JPS5892885A - Temperature compensating electronic clock - Google Patents

Temperature compensating electronic clock

Info

Publication number
JPS5892885A
JPS5892885A JP19304181A JP19304181A JPS5892885A JP S5892885 A JPS5892885 A JP S5892885A JP 19304181 A JP19304181 A JP 19304181A JP 19304181 A JP19304181 A JP 19304181A JP S5892885 A JPS5892885 A JP S5892885A
Authority
JP
Japan
Prior art keywords
temperature
circuit
pulses
oscillation frequency
display
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19304181A
Other languages
Japanese (ja)
Inventor
Toshitaka Fukushima
俊隆 福嶋
Yoshio Hattori
服部 芳雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP19304181A priority Critical patent/JPS5892885A/en
Publication of JPS5892885A publication Critical patent/JPS5892885A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F5/00Apparatus for producing preselected time intervals for use as timing standards
    • G04F5/04Apparatus for producing preselected time intervals for use as timing standards using oscillators with electromechanical resonators producing electric oscillations or timing pulses
    • G04F5/06Apparatus for producing preselected time intervals for use as timing standards using oscillators with electromechanical resonators producing electric oscillations or timing pulses using piezoelectric resonators

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electric Clocks (AREA)
  • Oscillators With Electromechanical Resonators (AREA)

Abstract

PURPOSE:To compensate the oscillation frequency for temperature, by using a semiconductor variable capacity element in the method where the variance of the electric characteristic of a crystal due to temperature is absorbed by the variance of the capacity of a capacitor and detecting the variance of temperature to apply pulses. CONSTITUTION:The output of a temperature sensor 1 is inputted to an operating circuit 2, and information of the variance of temperature is converted to the number of pulses, the width of pulses, the level (voltage), etc. and is transmitted to a pulse generating circuit 3. The operating circuit 2 includes a storage circuit to store the temperature. The output of an oscillating circuit 6 is displayed as the time or the like on a display 9 through a circuit 7 for the normal clock function. The output of the temperature sensor 1 is converted to a signal for temperature display by a converting circuit 8 for temperature display and is displayed as the temperature on the display 9. Thus, the electronic clock where the oscillation frequency is compensated for temperature.

Description

【発明の詳細な説明】 本発明は温度補償電子時計に関するものであシ、さらに
詳しくは水晶発振回路の発振周波数の温度補償に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a temperature compensated electronic timepiece, and more particularly to temperature compensation of the oscillation frequency of a crystal oscillation circuit.

時計の永遠のテーマは正しい時を刻むことである。古く
からの機櫨式時計から水晶発振子を用いた電子時計に代
シ、精度は飛躇的に同上したことはまだ記憶に新しい。
The eternal theme of watches is to keep accurate time. It is still fresh in our minds that when the old mechanical clocks were replaced by electronic clocks using crystal oscillators, the accuracy of clocks changed at random.

そして現在で祉水晶発振式電子時計が主流となシ、月差
±15秒の精度を誇るまでになった。しかしながら、永
遠のテーマあ追求は依然続けらnてお)、よ〕高精度に
同って多くの試みがなさnて来ている。
Nowadays, crystal oscillation type electronic watches are the mainstream, boasting an accuracy of ±15 seconds per month. However, the pursuit of the eternal theme still continues, and many attempts have been made to achieve high precision.

水晶発振回路の発振周波数のずrt、Fi水晶振動子の
温度特性によるものであって、温度による変化ないかに
最小にするかという問題が亮精度化の主題である。従来
から表されている温度補償の方法は大きく2つに分類す
ることができる。第1図は発振周波数そのものの温度依
存性を改善する方法、第2#i発振周波数の変化を分局
比を変えることによ〕補償しようとするものである。第
1の方法として、水晶振動子そのものの改良、温度特性
の異なる複数個の水晶発振子を用いた方法、水晶発振子
の電気特性の変化を発振回路中のコンテンtの変化に吸
収させて発振周波数を補正する方法等が行わnている。
The deviation rt in the oscillation frequency of the crystal oscillator circuit is due to the temperature characteristics of the Fi crystal resonator, and the problem of minimizing changes due to temperature is the subject of improvement in accuracy. Conventional methods of temperature compensation can be broadly classified into two types. FIG. 1 shows a method of improving the temperature dependence of the oscillation frequency itself, which attempts to compensate for the change in the second #i oscillation frequency by changing the division ratio. The first method is to improve the crystal oscillator itself, use multiple crystal oscillators with different temperature characteristics, and oscillate by absorbing changes in the electrical characteristics of the crystal oscillator with changes in content t in the oscillation circuit. Various methods have been used to correct the frequency.

しかし、水晶発振子そのものの改良と言っても温度範囲
は限定さnlかり高価になるのはやむを得ない、複数個
の水晶を用いた場合では水晶の選択が1しく高価となる
。tた水晶の温度特性に曾わせて容量を変化させる方法
としては、特性の合ったトリマコンデンサを用いる方法
とコンデンサを温度により切シ換える方法が考えら詐る
が、前者はコンデンサの選択が厳しすぎて現実的ではな
く、後者は複雑で高価となる。を九分周比を変化させる
第2の方法は回路が複雑でto#)、動作確認が面倒で
あった。
However, even if the crystal oscillator itself is improved, the temperature range is limited and it is unavoidably expensive, and when a plurality of crystals are used, the choice of crystal becomes difficult and expensive. Two possible ways to change the capacitance according to the temperature characteristics of the crystal are to use a trimmer capacitor with matching characteristics and to switch the capacitor depending on the temperature, but the former method requires difficult selection of the capacitor. This is too impractical, and the latter is complicated and expensive. The second method of changing the frequency division ratio by nine has a complicated circuit and is troublesome to check its operation.

本発明は発振周波数の補償をしようとい5第1の分類中
にあって、水晶の温度による電気特性の変化をコンデン
サの容量変化に吸収させる方法の1つとして、温度の変
化を検出し、通常のトリマコンデンサの代ルに用いらl
rL九半導体可変容量素子にパルスt−加えることによ
りその容量を変化させ、発振周波数の温度補償をするこ
とを目的としている。
The present invention attempts to compensate for the oscillation frequency, and is in the first category.As one of the methods for absorbing changes in the electrical characteristics due to the temperature of the crystal into changes in the capacitance of the capacitor, the present invention detects changes in temperature and normally Used as a replacement for the trimmer capacitor of
The purpose is to change the capacitance by applying a pulse t- to the rL9 semiconductor variable capacitance element, thereby temperature-compensating the oscillation frequency.

以下本発明を添附図面に基づいて説明する。The present invention will be explained below based on the accompanying drawings.

第1図は通常用いられている水晶発振子・の温度特性を
示したものである。温度特性は二次曲線を示し、20度
前後で周波数の極大が来る様に経験的に決めらnている
。第2図は発振周波数と外付コンデンサの容量の関係で
あシ、容量が増加するに従って発振周波数が低下する。
FIG. 1 shows the temperature characteristics of a commonly used crystal oscillator. The temperature characteristics show a quadratic curve, and are determined empirically so that the maximum frequency occurs around 20 degrees. FIG. 2 shows the relationship between the oscillation frequency and the capacitance of the external capacitor; as the capacitance increases, the oscillation frequency decreases.

第1図及び第2図かられかる様に、二次曲線の極大とな
る設定温度からずnるにつnて周波数の変化に見合う分
だけコンデンサの容量を増減すnば良い。第3図は温度
計付デジタル時計としての本発明の実施例である。発振
回路6には、通常用いらnているトリマコンデンサの代
りに牛導体可Kg量素子4が用いらnておシ、その注入
電極4hにパルス発生回路3からのパルスが印加さnる
ことにより容量が変化し、水晶発振子5の温度による特
性の変化を補償するものである。温度センサ1の出力は
演算回路2に入シ、温度変化の情報がパルスの数、幅、
高さく電圧】等の情報に変換さnパルス発生回路3に伝
達さnる。演算回路2には記憶回路が含まnておシ、温
度を記憶していなけnば奉らない。
As can be seen from FIGS. 1 and 2, the capacitance of the capacitor may be increased or decreased by an amount commensurate with the change in frequency as the set temperature reaches the maximum of the quadratic curve. FIG. 3 shows an embodiment of the present invention as a digital watch with a thermometer. The oscillation circuit 6 uses a conductor-capable mass element 4 instead of the normally used trimmer capacitor, and the pulse from the pulse generation circuit 3 is applied to the injection electrode 4h. This causes the capacitance to change, thereby compensating for changes in the characteristics of the crystal oscillator 5 due to temperature. The output of the temperature sensor 1 is input to the arithmetic circuit 2, and the information on the temperature change is the number of pulses, the width,
It is converted into information such as "high voltage" and transmitted to the pulse generating circuit 3. The arithmetic circuit 2 includes a memory circuit and cannot be used unless the temperature is stored.

発振回jli6の出力は通常の時計機能のための回路7
を経て表示装置9に時刻等として表示さnる。
The output of the oscillation circuit jli6 is connected to the circuit 7 for normal clock function.
The time is then displayed on the display device 9 as a time or the like.

一方温度七ンサ1の出力は、温度表示の九めの変換回路
8により温度表示の信号に変換さnlさきの表示装置9
に温度として表示さnる。
On the other hand, the output of the temperature sensor 1 is converted into a temperature display signal by the ninth temperature display conversion circuit 8.
Displayed as temperature.

第4図は半導体可変容量素子4の原理構造の断面図を示
したものである。シリコン基板4dは日4o、で覆わn
ておル、その中に浮遊電極4cがある。法会電極4hに
パルスt−加えることにょ)、浮遊電極4cに電荷が蓄
積さnる。電荷量の変化は電位の変化となって、そのた
めに電極4aとシリコン基板4dとの間の容量の変化と
して取り出さnる0通常、シリコン基板4dは正の電位
に保たn′″Cおシ、接地電極となっている。
FIG. 4 shows a cross-sectional view of the basic structure of the semiconductor variable capacitance element 4. As shown in FIG. The silicon substrate 4d is covered with 4o, n
There is a floating electrode 4c inside it. When a pulse t is applied to the puja electrode 4h, charge is accumulated in the floating electrode 4c. A change in the amount of charge results in a change in potential, and therefore, it is taken out as a change in capacitance between the electrode 4a and the silicon substrate 4d.Normally, the silicon substrate 4d is kept at a positive potential. , serves as a ground electrode.

第5図は半導体可変容量素子4の注入電極4bに正極性
パルスを印加した場曾のパルス数と容量変化の一例を示
したものである。印加パルスが増〆 加するに従って容量は増加する。またパルスの高さc′
t&圧〕が高くなるにつnて増加量が大きくなる。第6
図は半導体可変容量素子4の注入電極4bに負極性パル
スを印加し九場酋のパルス数ト容量変化の一例であって
、第5図の場合と同様に、加えられるパルスの数が多い
程、或は高さく電圧の絶対値〕が高い程、容量減少の割
り甘いが大きい。またパルスの幅(時間ンに対しても、
パルス幅が大きい程変化の割9合いが大きくなる。
FIG. 5 shows an example of the number of pulses and the change in capacitance when positive pulses are applied to the injection electrode 4b of the semiconductor variable capacitance element 4. The capacitance increases as the applied pulse increases. Also, the pulse height c'
t&pressure] increases, the amount of increase increases. 6th
The figure shows an example of the change in capacitance due to the number of pulses applied to the injection electrode 4b of the semiconductor variable capacitance element 4. As in the case of FIG. 5, the larger the number of pulses applied, the more , or the absolute value of the voltage], the larger the reduction in capacity is. Also, the pulse width (time) is
The larger the pulse width, the greater the rate of change.

こうして加えるパルスの数、幅、高さく電圧)などによ
ル9容量を決定することができる。半導体可変容量素子
4の浮遊電極4cに蓄えら扛た電荷はs(o、−6通し
ては逃げることはなく、定期的に電荷を注入する必要は
ない。
In this way, the capacity can be determined by the number of applied pulses, width, height of the voltage, etc. The charges accumulated in the floating electrode 4c of the semiconductor variable capacitance element 4 do not escape through s(o, -6), and there is no need to periodically inject charges.

本発明は半導体可変容量素子4チ有効に利用したもので
あシ、原理的にはいくらでも細かく温度変化を補償する
ことができ、補償の範囲も広い。
The present invention makes effective use of four semiconductor variable capacitance elements, and in principle can compensate for temperature changes as finely as possible, and has a wide range of compensation.

tた分局比が一定であるので動作確認が容易である。本
発明による最大め効果は、発振周波数の調整用として半
導体可変容量素子4を使用し3ようとする回路において
、何ら発振回路if更することもなく温度補償をするこ
とができるという点にある0発振回路6を含めた時計回
路と温度補償のための付加回路とは全く独立しているた
めに、設計、製作、調整が容易で6!り、少ない費用で
広範囲の温度補償が得らnる。温度計付電子時計では僅
かの付加回路により温度補償が得らn1効果は大きい。
Since the division ratio is constant, operation confirmation is easy. The greatest effect of the present invention is that in a circuit that uses the semiconductor variable capacitance element 4 for adjusting the oscillation frequency, temperature compensation can be performed without changing the oscillation circuit. Since the clock circuit including the oscillation circuit 6 and the additional circuit for temperature compensation are completely independent, design, manufacture, and adjustment are easy. Therefore, a wide range of temperature compensation can be obtained at low cost. In electronic watches with thermometers, temperature compensation can be achieved with a small amount of additional circuitry, and the n1 effect is large.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は通常の水晶発振周波数の温度特性、第2図は発
揚回路中の外付コンデンサ対発振周波数偏差、第3図は
半導体可変容量素子を使用した温度針付温度補償電子実
施付のブロック図、第4図は半導体可変容量菓子の原理
構造の断面図、第5、図番よ半導体可変容量素子の注入
電極に正極性パルスを印加した場合のパルス数と容量変
化の一例図、第6図は半導体可変容量素子の注入電極に
負極性パルスを印加した場合のパルス数と容量変化の一
例図である。 10.温度センサ、20.演算回路、30.パルス発生
回路、40.半導体可変容量素子4G、、[極、4b0
.注入電極、4G0.浮遊′#IL極、4d、、シリコ
ン基板、50.水晶発振子、6.。発振回路、701通
常の時計機能のための回路、80.温度表示のための変
換回路、9゜、表示回路 以上
Figure 1 shows the temperature characteristics of a normal crystal oscillation frequency, Figure 2 shows the deviation of the oscillation frequency from an external capacitor in the oscillation circuit, and Figure 3 shows a block with temperature compensation electronic implementation using a semiconductor variable capacitance element. Figure 4 is a cross-sectional view of the principle structure of a semiconductor variable capacitance confectionery, Figure 5 is an example of the number of pulses and capacitance change when a positive pulse is applied to the injection electrode of a semiconductor variable capacitance element. The figure is an example diagram of the number of pulses and the change in capacitance when a negative pulse is applied to the injection electrode of a semiconductor variable capacitance element. 10. Temperature sensor, 20. Arithmetic circuit, 30. Pulse generation circuit, 40. Semiconductor variable capacitance element 4G, [pole, 4b0
.. Injection electrode, 4G0. Floating '#IL pole, 4d, silicon substrate, 50. Crystal oscillator, 6. . Oscillation circuit, 701 Circuit for normal clock function, 80. Conversion circuit for temperature display, 9°, display circuit or higher

Claims (1)

【特許請求の範囲】[Claims] 温度センナを備えた温度補償電子時計において、水晶発
振周波数補正用として半導体可変゛容量素子を用いた発
振回路と°、前記半導体可変容量素子K 2m 、t 
、6 パルスを作り出すためのパルス発生回路、及び前
記温度センナの温度検出出方管前記印加パルスの、数、
幅、4さく電圧】等の値に変換するtめの演算回路から
成り、前記印加パルスによplIlr記半導体可変容量
素子の容量を変化させ、前記発振回路の発振周波数の温
度補償をすることを特徴とする温度補償電子時計。
In a temperature-compensated electronic watch equipped with a temperature sensor, an oscillation circuit using a semiconductor variable capacitance element for crystal oscillation frequency correction and the semiconductor variable capacitance element K 2m , t
, 6 a pulse generation circuit for producing pulses, and a temperature detection tube of the temperature sensor; the number of applied pulses;
It consists of a t-th arithmetic circuit that converts the width, voltage, etc., and changes the capacitance of the semiconductor variable capacitance element according to the applied pulse, thereby temperature-compensating the oscillation frequency of the oscillation circuit. Features a temperature compensated electronic clock.
JP19304181A 1981-11-27 1981-11-27 Temperature compensating electronic clock Pending JPS5892885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19304181A JPS5892885A (en) 1981-11-27 1981-11-27 Temperature compensating electronic clock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19304181A JPS5892885A (en) 1981-11-27 1981-11-27 Temperature compensating electronic clock

Publications (1)

Publication Number Publication Date
JPS5892885A true JPS5892885A (en) 1983-06-02

Family

ID=16301179

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19304181A Pending JPS5892885A (en) 1981-11-27 1981-11-27 Temperature compensating electronic clock

Country Status (1)

Country Link
JP (1) JPS5892885A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62243405A (en) * 1986-04-16 1987-10-23 Seiko Instr & Electronics Ltd Electronic circuit
US8055932B2 (en) * 2002-09-16 2011-11-08 Silicon Laboratories Inc. Precision oscillator for an asynchronous transmission system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62243405A (en) * 1986-04-16 1987-10-23 Seiko Instr & Electronics Ltd Electronic circuit
JPH0466402B2 (en) * 1986-04-16 1992-10-23 Seiko Instr & Electronics
US8055932B2 (en) * 2002-09-16 2011-11-08 Silicon Laboratories Inc. Precision oscillator for an asynchronous transmission system
US8307237B2 (en) 2002-09-16 2012-11-06 Silicon Laboratories Inc Precision oscillator for an asynchronous transmission system

Similar Documents

Publication Publication Date Title
GB1379670A (en) Tuning fork microresonator
GB1380456A (en) Temperature compensating digital systems for electromechanical resonators
JP2011114403A (en) Temperature compensation method for piezoelectric oscillator, and piezoelectric oscillator
US4272840A (en) Semiconductor integrated circuit for a timepiece
US4148184A (en) Electronic timepiece utilizing main oscillator circuit and secondary oscillator circuit
US4344046A (en) Signal generator including high and low frequency oscillators
US8901983B1 (en) Temperature compensated timing signal generator
TWI522757B (en) Temperature compensated timing signal generator
EP2854293B1 (en) Temperature compensated timing signal generator
JPS5892885A (en) Temperature compensating electronic clock
US3597642A (en) Electrostrictively driven tuning fork
CN102545778B (en) Closed-loop temperature compensation method and device for clock crystal oscillator
US8896359B1 (en) Temperature compensated timing signal generator
US4106278A (en) Electronic timepiece utilizing semiconductor-insulating substrate integrated circuitry
Marrison The crystal clock
JPS5840155B2 (en) densid cay
JPS6121854Y2 (en)
JPS6038894B2 (en) Crystal oscillator
JPS55152492A (en) Crystal timepiece with temperature compensation
US20080191808A9 (en) Layout for a time base
JPH0352590B2 (en)
JPS622557Y2 (en)
JPS5328465A (en) Electronic watch
SU995337A1 (en) Generator
JPS55123205A (en) Electronic watch