JPS5867886A - Steel article coated with iron-zinc alloy plating layer having concentration gradient and manufacture thereof - Google Patents

Steel article coated with iron-zinc alloy plating layer having concentration gradient and manufacture thereof

Info

Publication number
JPS5867886A
JPS5867886A JP16573981A JP16573981A JPS5867886A JP S5867886 A JPS5867886 A JP S5867886A JP 16573981 A JP16573981 A JP 16573981A JP 16573981 A JP16573981 A JP 16573981A JP S5867886 A JPS5867886 A JP S5867886A
Authority
JP
Japan
Prior art keywords
plating
plating layer
bath
iron
zinc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16573981A
Other languages
Japanese (ja)
Inventor
Mitsuo Azuma
東 光郎
Junichi Morita
順一 森田
Takashi Watanabe
孝 渡辺
Mitsuo Yoshida
光男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP16573981A priority Critical patent/JPS5867886A/en
Publication of JPS5867886A publication Critical patent/JPS5867886A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

PURPOSE:To easily form a plating layer having different concentration gradient and excellent corrosion resistance, in plating the surface of a steel sheet in a Fe-Zn plating bath, by continuously plating the surface with different current densities. CONSTITUTION:A sulfate plating bath containing Zn and Fe ions at the weight ratio of 0.02-0.90 and the total of Zn and Fe sulfates above 100g/l and up to their solubility limits is supplied to continual several plating cells 6-10 under the condition of pH; 0.8-2.3 and the temperature of liquid; 40-80 deg.C from a tank 1 by a pump. An electric current is applied to a steel sheet 3 to be plated between anodes A1-A5, while the steel sheet 3 is being carried from the plating cell 6-10. The anodes A1-A5 hence gradually reduce their surface areas, and current densities are gradually made larger from the anode A1-A5 in inverse proportion to the surface areas, so that an Fe-Zn plating layer having such gradient in the concentration of the two metals that Zn content is gradually reduced from 98%-5% is formed. Consequently, a coated steel sheet having the plating layer excellent in corrosion resistance is obtained.

Description

【発明の詳細な説明】 本発明は濃度勾配を有する鉄−亜鉛合金めっき層を形成
せしめた防食性に優れた鋼材およびその製造方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a steel material with excellent corrosion resistance formed with an iron-zinc alloy plating layer having a concentration gradient, and a method for manufacturing the same.

鋼材(#l帯、鋼板、#1lIfまたは形鋼等を含む。Steel materials (including #l strip, steel plate, #1lIf or shaped steel, etc.)

)は強度が大きく、加工性に富み、大量に供給しうる材
料であるためM要な金属材料であり自動車用、家電用な
どに多量に使用されている。しかしながら錆びやすく腐
食しやすいという欠点を有するほか、溶接性、加工性、
化成処理性、塗装性などにおいてより高度の特性が要求
されつつある。このため、鋼材の表面処理が極めて重要
であるが、従来、鋼材の上に、代表的には亜鉛めっきを
施し、その上に化成処理を行い、さらに電着塗料等の塗
料を塗装する方法が行われていた。亜鉛めっきについて
は、最近、電気めっき法により、Fe−Zn合金めっき
を鋼材上に施すことにより、さらに防食性、溶接性、塗
装性などを改良する試みが行われている。
) is an important metal material because it has high strength, good workability, and can be supplied in large quantities, and is used in large quantities for automobiles, home appliances, etc. However, it has the disadvantage of being easy to rust and corrode, and has poor weldability, workability,
More advanced properties are being required in terms of chemical conversion treatment properties, paintability, etc. For this reason, surface treatment of steel is extremely important, but conventional methods typically involve galvanizing the steel, applying chemical conversion treatment on top of that, and then painting with paint such as electrodeposition paint. It was done. Regarding zinc plating, attempts have recently been made to further improve corrosion resistance, weldability, paintability, etc. by applying Fe-Zn alloy plating on steel materials by electroplating.

しかしながら、めっきの目的である防食性、化成処理性
、塗装性等について考察すれば長期間鋼材自体がいかに
腐食環境から保護されるがという観点からの防食性は主
として鋼素地直近のめっき層の役割が強く期待され、化
成処理性や塗装性については、主として化成処理皮膜直
下のめつき層の最上部の役割が強く期待される。したが
って、鋼材上に鉄−亜鉛合金めっきを施すにあたり、異
るめっき浴を用い、たとえば下層にδ、相、ζ相および
ζ相の内生なくとも1種からなる5〜25g/−の厚さ
の防食性にすぐれた鉄−亜鉛金属間化合物層を施し、そ
の上の上層に厚さ0.5〜7 g/m’の、亜鉛含有量
が35重量%以下である鉄−亜鉛固溶体合金層を施すな
どの方法も研究されている。
However, if we consider the purpose of plating, such as corrosion resistance, chemical conversion treatment properties, paintability, etc., the role of the plating layer in the immediate vicinity of the steel base is primarily the role of the plating layer in the immediate vicinity of the steel substrate. With regard to chemical conversion treatment properties and paintability, it is strongly expected that the topmost layer of the plating layer directly below the chemical conversion coating will play a major role. Therefore, when applying iron-zinc alloy plating on steel materials, different plating baths are used, and for example, the lower layer has a thickness of 5 to 25 g/- and is composed of at least one of the δ, phase, ζ phase, and ζ phase. An iron-zinc intermetallic compound layer with excellent corrosion resistance is applied, and an iron-zinc solid solution alloy layer with a thickness of 0.5 to 7 g/m' and a zinc content of 35% by weight or less is applied as an upper layer. Other methods are also being researched.

しかしながら、めっき浴を変えながら多層めっきする方
法は、幾種類もの浴の濃度および組成をそれぞれ一定に
制御しなければならず、層の数がふえたとき実際上操業
が可成複雑にならざるを得ない。また多層構造における
本質的問題である層間の剥離を防止するため、相隣り合
う層相互の層組成は、少しずつ変化するよう、すなわち
なめらかな濃度勾配を有するよう形成させることが望ま
しい。その場合めっき浴槽の数を、たとえば3セル以上
、好ましくは5セル以上と増加させることが望ましいが
、浴組成を変化させる方法では限度がある。
However, the method of performing multilayer plating while changing the plating bath requires controlling the concentrations and compositions of several types of baths to be constant, and in practice the operation becomes considerably complicated when the number of layers increases. I don't get it. Furthermore, in order to prevent separation between layers, which is an essential problem in multilayer structures, it is desirable that the layer compositions of adjacent layers be formed so that they change little by little, that is, have a smooth concentration gradient. In that case, it is desirable to increase the number of plating baths, for example to 3 cells or more, preferably 5 cells or more, but there is a limit to the method of changing the bath composition.

本発明者は種々研究の結果、浴組成を一定とした場合で
も、電流密度を変化させることによりめっき組成が変化
し、特に多セルを有する高電流の連続式めっきラインに
おいては、なめらがな濃度勾配を有するめっき層が形成
されることを見出し、本発明を完成するに至ったもので
ある。すなわち、本発明はめっき量で5〜50g/rr
?、めっき層中亜鉛比(割合)で5〜98重量%の範囲
内で、めっき層断面方向において、順次亜鉛の濃度勾配
を有する鉄−亜鉛合金層が形成された鉄−亜鉛合金めっ
き鋼材、および多セル(電解槽)を有する連続式めっき
ラインにおいて、めっき洛中にzn)−t−7Fe++
重量比が0.02〜o、90、且つ両金属の硫酸塩を総
量で濃度100 g / 1以上溶解限まで含有する硫
酸塩浴を用い、pao、s 〜2,3  浴温40〜8
0℃の範囲で、不溶解性陽極を用い、第1セルから順次
電流密度を変化させ、亜鉛合量で5〜98重量%の範囲
で濃度勾配を有する鉄−亜鉛合金めっき層を鋼材上に形
成させることを特徴とする鉄−亜鉛合金めっき層で被覆
された鋼材の製造方法に関するものである。
As a result of various studies, the present inventor has found that even when the bath composition is constant, the plating composition changes by changing the current density, and that it is particularly true in a continuous high-current plating line with multiple cells that the plating composition is smooth. It was discovered that a plating layer having a concentration gradient is formed, and the present invention was completed. That is, in the present invention, the plating amount is 5 to 50 g/rr.
? , an iron-zinc alloy plated steel material in which an iron-zinc alloy layer is formed, in which the zinc ratio (proportion) in the plating layer is within the range of 5 to 98% by weight and has a sequential zinc concentration gradient in the cross-sectional direction of the plating layer; In a continuous plating line with multi-cells (electrolytic cells), during plating, zn)-t-7Fe++
Using a sulfate bath having a weight ratio of 0.02 to 90 and containing sulfates of both metals at a total concentration of 100 g/1 or more up to the solubility limit, pao, s to 2,3 and a bath temperature of 40 to 8
An iron-zinc alloy plating layer with a concentration gradient in the range of 5 to 98% by weight of zinc is formed on the steel material by using an insoluble anode at a temperature of 0°C and changing the current density sequentially from the first cell. The present invention relates to a method for producing steel material coated with an iron-zinc alloy plating layer.

本発明鋼材のめっき量を5〜50g/lr?とじたのは
、余り薄くては防食性が保てず、厚すぎても実用上必要
とされる防食性に対して不経済であるのみならず、加工
性も悪化するため定めたものである。まためっき層中の
亜鉛比を5〜98重量%とじたのは、5重量%未満では
、亜鉛の犠牲陽極作用がなく、98重量%超では、殆ん
ど純亜鉛となり、化成処理後の塗装性、たとえば耐ブリ
スター性が劣化するためである。
Is the plating amount of the steel of the present invention 5 to 50 g/lr? The closure was chosen because if it is too thin, it will not be able to maintain corrosion resistance, and if it is too thick, it will not only be uneconomical to achieve the corrosion resistance required for practical use, but also deteriorate workability. . In addition, the zinc ratio in the plating layer was set at 5 to 98% by weight, because if it is less than 5% by weight, zinc will not act as a sacrificial anode, and if it exceeds 98% by weight, it will become almost pure zinc, and the coating after chemical conversion treatment will This is because properties such as blister resistance deteriorate.

上記めっき層中亜鉛比の範囲内で順次亜鉛の濃度勾配を
有するようめっき層を形成させるが、一般的には、鋼材
に密着するめっき層下部素面鉛量を多くして防食性を高
め、また化成処理層に密着するめっき層上部程鉄量を多
くして化成処理性を高める1、また、その間めっき組成
をなだらかに変化させることにより層間剥離の防止を図
ったものである。
The plating layer is sequentially formed to have a zinc concentration gradient within the range of the zinc ratio in the plating layer, but generally, the amount of bare lead in the lower part of the plating layer that adheres to the steel material is increased to improve corrosion protection. The upper part of the plating layer that is in close contact with the chemical conversion treatment layer increases the amount of iron to improve the chemical conversion treatment property 1, and the plating composition is gradually changed during this period to prevent delamination.

この場合、洛中のZn″+/Fθ升重量比0.02〜0
.90、硫酸塩濃度100g/・1以上溶解限以内、p
H0,8〜2.3、浴温40〜80℃のめっき浴を用い
鉄−亜鉛合金めっきを行う場合、電流密度を高くする程
鉄含量が多くなり、電流密度を低くすれば亜鉛含量が多
くなる。通常電流密度は20〜200A/13n” 、
好ましくは80〜2oOA/dff+!の範囲で変化さ
せる。
In this case, the Zn″+/Fθ masu weight ratio of Rakuchu is 0.02 to 0.
.. 90, sulfate concentration 100g/・1 or more within solubility limit, p
When performing iron-zinc alloy plating using a plating bath with H0.8 to 2.3 and a bath temperature of 40 to 80°C, the higher the current density, the higher the iron content, and the lower the current density, the higher the zinc content. Become. Normal current density is 20-200A/13n",
Preferably 80-2oOA/dff+! Vary within the range of.

電解浴は、硫酸亜鉛および硫酸第1鉄を含有する水溶液
で、これを電解浴槽へ注入して浴を構成する。浴中、z
n++ 7 Fe+1−重量比を。、02〜0.90と
したのは、0.02〜0.15の範囲で化成処理性にす
ぐれた鉄−亜鉛固溶体合金めっき層が形成しやすく、0
.4〜0.9の範囲で防食性にすぐれた金属間化合物合
金めっき層を形成しゃすく、またその他の範囲において
も浴組成に応じて、めっき層中のZ、−H−/Fト重蓋
比を電流密度で変化させうるからである。
The electrolytic bath is an aqueous solution containing zinc sulfate and ferrous sulfate, which is poured into the electrolytic bath to form the bath. In the bath, z
n++7Fe+1-weight ratio. , 02 to 0.90 because an iron-zinc solid solution alloy plating layer with excellent chemical conversion treatment properties is easily formed in the range of 0.02 to 0.15.
.. An intermetallic compound alloy plating layer with excellent corrosion resistance can be formed in the range of 4 to 0.9, and in other ranges depending on the bath composition, Z, -H-/F in the plating layer can be This is because the ratio can be changed by changing the current density.

洛中の硫酸塩濃度を100g//以上溶解限以内としだ
のは、100 g / 1未満では浴中の金属イオンが
薄すぎるため実用に供しつる電流効率が確保しにくい上
、浴中のZn料/Fθ+1−重量比の維持が困難となる
ほか、高電流密度が維持できないからである。pH0,
8〜2.3としたのは、pHが余り低いと浴組成の制御
が困難となり、さらにη相が析出しやすく、化成処理性
が劣ってくる。逆にpH2,3を超えると水酸化鉄が沈
澱しやすくなるなど、めっき浴の劣化が起りやすく安定
した高速めつきが施し難くなる。通常はめっきにより浴
のpHが下がり、金属イオンの補給により′pHが元の
値に戻るため、浴pHが一定値に維持されることとなる
が、必要があればpHの調整は硫酸、アンモニアまたは
水の補給等で行うことができる。本発明のめっき浴のp
Hは低いのでめっき成分金属は相当大きな溶解速度を有
するので、補給は容易であり、めっき浴のpHの微変動
から金属成分の消耗、補給程度も推定しうる。
The reason why the sulfate concentration in Rakuchu should be 100 g// or more within the solubility limit is because if it is less than 100 g/1, the metal ions in the bath are too thin, making it difficult to ensure a current efficiency that is suitable for practical use, and the Zn material in the bath is too thin. This is because not only is it difficult to maintain the /Fθ+1− weight ratio, but also a high current density cannot be maintained. pH0,
The reason why the pH is set at 8 to 2.3 is that if the pH is too low, it becomes difficult to control the bath composition, and the η phase tends to precipitate, resulting in poor chemical conversion treatment properties. On the other hand, if the pH exceeds 2 or 3, iron hydroxide tends to precipitate and the plating bath tends to deteriorate, making it difficult to perform stable high-speed plating. Normally, plating lowers the pH of the bath, and replenishing metal ions returns the pH to its original value, so the bath pH is maintained at a constant value, but if necessary, the pH can be adjusted using sulfuric acid, ammonia, etc. Alternatively, this can be done by replenishing water. p of the plating bath of the present invention
Since H is low, the plating component metal has a considerably high dissolution rate, so replenishment is easy, and the degree of consumption and replenishment of the metal component can be estimated from slight fluctuations in the pH of the plating bath.

浴温もめっきの安定性のためには40〜80℃の範囲に
制御することが必要である。40°C未満でっき層と鋼
材との密着性も劣るため好ましくない。
It is also necessary to control the bath temperature within the range of 40 to 80°C for the stability of plating. If the temperature is less than 40°C, the adhesion between the plating layer and the steel material will be poor, which is not preferable.

また80℃超では、液の蒸発が大きく、さらに装置材質
の選択も難しくなるので好ましくない。
Further, if the temperature exceeds 80°C, evaporation of the liquid will be large and it will also be difficult to select the material of the device, which is not preferable.

さらに本発明では可溶性陽極を用いず、不溶解性陽極を
用いることが必須の要件である。可溶性陽極では電極消
耗による取換えが煩雑であるばかりでなく、高電流密度
下では、電極不働態上現象を起し、高速めっきそのもの
が不可能となる。本発明の不溶解性陽極はたとえば鉛合
金系あるいは白金、ロジウム、イリジウムなどの貴金属
系、あるいはこれらの酸化物系などが適当である。かか
る不溶解性陽極を用いたときは高電流密度下で安定した
めっき電流を確保でき、したがって、めっ゛き皮膜の制
御が極めて容易となる。
Furthermore, in the present invention, it is essential to use an insoluble anode instead of a soluble anode. In the case of a soluble anode, not only is it troublesome to replace the electrode due to wear, but also a phenomenon of electrode passivity occurs under high current density, making high-speed plating impossible. The insoluble anode of the present invention is suitably made of, for example, a lead alloy, a noble metal such as platinum, rhodium, or iridium, or an oxide thereof. When such an insoluble anode is used, a stable plating current can be ensured under high current density, and therefore the control of the plating film becomes extremely easy.

なお、本発明のめりき浴には、硫酸アンモニウム、硫酸
アルミニウムなどの電導性付与剤を、鉄イオンや亜鉛イ
オンの溶解性を損わない程度、たとえば、5〜Bog/
l添加することは差支えない。
In addition, in the polishing bath of the present invention, a conductivity imparting agent such as ammonium sulfate or aluminum sulfate is added to an amount that does not impair the solubility of iron ions and zinc ions, for example, 5 to Bog/
There is no problem in adding l.

さらに本発明においては、pHを低く、また硫酸塩濃度
を多くしている。この理由の一つは、浴室導性を出来る
丈付与し、高電流密度適用時のめっき焼付の防止、浴電
圧の低減を狙ったものである0 セルの数は多い程濃度勾配の不連続性が少なくなるが好
ましくは3以上、さらに好ましくは5以上とし、順次電
流密度を変化させる。たとえば、第1セルでは80A/
dm’、第2セルでは100A/凸!、第3セルでは1
120 A/dm’ 、第4セルでは1aoA/ム鵞、
第5セルでは160 A/ dm’のどとく5槽の電解
槽に鋼材を経由させめっき層を形成させる。
Furthermore, in the present invention, the pH is lowered and the sulfate concentration is increased. One of the reasons for this is to increase the length of bath conductivity, prevent plating baking when high current density is applied, and reduce bath voltage.0 The larger the number of cells, the more discontinuous the concentration gradient Although the current density decreases, it is preferably 3 or more, more preferably 5 or more, and the current density is sequentially changed. For example, in the first cell, 80A/
dm', 100A/convex in the second cell! , 1 in the third cell
120 A/dm', 1aoA/dm' in the 4th cell,
In the fifth cell, a plating layer is formed by passing the steel material through five 160 A/dm' electrolytic cells.

以下、実施例をもって本発明をさらに具体的に説明する
Hereinafter, the present invention will be explained in more detail with reference to Examples.

実施例 1 めっき浴中のzn++/Fe++重量比が0.49、p
H1,5、浴温60℃、鋼板速度200 mpmとして
電流密度を変えて、めっき層中の鉄含量を測定したとこ
ろ第1図の結果を得た。
Example 1 Zn++/Fe++ weight ratio in plating bath is 0.49, p
The iron content in the plating layer was measured by changing the current density with H1.5, bath temperature 60° C., and steel plate speed 200 mpm, and the results shown in FIG. 1 were obtained.

また、めっき浴中のZn丑/FeF+重量比が0.O’
7、pH0,9、浴温60℃、鋼板速度200mpmと
して電流密度を変えて、めっき層中の鉄含量を測定した
ところ第2図の結果を得た。
In addition, the Zn/FeF+ weight ratio in the plating bath is 0. O'
7, pH 0.9, bath temperature 60° C., steel plate speed 200 mpm, and the current density was varied to measure the iron content in the plating layer, and the results shown in FIG. 2 were obtained.

また、FeSO4−7H2OとZn5O,−’y H,
Oとの合計量が−00g / / s (NL)t S
O4が30g/ASpH1,0、浴温60℃のめっき浴
において、電流密度を80A/dm”とし、浴中のFe
什/Fe+十zr+重量比(4)を変えて、めっき層中
の鉄含量を測定したところ第3図の結果を得た。第3図
においてC,R,Lとは組成参考線(Composit
ion Reference Line )を示す。
Also, FeSO4-7H2O and Zn5O,-'y H,
The total amount with O is -00g / / s (NL)t S
In a plating bath with 30 g of O4/AS pH 1.0 and a bath temperature of 60°C, the current density was set to 80 A/dm'', and Fe in the bath was
When the iron content in the plating layer was measured by changing the ratio (4) of t/Fe+zr+weight, the results shown in FIG. 3 were obtained. In Figure 3, C, R, and L refer to the composition reference line (Composite reference line).
ion Reference Line).

第1〜2図の結果から、浴中Zn”/Fe+重櫨比一定
で電流密度を増加させるとめっき層中鉄含量が増加する
ことがわかる。
From the results shown in FIGS. 1 and 2, it can be seen that when the current density is increased while the Zn''/Fe+Shigehashi ratio in the bath is constant, the iron content in the plating layer increases.

また、第3図の結果からは、電流密度一定で、浴中鉄含
量を増加させると、めっき層中の鉄含量が増加すること
がわかる。
Moreover, from the results shown in FIG. 3, it can be seen that when the current density is constant and the iron content in the bath is increased, the iron content in the plating layer increases.

今、第4図に原理説明した装置をもって電気めっきを行
うものとする。第4図においてタンク1に貯液されため
っき液はポンプ2によってセル6〜〕、0に送液される
。各セル間は、隔壁を設けず、めっき液は移動できる。
Let us now assume that electroplating is carried out using the apparatus whose principle is explained in FIG. In FIG. 4, the plating solution stored in a tank 1 is sent to cells 6 to 0 by a pump 2. No partition walls are provided between each cell, allowing the plating solution to move.

セル6〜10には不溶解性陽極A、〜A、が設置され、
それらの陽極長さはそれぞれ71〜!、であり、各セル
の電流密度はそれぞれDK、〜DK、である。ここで、
!2.DK、=l、−DK、=ム、DK、 = l、−
DK4= l、、DK、となるよう、陽極長さと電流密
度との積を一定に維持するため、陽極長さをセル6より
セル10に至るまで順次短かくしておく。従って電流密
度は逆に順次高くなる。鋼材3は第4図左方よりめっき
装置に入り、通電ロール4の間を通り右方へ進行しめっ
きされる。第1〜2図から明らかなように、めっき層の
分布は素材に近い下層部はどZn重量%が高く、上層部
はどFe重量%が高いことになる。
Insoluble anodes A, ~A, are installed in cells 6 to 10,
Their anode lengths are 71~! , and the current density of each cell is DK, ~DK, respectively. here,
! 2. DK,=l,-DK,=mu,DK,=l,-
In order to maintain the product of anode length and current density constant so that DK4=l, , DK, the anode length is sequentially shortened from cell 6 to cell 10. Therefore, the current density increases sequentially. The steel material 3 enters the plating apparatus from the left in FIG. 4, passes between the energized rolls 4, and progresses to the right to be plated. As is clear from FIGS. 1 and 2, the distribution of the plating layer is such that the lower layer near the material has a higher Zn weight %, and the upper layer has a higher Fe weight %.

もし、陽極の配列を逆にして、順次電流密度を下げて処
理を行えば、逆に下層部はどFe重量%の高いめっき層
が得られることになる。
If the arrangement of the anodes is reversed and the treatment is carried out by lowering the current density sequentially, a plating layer with a high Fe weight % in the lower layer will be obtained.

第4図に示す装置を使用し第1図に示した条件に従えば
、めっき層中のFeを18〜53重量%まで変化させう
る。このようにして得られためっき層の上に、第2図に
示す条件に従ってめっきすればめっき層中のFeを60
〜75重量%まで変化させうる。さらに、めっき層Φ亜
鉛(又は鉄)割合のや\異るめっき層を得る必要があれ
ば、第3図を参考にして、めっき液中のZnl+/Fe
++重量比をや−変えためっき液を用いればよい。
If the apparatus shown in FIG. 4 is used and the conditions shown in FIG. 1 are followed, the Fe content in the plating layer can be varied from 18 to 53% by weight. If the plating layer thus obtained is plated according to the conditions shown in FIG. 2, Fe in the plating layer will be reduced to 60
It can vary up to 75% by weight. Furthermore, if it is necessary to obtain a plating layer with a slightly different zinc (or iron) ratio, refer to Figure 3 and adjust the Znl+/Fe ratio in the plating solution.
A plating solution with a slightly different weight ratio may be used.

実施例 2 第4図に示したと同様の装置を用い電気めっきをした。Example 2 Electroplating was carried out using an apparatus similar to that shown in FIG.

めっき浴はFe2O2・7 Hto  350 g /
 l 5ZnSO4・7 HIO150g /l オよ
U (NHn)t SO430g / /の組成でs 
pH1,5、浴温60℃であった。
The plating bath was Fe2O2.7 Hto 350 g/
l 5ZnSO4・7 HIO150g /l Oyo U (NHn)t SO430g / / s
The pH was 1.5 and the bath temperature was 60°C.

鋼材として脱脂、酸洗した薄鋼板を流速30mpmで流
した。第1表にその他の条件および結果を水弟1表 比較例 1 第5図に示す装置を使用して電気めっきを行った。すな
わち、めっき液は夕1ンク11〜15から、それぞれセ
ル16〜20に供給され、ついでタンク11〜15に循
環される。タンク11〜15に貯液されるめっき液組成
は、第2表に示す通りで、それぞれの液組成は異ってい
る。ただしpHは1.2と一定にした。また、陽極B、
〜B、の陽極長は800鰭と一定にした。
As the steel material, a degreased and pickled thin steel plate was flowed at a flow rate of 30 mpm. Other conditions and results are shown in Table 1.Table 1 Comparative Example 1 Electroplating was carried out using the apparatus shown in FIG. That is, the plating solution is supplied from tanks 11 to 15 to cells 16 to 20, respectively, and then circulated to tanks 11 to 15. The compositions of the plating solutions stored in tanks 11 to 15 are as shown in Table 2, and the compositions of each solution are different. However, the pH was kept constant at 1.2. In addition, anode B,
~B, the anode length was kept constant at 800 fins.

第4図に示す装置と異り、セル間にはめつき液が移動し
ないように隔壁21を設けである。
Unlike the apparatus shown in FIG. 4, partition walls 21 are provided between the cells to prevent the plating liquid from moving.

脱脂、酸洗した薄鋼板22は左方からめつき装置に入り
、通電ロール23の間を通り右方へ進行し、めっきされ
た。各陽極で適用される電流密度は80 A / b”
で一定にした。
The degreased and pickled thin steel sheet 22 entered the plating device from the left, passed between the energized rolls 23, advanced to the right, and was plated. The current density applied at each anode is 80 A/b”
It was kept constant.

第2表にその他の条件および結果を示した。Table 2 shows other conditions and results.

第2表 においては、めっき層中のZn/Fe重量比の濃度勾配
が緩やかで、連続的に変イヒし、めっき層の密着性が優
れていること、且つこの優れた特性を有する鋼板をより
簡便に製造できることがわかる。
Table 2 shows that the concentration gradient of the Zn/Fe weight ratio in the plating layer is gentle and changes continuously, and that the adhesion of the plating layer is excellent. It can be seen that it can be easily manufactured.

なお、上記実施例および比較例における試験はつぎのよ
うに行った。
The tests in the above Examples and Comparative Examples were conducted as follows.

(1)  07曲げ密着性: めっき面に白色ビニルテ
ープを貼り付け、数面を内側にして07曲げを行ない、
テープに付着しためっき層の剥離中を測定した。
(1) 07 bending adhesion: Attach white vinyl tape to the plated surface and perform 07 bending with several sides inside,
Measurements were taken while the plating layer adhering to the tape was being peeled off.

(2)  カチオン塗装−次密着テスト: めつき被覆
を行った鋼板を日本ペイント(株)製のりん酸塩処理剤
GrSD−2000に浸漬処理し、120°CXl0分
空焼きした後、日本ペイント(株)製のパワートップI
J−30を用い、乾燥膜厚が20μとなるようにカチオ
ン電着塗装し、180’cX30分の焼付けを行なった
。この上に関西ペイント(株)類アミラックTP−16
Rを乾燥膜厚25μ塗装し、140”CX20分焼付け
、さらに上塗りとして関西ペイント(株)類アミラック
030を乾燥膜厚30μ塗装し、140°CX20分焼
付けを行なった。この後、鋼素地に達する2闘間隔のご
ばん目のクロスカットを1oOwi施し、セロテープで
剥離した。
(2) Cation coating - adhesion test: The plated steel plate was immersed in the phosphate treatment agent GrSD-2000 manufactured by Nippon Paint Co., Ltd., and after baking at 120°C for 0 minutes, Nippon Paint Co., Ltd. Power Top I manufactured by Co., Ltd.
Cation electrodeposition coating was performed using J-30 so that the dry film thickness was 20 μm, and baking was performed for 180′×30 minutes. On top of this, Kansai Paint Co., Ltd. Amirac TP-16
R was painted with a dry film thickness of 25 μm and baked at 140” CX for 20 minutes. Furthermore, Kansai Paint Co., Ltd.'s Amirac 030 was painted with a dry film thickness of 30 μm as a top coat, and baked at 140°C for 20 minutes. After this, the steel substrate was reached. A cross cut was made every two fights apart, and it was removed with cellophane tape.

(1) 、(2)において、◎はめワき層あるいは塗膜
の剥離が皆無であったこと、○はめっき層あるいは塗膜
の剥離が僅かに認められたことを示す。
In (1) and (2), ◎ indicates that there was no peeling of the plating layer or paint film, and ○ indicates that slight peeling of the plating layer or paint film was observed.

【図面の簡単な説明】[Brief explanation of drawings]

第1〜2図は電流密度とめっき層中Fθ含量との関係を
示すグラフである。第3図は浴中−す立− F、++ + z□丑重重量比%)とめ−き層中F・含
量(重量%)との関係を示すグラフである。第4図は実
施例に用いた装置の原理説明図である。第5図は比較例
に用いた装置の原理説明図であるgl・・・タンク、2
・・・ポンプ、3・・・鋼材、4・・・通電ロール、6
.7.8.9.10・1セル、A3、A2、A8、Aい
A、・・・不溶解性陽極、11.12.13.14.1
5・・・タンク、16.1’71.1L 19.20・
・・セル、21・・・隔壁、22・・・鋼材、23・・
・電通ロール、B1、B7、B3、B4、B、・・・不
溶解性陽極。 代 理 人 弁理士 井 上 雅 生 第1図 ttEA(A/dm2) 第3図 手続補正書 昭和57年2月24日 特許庁長官 島 1)春 樹 殿 1、 事件の表示 昭和56年特許願第165’739号 2、発明の名称 濃度勾配を有する鉄−亜鉛合金めっき層で被覆された鋼
材およびその製造方法 3、補正をする者 事件との関係  特許出願人 住所 東京都千代田区大手町二丁目6番3号名称 (6
65)新日本製鐵株式會社 代表者 武 1) 豊 4、代理人 住所 神奈川県三浦郡葉山町長柄1601番地63、発
明の詳細な説明の欄」 6、 補正の内容 (1)  特許請求の範囲を別紙のとおり補正する。 (2)  明細書第4頁第14行目「および」ヲ「およ
び」と補正する。 (3) 同第8頁第8行目の「電極不働態上現象」を「
電極不働態化現象」と補正する。 (4)  同第9貞第3行目の「焼付の防止」を「焼は
防止」と補正する。 代理人 弁理士 井 上 雅 生 別紙 [2、特許請求の範囲 1、 めっき駄が、5〜50 g / m” 、めっき
層中の亜鉛割合が5〜98重量%の範囲内で、順次亜鉛
の含有喰を減少又は増加させた鉄−亜鉛合金めっき層で
被覆された鋼材。 2、 多セルを有する連続式めっきラインにおいて、め
っき浴中にzn++ / Ir6+十重量比が0.02
〜0.90、且つ両金属の硫酸塩を総量で濃度100 
g/ fi以上溶解限以内含有する硫酸塩浴を用い、p
H0,8〜2.3、浴温40〜80“Cの範囲で、不溶
解性陽極を用い、第1セルから順次電流密度を変化させ
、亜鉛含量を5〜98重量%の範囲内で順次減少又は増
加させた、鉄−亜鉛合金めっき層で被覆された鋼材の製
造方法。−1 特開昭58−67886(8)
1 and 2 are graphs showing the relationship between current density and Fθ content in the plating layer. FIG. 3 is a graph showing the relationship between the F content (% by weight) in the bath and the F content (% by weight) in the plating layer. FIG. 4 is a diagram explaining the principle of the apparatus used in the example. FIG. 5 is a diagram explaining the principle of the device used in the comparative example.
... pump, 3 ... steel material, 4 ... energizing roll, 6
.. 7.8.9.10.1 cell, A3, A2, A8, A... insoluble anode, 11.12.13.14.1
5...tank, 16.1'71.1L 19.20.
... Cell, 21 ... Partition wall, 22 ... Steel material, 23 ...
- Electric roll, B1, B7, B3, B4, B, ... insoluble anode. Agent Masaaki Inoue, Patent Attorney Figure 1 ttEA (A/dm2) Figure 3 Procedural Amendment February 24, 1980 Commissioner of the Patent Office Shima 1) Haruki Tono1, Indication of Case 1988 Patent Application No. 165'739 No. 2, Title of the invention Steel material coated with an iron-zinc alloy plating layer having a concentration gradient and its manufacturing method 3, Relationship with the amended person's case Patent applicant address: 2 Otemachi, Chiyoda-ku, Tokyo Chome 6-3 Name (6
65) Nippon Steel Corporation Representative Takeshi 1) Yutaka 4, Agent Address 1601-63 Nagara, Hayama-cho, Miura-gun, Kanagawa Prefecture, Detailed Description of the Invention Column 6. Contents of Amendment (1) Scope of Claims Correct as shown in the attached sheet. (2) On page 4, line 14 of the specification, "and" is amended to "and". (3) “Electrode passivity phenomenon” on page 8, line 8 of the same page is changed to “
This is corrected as "electrode passivation phenomenon". (4) "Preventing burn-in" in the 3rd line of No. 9 of the same text is amended to "prevent burn-in." Representative Patent Attorney Masaru Inoue Seki Attachment [2, Claim 1, The plating layer is 5 to 50 g/m'', and the zinc proportion in the plating layer is within the range of 5 to 98% by weight, Steel material coated with an iron-zinc alloy plating layer with reduced or increased content. 2. In a continuous plating line with multiple cells, the zn++/Ir6+ weight ratio is 0.02 in the plating bath.
~0.90, and the total concentration of sulfates of both metals is 100.
Using a sulfate bath containing g/fi or more within the solubility limit, p
H0.8~2.3, bath temperature in the range of 40~80"C, using an insoluble anode, changing the current density sequentially from the first cell, and sequentially changing the zinc content within the range of 5~98% by weight. Method for manufacturing steel covered with iron-zinc alloy plating layer with reduced or increased thickness.-1 JP-A-58-67886 (8)

Claims (1)

【特許請求の範囲】 1、めっき量が5〜50g/i 、めっき層中の亜鉛割
合が5〜98重量%の範囲内で、順次亜鉛の含有量を減
少又は増加させた鉄−亜鉛合金めっきの複数層で被覆さ
れた鋼材。 2、多セルを有する連続式めっきラインにおいて、めっ
き浴中にZn什/Fe++重量比が0.02〜0.90
、且つ両金属の硫酸塩を総量で濃度100 g / /
以上溶解限以内含有する硫#!塩浴を用い、pH0,8
〜2.3、浴温40〜80°Cの範囲で、不溶解性陽極
を用い、第1セルから順次電流密度を変化させ、亜鉛含
量を5〜98重漱%の範囲内で順次減少又は増加させた
、鉄−亜鉛合金めっきの複数層で被覆された鋼材の製造
方法。
[Claims] 1. Iron-zinc alloy plating in which the zinc content is sequentially decreased or increased within the range of a plating amount of 5 to 50 g/i and a zinc proportion in the plating layer of 5 to 98% by weight. Steel coated with multiple layers. 2. In a continuous plating line with multiple cells, the weight ratio of Zn/Fe++ in the plating bath is 0.02 to 0.90.
, and the total concentration of sulfates of both metals is 100 g / /
Sulfur contained within the solubility limit #! Using a salt bath, pH 0.8
~2.3, using an insoluble anode in the bath temperature range of 40 to 80 °C, changing the current density sequentially from the first cell, and decreasing the zinc content in the range of 5 to 98% by weight or A method for producing steel coated with multiple layers of increased iron-zinc alloy plating.
JP16573981A 1981-10-19 1981-10-19 Steel article coated with iron-zinc alloy plating layer having concentration gradient and manufacture thereof Pending JPS5867886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16573981A JPS5867886A (en) 1981-10-19 1981-10-19 Steel article coated with iron-zinc alloy plating layer having concentration gradient and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16573981A JPS5867886A (en) 1981-10-19 1981-10-19 Steel article coated with iron-zinc alloy plating layer having concentration gradient and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS5867886A true JPS5867886A (en) 1983-04-22

Family

ID=15818151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16573981A Pending JPS5867886A (en) 1981-10-19 1981-10-19 Steel article coated with iron-zinc alloy plating layer having concentration gradient and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS5867886A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2545842A1 (en) * 1983-05-14 1984-11-16 Nippon Kokan Kk ELECTROLYSIS GALVANIZED STEEL SHEET WITH IRON AND ZINC ALLOY HAVING SEVERAL IRON ALLOY AND ZINC ALLOY COATINGS
JPS6050195A (en) * 1983-08-30 1985-03-19 Nippon Steel Corp Plated layer concentration gradient type zinc alloy plated steel plate
JPS619596A (en) * 1984-06-22 1986-01-17 Sumitomo Metal Ind Ltd Multilayer electrolytically plated steel sheet
JPH01222092A (en) * 1988-02-29 1989-09-05 Nkk Corp Method for galvanizing steel strip
KR20020047425A (en) * 2000-12-13 2002-06-22 권수식 Zinc electroplated steel sheet having a good surface appearance and quality
KR100428019B1 (en) * 2000-12-13 2004-04-30 현대하이스코 주식회사 Manufacturing process of highly qualified, surface-treated zinc electroplated steel sheet
JP2008195497A (en) * 2007-02-14 2008-08-28 Hitachi Sumitomo Heavy Industries Construction Crane Co Ltd Crane and disassembling/assembling method for crane
CN109023461A (en) * 2017-06-09 2018-12-18 波音公司 Form zinc-iron laminated coating of modulation

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2545842A1 (en) * 1983-05-14 1984-11-16 Nippon Kokan Kk ELECTROLYSIS GALVANIZED STEEL SHEET WITH IRON AND ZINC ALLOY HAVING SEVERAL IRON ALLOY AND ZINC ALLOY COATINGS
US4543300A (en) * 1983-05-14 1985-09-24 Nippon Kokan Kabushiki Kaisha Iron-zinc alloy electro-galvanized steel sheet having a plurality of iron-zinc alloy coatings
JPS6050195A (en) * 1983-08-30 1985-03-19 Nippon Steel Corp Plated layer concentration gradient type zinc alloy plated steel plate
JPS619596A (en) * 1984-06-22 1986-01-17 Sumitomo Metal Ind Ltd Multilayer electrolytically plated steel sheet
JPH0411635B2 (en) * 1984-06-22 1992-03-02 Sumitomo Metal Ind
JPH01222092A (en) * 1988-02-29 1989-09-05 Nkk Corp Method for galvanizing steel strip
KR20020047425A (en) * 2000-12-13 2002-06-22 권수식 Zinc electroplated steel sheet having a good surface appearance and quality
KR100428019B1 (en) * 2000-12-13 2004-04-30 현대하이스코 주식회사 Manufacturing process of highly qualified, surface-treated zinc electroplated steel sheet
JP2008195497A (en) * 2007-02-14 2008-08-28 Hitachi Sumitomo Heavy Industries Construction Crane Co Ltd Crane and disassembling/assembling method for crane
CN109023461A (en) * 2017-06-09 2018-12-18 波音公司 Form zinc-iron laminated coating of modulation

Similar Documents

Publication Publication Date Title
EP0047987B2 (en) Cationic electrodeposition lacquer-coated steel material
US4282073A (en) Electro-co-deposition of corrosion resistant nickel/zinc alloys onto steel substrates
US3816082A (en) Method of improving the corrosion resistance of zinc coated ferrous metal substrates and the corrosion resistant substrates thus produced
JPS5867886A (en) Steel article coated with iron-zinc alloy plating layer having concentration gradient and manufacture thereof
US4351713A (en) Electro-co-deposition of corrosion resistant nickel/zinc alloys onto steel substrates
US3838024A (en) Method of improving the corrosion resistance of substrates
US4490438A (en) Steel sheet with multilayer electroplating and method of producing same
JP2787365B2 (en) Organic thin film coated Cr-containing zinc-based multi-layer rust-proof steel sheet having excellent long-term adhesion of organic thin film and cationic electrodeposition coating property, and method for producing the same
JPS6028918B2 (en) Post-treatment method for non-plated side of single-sided zinc-based electroplated steel sheet
JPH0256437B2 (en)
JPS62294197A (en) Rustproof steel sheet for automobile and its production
JPH0447037B2 (en)
JP2947633B2 (en) Nickel / chromium-containing galvanized steel sheet / steel material for coating base and its manufacturing method
JPS61253397A (en) Alloyed hot dip galvanized steel sheet for painting by cationic electrodeposition
JPH0676675B2 (en) Method for producing galvanized steel sheet with excellent chemical conversion treatability and post-painting performance
JPS6144157B2 (en)
JP3230907B2 (en) Method for producing blackened steel sheet excellent in productivity and blackening
JPH0210879B2 (en)
JPS6134520B2 (en)
JPS6199691A (en) Steel sheet electroplated with combined layer
JPS58133395A (en) After-treatment of uncoated surface of single-surface zinc-electroplated steel sheet
JPH0148356B2 (en)
JPH03223493A (en) Method for uniformly chromating zinc-plated steel sheet by electrolysis
JPS60159176A (en) Multilayer plated steel sheet
JPH0565700A (en) Resin coated zn-ni-cr-al2o3 type electroplated steel sheet and its production