く放射光選択
手段と、抜御j定対象物より強度変化を受ゆた光を受光
してME気伯号にi換する光検出手板とを備え、r5i
Jk放射光辿択牛段を水分の吸収偕特性の成長に相当す
る光束と水分の吸収帯近辺で水分の吸収もから外れた成
長の元全含む少くとも一つの光束とを放射するよう構成
し、さらに前記フ′し検出手段をrjildピ放射光選
択手段から放射ちれる光が扱611J定対&物を透過し
て得らnる九kt恨出するよう位負決めすることを%似
とする。
In order to achieve the above object, the present invention includes an infrared light source and a radiation light selection means that selectively extracts light of a specific wavelength from the source and interrogates the object to be measured. and a light detection hand plate that receives the light whose intensity changes from the target object and converts it into the ME light.
The Jk synchrotron radiation tracer stage is configured to emit a light beam corresponding to the growth of water absorption characteristics and at least one light beam including all of the growth sources near the water absorption band and outside the water absorption characteristic. Furthermore, the above-mentioned filter detection means is arranged so that the light emitted from the radiation light selection means is handled and transmitted through a constant object and the light obtained is determined to be 9kt. do.

前記の赤外ルメ式水分副足鉄龜において、放射光選択手
段から放射される水分の吸収帯特性から外れた成長の光
を自む一つの光束の被沖′I定対象物の表面部における
反射光量を測定する光横田+段を設け、前記反射光駕と
透過光音とから級測定対象物の崩厚きと重度の稍t3t
−出して水分量に関係する信号の袖止r行うよう構成す
れば好適である。
In the above-mentioned infrared Lummet type moisture supplementary iron, one light beam having a growth that deviates from the absorption band characteristics of moisture emitted from the synchrotron radiation selection means is exposed to the surface of a fixed object. A light Yokota + stage is provided to measure the amount of reflected light, and from the reflected light beam and transmitted light sound, it is possible to detect the thickness of the object to be measured and severe defects.
- It is preferable to configure the device so that a signal related to the moisture content is output.

次に、本発明に係る赤外す式水分測定装置の実施例につ
き離村図面を径照しながら以下詳細に説明する。
Next, an embodiment of the infrared moisture measuring device according to the present invention will be described in detail with reference to the drawings of the remote village.

第3図は、本発明に係る旗外肪式水分測定装置の一笑′
biu例を示す原理(h底面である。なお、説明の便宜
上第/図に示ず従来の亦外線式水分測犀装餉、と同一の
構成j%I5分については同一の参照杓号を伺してその
詳細な説明を省略する。すなわち、第3図において、光
源/θがら放射される光を集光レンズ/、2を介して回
転チョッパ/4の元バンドパスフィルタ/A、/l、’
よシ水の吸収帯のピーク位置に相当する波長の光を通過
させるように構成した点は、従来の赤外線式水分測定装
置と同一の構成からなる。なお、本実施例においても1
回転チョッパ/ltは同ルJモータによシ躯動される円
盤形回転板がらな勺、光の通路に相当する位置に、透過
する光の波長が異なる少くとも2枚の光バンドパスフィ
ルタit、it’を固定したものを好適に使用すること
ができる。また、光バンドパスフィルタとして、測定精
度を高めるために、比較光束として従来とI’ifJ様
妊水の吸収帯ピークのRfJ後の両波長の光を一つある
いは両者共に用いることも可能である。
Figure 3 shows a diagram of the external fat type moisture measuring device according to the present invention.
The principle showing an example of biu (h is the bottom surface. For convenience of explanation, the same reference number is used for the same configuration as the conventional extra wire type moisture measuring device, which is not shown in the figure. In other words, in FIG. 3, the light emitted from the light source /θ is passed through the condensing lens /, 2 to the rotating chopper /4 and the original band-pass filters /A, /l, '
The structure is the same as that of a conventional infrared moisture measuring device in that it is configured to pass light with a wavelength corresponding to the peak position of the absorption band of water. In addition, in this example, 1
The rotary chopper/lt has a disc-shaped rotary plate that is moved by the same J motor, and at least two optical band-pass filters with different wavelengths of transmitted light are installed at positions corresponding to the light path. , it' can be preferably used. In addition, in order to improve measurement accuracy as an optical bandpass filter, it is also possible to use one or both of the conventional light and the light of the wavelength after RfJ of the absorption band peak of I'ifJ-like pregnant water as a comparison light flux. .

このようにして、光バンドパスフィルタ/6゜/6′を
通過して得られた光は、凹面鏡−20を介して反射およ
び集光させ又粉体試料層2乙を支持する光透過性支持体
30に入射するよう結成する。そこで、本発明において
は1前記元透過性支持体30葡ブ1して粉体試+F層、
24を透過する光を検出するための赤外透過フィルタ3
−2と光検出器3≠を設ける。一方、前記光透過1テト
支持体30に対し凹面鈍、2Of介して反射および年ブ
しさせて入射した光で、粉体試料層2乙より反射さ!L
る元すなわち比較波長の光の入射強度?検出する光検出
器3乙を設ける。
In this way, the light obtained after passing through the optical bandpass filter/6°/6' is reflected and focused via the concave mirror 20, and the light transmitting support supporting the powder sample layer 2B. It is formed so as to be incident on the body 30. Therefore, in the present invention, 1 the original permeable support 30 1 powder test + F layer,
Infrared transmission filter 3 for detecting light transmitted through 24
−2 and photodetector 3≠ are provided. On the other hand, the light incident on the light transmitting 1Tet support 30 through the concave blunt surface 2Of is reflected and reflected from the powder sample layer 2O! L
What is the incident intensity of light at the source or comparison wavelength? A photodetector 3B for detection is provided.

次に、このように構成した本発明に係る赤外線式水分測
定装置の作用につき説明する。
Next, the operation of the infrared moisture measuring device according to the present invention configured as described above will be explained.

前述したように、凹面鏡、20で反射1升・光された光
は、う゛0透過性支持体30を透過して粉体試料%、2
Aに入射し、粉体粒子間を反射しながら試料層、200
反対側に透過光として出射する。
As mentioned above, the light reflected by the concave mirror 20 is transmitted through the transparent support 30 and the powder sample %, 2
A, and while reflecting between the powder particles, the sample layer, 200
It is emitted to the opposite side as transmitted light.

この透過光は、赤外透過フィルタ32を介して光検出器
3’lで電気信号に変換される。この場合、粉体試料層
の水分量は次式で求められる。
This transmitted light passes through an infrared transmission filter 32 and is converted into an electrical signal by a photodetector 3'l. In this case, the moisture content of the powder sample layer is determined by the following formula.

但し、l1neS ’水の吸収帯ピークの波長の光によ
る光検出器3弘の16号 ’Rcf:水の吸収帯から外れた谷間の波長の光による
光検出器34′ の信号 α :定数 cl120 :粉体試料層の平均水分負d−1!!粉体
試料層のかさ密度X層の厚さく積) なお、前記式(1)において、d−JはIR,ef と
次式によシ関係づけられる。
However, l1neS'No. 16 of the photodetector 3hiro due to light at the wavelength of the peak of the absorption band of water'Rcf: Signal α of the photodetector 34' due to light at the wavelength of the valley outside the absorption band of water: Constant cl120: Average moisture content of powder sample layer negative d-1! ! Bulk density of powder sample layer x thickness of layer) In the above formula (1), dJ is related to IR,ef according to the following formula.

I Ref = ■(’ IOeXP (−(β・d 
−z) ) −−−−−−(2)前記式(2)において
、■oは粉体試料層2乙への比較波長の光の入射強度で
あり、これは光検出器3tで検出されて電気信号に変換
される。
I Ref = ■(' IOeXP (-(β・d
−z) ) −−−−−−(2) In the above formula (2), ■o is the incident intensity of light of the comparison wavelength to the powder sample layer 2B, which is detected by the photodetector 3t. is converted into an electrical signal.

また、βは定数である。Further, β is a constant.

前記式(1) 、 (2)よシ1次式の関係が得られる
Based on the above equations (1) and (2), a linear relationship is obtained.

従って、Mt+記式(3)より、”[1+ ”Refお
よびtmesを測定することによシ、CH2Oすなわち
水分量を測定することができる。
Therefore, from Mt+ expression (3), by measuring "[1+"Ref and tmes, CH2O, that is, the water content can be measured.

前述したとぐろから明らかなように、本発明によれば、
粉体試料層、2&に入射した光は試料層2乙を通過する
ので、水分量の平均価を確実に測定することができる。
As is clear from the above-mentioned coil, according to the present invention,
Since the light incident on the powder sample layer 2& passes through the sample layer 2&, the average moisture content can be reliably measured.

また、粉体試料層、2乙における反射光は、IOとして
一次反射光を測定しており、しかも直接水分量に関係す
る信号11neSには関与していないため、従来のよう
に一次反射光の彫物もなく、高精度の61す定が可能で
ある。なお、第3図に示す実施例においては、粉体試料
層コ2に対する測定光を光透過性支持体30側から入射
した場合を示したが、この測定光の入射方向と光検出器
31Iの位置を逆に構成しても前hc実施例と同様の結
果がイ4Iられることは勿論である。
In addition, the reflected light at the powder sample layer 2B is measured as the primary reflected light as IO, and is not directly involved in the signal 11neS related to the moisture content, so it is different from the conventional method. There are no carvings, and 61-point precision is possible. In the embodiment shown in FIG. 3, the measurement light is incident on the powder sample layer 2 from the light-transmitting support 30 side, but the incident direction of the measurement light and the photodetector 31I are Of course, even if the positions are reversed, the same results as in the previous hc embodiment can be obtained.

第を図および第5図は、前述した構成からなる本発明の
赤外線式水分?llI]定装置の粉体試料層に対する取
付状態の具体的実施例を示すものである。
Figures 1 and 5 show the infrared moisture treatment system of the present invention having the above-mentioned configuration. llI] This shows a specific example of how the fixed device is attached to the powder sample layer.

第弘図は、ホッパ出口3gから落下する粉体を、その途
中に光透過性支持体30を傾余1配置してこの光透過性
支持体30上に連続的に堆積させ、この光透過性支持体
30上に形成された粉体試料層、2&に対し第3図に示
す実施例と同様に一組の水分測足装偽1.10.弘lを
対向配置したものである。
In Fig. 3, the powder falling from the hopper outlet 3g is continuously deposited on the light-transmitting support 30 by placing a light-transmitting support 30 in the middle of the powder. A set of moisture metering devices 1.10. similar to the embodiment shown in FIG. This is an arrangement in which the HiroI are facing each other.

第5図は、ホッパ出口3gから落下する粉体を光透過性
支持体30からなるコンベヤベルト上に堆積させて輸送
するよう構成し、この光透過性支持体30からなるベル
ト上に形成さtたvノ体試相層2乙に対し前記実施例と
同イ九に一組の水分測定装置グ0.グーを対向配置した
ものである。なお、本実施例においては、水分測定装置
弘O,グλの前方において、粉体試料層、2乙に対しス
キージ4tりを配置すれば、その表m】状態を常に平甫
にすると共に試料層、2乙の厚さを略一定にすることが
でき、d、J稙の補正精度を向上させて高オi度の水分
測定が可能となる。
FIG. 5 shows a structure in which the powder falling from the hopper outlet 3g is deposited on a conveyor belt made of a light-transmitting support 30 and transported, and the powder formed on the belt made of the light-transparent support 30 is A set of moisture measuring devices G0. The goo is placed facing each other. In this example, if a squeegee 4t is placed for the powder sample layer 2 in front of the moisture measuring device Hiro O, g λ, the state of the surface will always be flat and the sample The thickness of the layers 2 and 2 can be made substantially constant, improving the accuracy of correction of d and J layers, and making it possible to measure moisture with a high degree of oxidation.

第6図は、本発明の赤外線水分測定装置の粉体試料層に
対する成句状態の変形例を示すもので、第μ図に示す央
y=例において、イ(1)斜配I′a6れた光透過性支
持体30上に形成される粉体試料面コ乙の厚さを固定し
た状態で水分測定を行うよう水分測足装に弘θ、4Lλ
の位随決めケ行ったものである。すなわち、本実症例に
おいては、光検出器3グをfろ蔵する一方の水分幽足装
勧141.2をその先端部に集光レンズ<zgを取(=
fりて粉体試料層2乙側から光透過性支持体30に対し
所定間隔保持して対向配置したものである。
Fig. 6 shows a modification of the expression state for the powder sample layer of the infrared moisture measuring device of the present invention. In order to measure moisture while fixing the thickness of the powder sample surface formed on the light-transmitting support 30, the moisture measuring device is equipped with hi θ and 4Lλ.
I made a decision as to how many. In other words, in this actual case, one of the water mounts 141.2, which stores the photodetector 3g, has a condensing lens <zg (=
The powder sample layer 2 is placed facing the light-transmitting support 30 at a predetermined distance from the side.

このように構成することにより、特にコンベヤ等の粉体
輸送手段を設けなくても試料層)!/−さを一定にし、
”t’hの補正精度を向上し、高精度の水分測定を簡便
に実現することができる。
With this configuration, it is possible to easily transfer the sample layer without the need for a powder transport means such as a conveyor! /- keep the value constant,
It is possible to improve the correction accuracy of t'h and easily realize highly accurate moisture measurement.

以上、本発明の好適な実施例について説明したが、本発
明によれは光透過法により粉体試料層の平均水分量をb
度良く測定することができるため、粉体乾燥プロセス等
における水分6111定装置として有効に応用すること
ができるはかシでなく、その他本発明の才1神を逸脱し
ない範囲内において糊々の設計湾更をなし伶ることは勿
論である。
The preferred embodiments of the present invention have been described above. However, according to the present invention, the average water content of the powder sample layer is determined by the light transmission method.
Since it can be measured with high accuracy, it can be effectively applied as a moisture 6111 determination device in powder drying processes, etc. It is not a simple device, and it can be used in other ways without departing from the characteristics of the present invention. It goes without saying that the country is in disarray.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の反射形赤外線式水分測定装置の原理構成
図、第2図は/〜≠μm波長の赤外領域における水の吸
収スペクトルを示す特性的にが図、第3図は本発明に係
る赤外線式水分測定装置の原理構成図、第グ図は本発明
に保る赤外線式水分測定装置の粉体試料層に対する具体
的な取付状態の一冥施例を示すh兄明は1、第5図は本
発明に係る赤外線式水分測定装置の取イ」状態の別の芙
施例を示す説明図、第6図は本発明に係る赤外線式水分
測定装置のさらに別の成句状態を示す説明図である。 IO・・・光 源     /2.・、集光レンズ/ざ
・・・反射鏡      、2Q・・・凹面鏡、26・
・・粉体試料層30・・・光線過性支持体32°°°赤
外透過フィルタ  31/L・・・光検出器36・・・
光検出器    3g・・・ホッパ出口弘0.I1.2
・・水分測定装置 lI−≠・・・スキーラグt・・・
集光レンズ FIG、I Fl(3,2 波長智m) FIG、3 4 FIG、4 FIG、5 8 FIG、6
Figure 1 is a diagram showing the basic structure of a conventional reflection-type infrared moisture measuring device, Figure 2 is a characteristic diagram showing the absorption spectrum of water in the infrared region with a wavelength of /~≠μm, and Figure 3 is a diagram of the present invention. 1 is a diagram illustrating the principle configuration of an infrared moisture measuring device according to the present invention. FIG. 5 is an explanatory diagram showing another embodiment of the infrared moisture measuring device according to the present invention in a state shown in FIG. It is an explanatory diagram. IO...Light source /2.・、Condensing lens/Za...Reflector 、2Q...Concave mirror、26・
Powder sample layer 30... Photosensitive support 32°°° Infrared transmission filter 31/L... Photodetector 36...
Photodetector 3g...Hopper exit Hiro 0. I1.2
・・Moisture measuring device lI−≠・・Ski lag t・・・・
Condensing lens FIG, I Fl (3,2 wavelength knowledge m) FIG, 3 4 FIG, 4 FIG, 5 8 FIG, 6

Claims (1)

【特許請求の範囲】[Claims] (1)  赤外約光源と、この光源から放射される光よ
り114定の波長の光を込択的に取出しこれを被測定対
象物に堺く放射光選択手段と、被δ1り定対旅物より強
f8:変化を受けた光を受光して電気信号に変換する光
検出手段とを備え、前Hピ放射光選択手段を、水分の吸
収帯特性の波長に相当する光束と水分の吸収帯近辺で水
分の吸収帯から外れた成長の光を含む少くとも一つの光
束とを放射するよう構成し、さらに前記光検出手段を、
前記放射光選択手段から放射される光が被測定対象物を
透過して得られる光量を検出するよう位置決めすること
を特徴とする赤外線式水分測定装置。 f2)  ’1.!1′許請求の範囲第1項記載の赤外
線式水分測定装りにおいて、放射光選択手段から放射さ
れる水分の吸収帯特性から外れた波長の光を含む一つの
光束の仮測定対象物の六面部における反射光茸を測定す
る光検出手段を設け、前記反射党員と透過光R1−とか
ら被測定対象物の層厚さと密度の積を規、出して水分量
に関係する信号の補止全行うよう構成してなる赤外線式
水分測定装置。
(1) An infrared light source, a synchrotron radiation selection means for selectively extracting light with a constant wavelength of 114 from the light emitted from the light source and directing it to the object to be measured, and Stronger than normal f8: Equipped with a photodetection means for receiving changed light and converting it into an electrical signal, and a front H-ray radiation selection means for detecting a luminous flux corresponding to the wavelength of the absorption band characteristic of moisture and absorption of moisture. The light detection means is configured to emit at least one light beam including growth light outside the moisture absorption band in the vicinity of the water absorption band, and further includes the light detection means,
An infrared moisture measuring device, characterized in that the infrared moisture measuring device is positioned so as to detect the amount of light obtained by transmitting the light emitted from the emitted light selection means through the object to be measured. f2) '1. ! 1' In the infrared moisture measuring device as set forth in claim 1, one luminous flux containing light with a wavelength outside the absorption band characteristics of moisture emitted from the radiation selection means six times on the provisional measurement target. A light detecting means for measuring the reflected light on the surface is provided, and the product of the layer thickness and density of the object to be measured is determined from the reflecting member and the transmitted light R1-, and the signal related to the water content is corrected. An infrared moisture measuring device configured to perform
JP57227690A 1982-12-28 1982-12-28 Infrared ray type moisture measuring apparatus Pending JPS59120940A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57227690A JPS59120940A (en) 1982-12-28 1982-12-28 Infrared ray type moisture measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57227690A JPS59120940A (en) 1982-12-28 1982-12-28 Infrared ray type moisture measuring apparatus

Publications (1)

Publication Number Publication Date
JPS59120940A true JPS59120940A (en) 1984-07-12

Family

ID=16864810

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57227690A Pending JPS59120940A (en) 1982-12-28 1982-12-28 Infrared ray type moisture measuring apparatus

Country Status (1)

Country Link
JP (1) JPS59120940A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103939A (en) * 1986-10-22 1988-05-09 Teijin Ltd Infrared moisture meter
US5124552A (en) * 1991-01-28 1992-06-23 Measurex Corporation Sensor and method for measuring web moisture with optimal temperature insensitivity over a wide basis weight range
US5276327A (en) * 1991-12-09 1994-01-04 Measurex Corporation Sensor and method for mesaurement of select components of a material
US5338361A (en) * 1991-11-04 1994-08-16 Measurex Corporation Multiple coat measurement and control apparatus and method
US5410154A (en) * 1991-11-11 1995-04-25 Broicher; Heribert F. Device for detecting quality alterations in bulk goods transported on moving belt conveyors
JP2013079829A (en) * 2011-10-03 2013-05-02 Saika Technological Institute Foundation Measurement cell and transmitted light type quality measurement apparatus

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63103939A (en) * 1986-10-22 1988-05-09 Teijin Ltd Infrared moisture meter
US5124552A (en) * 1991-01-28 1992-06-23 Measurex Corporation Sensor and method for measuring web moisture with optimal temperature insensitivity over a wide basis weight range
WO1992014135A1 (en) * 1991-01-28 1992-08-20 Measurex Corporation Temperature insensitivite web moisture sensore and method
US5338361A (en) * 1991-11-04 1994-08-16 Measurex Corporation Multiple coat measurement and control apparatus and method
US5455422A (en) * 1991-11-04 1995-10-03 Measurex Corporation Multiple coat measurement and control apparatus and method
US5410154A (en) * 1991-11-11 1995-04-25 Broicher; Heribert F. Device for detecting quality alterations in bulk goods transported on moving belt conveyors
US5276327A (en) * 1991-12-09 1994-01-04 Measurex Corporation Sensor and method for mesaurement of select components of a material
JP2013079829A (en) * 2011-10-03 2013-05-02 Saika Technological Institute Foundation Measurement cell and transmitted light type quality measurement apparatus

Similar Documents

Publication Publication Date Title
JP3617576B2 (en) Optical measuring device for light scatterers
JP3526652B2 (en) Optical measuring method and optical measuring device
US3549263A (en) Apparatus for detecting foreign matters mixed with powdered or granular materials
US4977325A (en) Optical read system and immunoassay method
US3698813A (en) Emissivity corrected optical pyrometer
FI69370B (en) FOERFARANDE FOER MAETNING AV EGENSKAPERNA HOS ETT PLASTSKIKT MED HJAELP AV INFRAROED STRAOLNING
US4889815A (en) Nephelometric method for determination of an antigen or antibody content in whole blood
US4311393A (en) Apparatus for determining the reflectivity of the surface of a measured object
JPH07229840A (en) Method and apparatus for optical measurement
US4463261A (en) Analysis apparatus
JPS59120940A (en) Infrared ray type moisture measuring apparatus
US3150264A (en) Infrared reflection and absorption system for measuring the quantity of a substance that is sorbed in a base material
EP0903571A2 (en) Apparatus and method for determining the concentration of specific substances
JPS59208445A (en) Method and device for measuring absorptive component quantity of sample
KR840002359B1 (en) Infared fays film tick measuring instrument
JP2710352B2 (en) UV meter
JPH07301598A (en) Optical sensor probe
JPS6319560A (en) Method for discriminating prozone in immunoreaction
RU2113711C1 (en) Infrared humidity meter of dry products and materials
JPS6363948A (en) Moisture measurement of sintered mixed material with infrared moisture meter
JPH0648244B2 (en) Infrared moisture meter that reduces the effect of basis weight
JPH01313737A (en) Inspection device for body to be inspected
JPS56168502A (en) Film thickness gauge utilizing infrared ray
SU811084A1 (en) Optical moisture meter
SU872973A1 (en) Photometer for measuring optical surface reflection factor