JPS5855027A - Removing method for sulfur dioxide in waste gas - Google Patents
Removing method for sulfur dioxide in waste gasInfo
- Publication number
- JPS5855027A JPS5855027A JP56153225A JP15322581A JPS5855027A JP S5855027 A JPS5855027 A JP S5855027A JP 56153225 A JP56153225 A JP 56153225A JP 15322581 A JP15322581 A JP 15322581A JP S5855027 A JPS5855027 A JP S5855027A
- Authority
- JP
- Japan
- Prior art keywords
- tower
- sulfur dioxide
- absorption
- spray
- column
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Treating Waste Gases (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は二酸化硫黄(以下SO,と称す、)を含有すゐ
排ガスから801を有効に除去する方法に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for effectively removing 801 from exhaust gas containing sulfur dioxide (hereinafter referred to as SO).
ボイラー排ガス中に含まれる8へを除去するため各種の
方法による各種の装置(排煙脱硫装置と通称される)が
稼動していることは肩知の通やである。その主流は吸収
液に与る808の吸収であ#)、吸収剤としては803
と何らかの形で反応する成分を含んだものが用いられる
場合が一般的である。これを反応吸収法とよぶ。このs
O!を吸収した吸収液をそのiま排出してしまう場合も
あるが、!I済的見地から吸収液を再生し、循環利用す
ることが多い。80嘗の吸収するための装置を一般にガ
ス吸収装置とよび、ガスと吸収液の接触を効率よく行う
様に設計され。It is well known that various devices (commonly referred to as flue gas desulfurization devices) using various methods are in operation in order to remove oxidants contained in boiler exhaust gas. The mainstream is the absorption of 808 in the absorption liquid, and as an absorbent, 803
It is common to use a product that contains a component that reacts with the chemical in some way. This is called the reaction absorption method. This s
O! In some cases, the absorbent liquid that has absorbed it may be discharged, but! From an economic standpoint, the absorbent liquid is often regenerated and recycled. The device for absorbing 80 tons of gas is generally called a gas absorption device, and is designed to efficiently bring the gas into contact with the absorption liquid.
吸収の効果を高め、SO!除去率を向上させることにな
る。ガス吸収装置を形式から分類するとガス分散層と液
分散蓋に分類され、前者は源側物質移動の支配的な系に
、l1者はガス側物質移動の支配的な系に適用されるの
が普通である。Increase the absorption effect and SO! This will improve the removal rate. When gas absorption devices are classified based on their type, they are classified into gas dispersion layers and liquid dispersion lids. It's normal.
(参考:化学工学便覧 改訂置版P522)例えば、8
0sの反応吸収法の代・表的なものに亜硫酸ソーダ淡厚
水溶液による吸収がある。この方法は可逆反応を利用し
た再生工程を持ち。(Reference: Chemical Engineering Handbook Revised Edition P522) For example, 8
A typical example of the 0s reaction absorption method is absorption using a dilute aqueous solution of sodium sulfite. This method has a regeneration process that uses a reversible reaction.
次の反応が生成している。The following reaction is occurring.
0C
Nap so=+ 80x+ 山0→2NaH80s
(1)100C
2NaH801→ Na1804+ 8011十H
,0↑ (2)この工程において排ガス中のo=+
sonによ抄Nal 80B が酸化されるという(
3)の副反応が起9Na鵞so4が生成する。0C Nap so=+ 80x+ Mountain 0→2NaH80s
(1) 100C 2NaH801→ Na1804+ 801110H
,0↑ (2) In this process, o=+ in the exhaust gas
According to Son, ShoNal 80B is oxidized (
The side reaction 3) occurs and 9Na-so4 is produced.
HaB 80g + +Os→H匂804
(3)このNa1804は系外に取出す必要があ抄、こ
れは反応吸収成分のロスとなるため、酸化反応が進むこ
とは経済的にみて不利である。HaB 80g + +Os→H smell 804
(3) This Na1804 needs to be taken out of the system, which results in a loss of reaction absorption components, so it is economically disadvantageous that the oxidation reaction proceeds.
この亜硫酸ソーダ淡厚水溶液によるSO,吸収装置の設
計に当って問題は次の様である。The following problems arise when designing an SO absorption device using this fresh and thick sodium sulfite aqueous solution.
1、排ガス中に含まれるSO,濃度が低く、吸収後のガ
ス中の80sfajFも100 ppm以下程度という
非常な低源11Ktで吸収する必要あるため(これはど
の吸収法でも共通の問題である)ガスに対する液の流量
比率を高めて徴収効率を上げる。1. The concentration of SO contained in the exhaust gas is low, and the 80sfajF in the gas after absorption must be absorbed at a very low source of 11Kt, approximately 100 ppm or less (this is a common problem with all absorption methods). Increase collection efficiency by increasing the flow rate ratio of liquid to gas.
2、上記の(1)式で示し九化学反応、は比較、的速い
反応であるから、吸収機構としてはガス側支配で液分散
型が適していると思われるが、(3)式で示す副反応の
進行も効率化されるので。2. Since the nine chemical reactions shown in equation (1) above are relatively fast reactions, it seems that the absorption mechanism is gas-dominated and liquid dispersion type is suitable, but as shown in equation (3) This also makes the progress of side reactions more efficient.
そのバランスが重要である。That balance is important.
結局、現実の装置としては上記二点を勘案して、ガス分
散型の多段の段塔を用い、各段は吸収液の循環を行い、
実質的な液−ガス比を高める様な設計が行われている。In the end, in consideration of the above two points, as an actual device, a gas dispersion type multi-stage tower is used, and each stage circulates the absorption liquid.
Designs have been made to increase the substantial liquid-to-gas ratio.
液分散型の代表としてスプレー塔が考えられるが、この
型式については、上記の副反応との競合の問題に加えて
排ガスのシ璽−トパスを押えることが難しいという問題
がある。この問題凰
はボイラー排ガスが一般に大−量であるため。A spray tower can be considered as a representative example of the liquid dispersion type, but this type has the problem of competition with the side reactions mentioned above, as well as the difficulty of suppressing the shut path of the exhaust gas. This problem arises because the amount of boiler exhaust gas is generally large.
シ璽−トパスを防ぐにはスプレー個数を増さねばならな
いが、そのため吸収液量が多量になり副反応生成物Ha
雪1104量も多くな塾、吸収液の抜出し量大、徴収液
の補給量大と―うことで。To prevent sheet pass, it is necessary to increase the number of sprays, but this increases the amount of absorbed liquid and produces side reaction products.
Snow 1104 There was a large amount of cram school, a large amount of absorption liquid was extracted, and a large amount of collected liquid was replenished.
工業的に不利であるという欠点を有していえ。However, it has the disadvantage of being industrially disadvantageous.
本発明者ら紘前記問題点を解決゛すべく鋭意検討の結果
、数収後SO,濃度100p−以下程度という低鏝度域
の吸収操作におけるガス分散型の段塔の限界と低IN直
域の吸収操作における液分*mのスプレー塔の有効性を
組合せることによ抄、副反応を抑制することができるこ
とを見いだし、この知見に基づいて本発明を完成するに
至った。As a result of intensive studies by the present inventors to solve the above-mentioned problems, the limitations of the gas dispersion type column column in the absorption operation in the low-complexity region of SO after several collections, the concentration of which is about 100 p- or less, and the low IN direct region. It has been discovered that by combining the effectiveness of the spray tower for the liquid fraction *m in the absorption operation, it is possible to suppress the paper-making and side reactions, and based on this knowledge, the present invention has been completed.
すなわち本発明は、排ガス中における二酸化硫黄をガス
吸収装置を用いて除去する際に、除去すべき二酸化硫黄
の60〜90哄を段塔によ抄除去し、残抄をスプレー塔
によ抄除去することを特徴とする排ガス中の二酸化硫黄
の除去方法を提供するものである。That is, in the present invention, when removing sulfur dioxide from exhaust gas using a gas absorption device, 60 to 90 liters of sulfur dioxide to be removed is removed by a tray column, and the remaining residue is removed by a spray column. The present invention provides a method for removing sulfur dioxide from exhaust gas.
次に図に従って本発明プロセス詳細に説明する。Next, the process of the present invention will be explained in detail according to the drawings.
第1図は9本発明に係るプロセスの1例を示す工程図で
ある。図K>−て、1は段塔、 2tiスプレー塔であ
る。2イン3から段塔IK供給され九80雪を含有した
排ガスは、3段の多孔板4上をライン11から供給され
た吸収液(例えば亜硫酸ソーダ濃厚水溶液)と接触しな
がら通過する0段塔Iにおいて、排ガス中の除去すべ@
SO,060〜90哄が除去され、その後排ガスはラ
イン5からスプレー塔2に供給される。FIG. 1 is a process diagram showing an example of a process according to the present invention. In Figure K>-, 1 is a tray tower, and 2ti is a spray tower. The exhaust gas containing 980 snow supplied from the 2-in-3 plate tower IK passes through the 3-stage perforated plate 4 while contacting the absorption liquid (for example, a concentrated aqueous solution of sodium sulfite) supplied from the line 11 to the 0-stage column. In I, it should be removed from exhaust gas @
SO, 60-90 g is removed, after which the exhaust gas is fed to the spray tower 2 via line 5.
整流板6で整流された排ガスは、スプレィノズル7から
噴射される吸収液(例えば亜硫酸ソーダ濃厚水溶液)と
向流に接触して802が除去され、その後、ミストセパ
レーター8で同伴する吸収液を分離されて、ライン9か
ら排出される。The exhaust gas that has been rectified by the rectifying plate 6 comes into contact with an absorbing liquid (for example, a concentrated aqueous solution of sodium sulfite) injected from the spray nozzle 7 in a countercurrent manner to remove 802, and then the accompanying absorbing liquid is separated by the mist separator 8. and is discharged from line 9.
一方、吸収液は10及び11に示す供給ラインによって
スプレー塔2及び段塔1に供給される。スプレー塔2に
供給された吸収液は、循環ポンプ12によりて循環使用
された後、オーバーフローライン14を通って段塔へ供
給されるか又は必要に応じて抜き出しライン15によっ
て吸収系外へ抜き出される。11から段塔に供給された
吸収液は80鵞吸収後排出2イン13から抜き出される
。On the other hand, the absorption liquid is supplied to the spray column 2 and the tray column 1 through supply lines 10 and 11. The absorption liquid supplied to the spray tower 2 is circulated by the circulation pump 12, and then supplied to the tray column through the overflow line 14, or extracted to the outside of the absorption system through the extraction line 15 as necessary. It will be done. The absorption liquid supplied to the plate column from 11 is extracted from the discharge 2-in 13 after 80 liters of absorption.
本発明における段塔は、一般的には3〜5段の多孔板を
備えている。スプレー塔は、一般的には10〜20個の
ノズルを備えている。両者の吸収装置における空塔接触
時間は通常10〜15秒である。処理温度はSO,除去
効率には直接影響しないが、一般には60〜SOC,好
ましくは40〜50Cで行なうのが有利である。The tray column in the present invention is generally equipped with 3 to 5 stages of perforated plates. Spray towers are typically equipped with 10 to 20 nozzles. The superficial contact time in both absorption devices is usually 10 to 15 seconds. Although the treatment temperature does not directly affect SO removal efficiency, it is generally advantageous to carry out the treatment at 60 to SOC, preferably 40 to 50C.
圧力は減圧、常圧、加圧いずれでも行ない得るが1%に
常圧が好ましい、スプレー塔での吸収液循環量と排ガス
の比は1通常0.5〜3.0 (棒である。The pressure can be reduced, normal pressure, or increased pressure, but normal pressure is preferred to 1%.The ratio of the amount of absorption liquid circulated in the spray tower to the exhaust gas is usually 0.5 to 3.0 (bar).
吸収塔として段塔がすでに使用されている場合に1本発
明を実施するときには1段塔の上部の一部を除いて、そ
の部分にスプレーをとりつけて、一体化した吸収塔とし
て使用することができる。また、新たに吸収塔を製作す
る場合には、上部にスプレーを、下部に棚段を備えたも
の(段塔とスプレー塔が一体化した装置)が好適に本発
明に使用される。When carrying out the present invention when a tray column is already used as an absorption column, it is possible to remove a part of the upper part of the first column, attach a spray to that part, and use it as an integrated absorption column. can. Furthermore, when manufacturing a new absorption tower, one equipped with a spray in the upper part and trays in the lower part (a device in which the tray tower and the spray tower are integrated) is suitably used in the present invention.
本発明における段4Fにおいて、排ガス中から除去すべ
きSO,060〜90%を除去する必要がある。60哄
未満では、副反応によるNa1804発生量アップにつ
ながり、9G濃を越えると。In the stage 4F of the present invention, it is necessary to remove 0.60 to 90% of the SO to be removed from the exhaust gas. If it is less than 60 liters, the amount of Na1804 generated will increase due to side reactions, and if it exceeds 9G concentration.
段塔の吸収効率低下が大きく、吸収塔全体の吸収効率が
低下して好ましくない0本発明におiる吸収液社、一般
には亜硫酸塩と主成分とじたものが使用されるが、 l
f!fK制限されない。すなわち80鵞を有効に吸収す
る液ならなんでもよい。The absorption efficiency of the tray column is greatly reduced, and the absorption efficiency of the absorption column as a whole is reduced, which is undesirable.The absorption liquid company according to the present invention is generally a mixture of sulfite and the main component, but l
f! fK is not limited. In other words, any liquid that can effectively absorb 80 g of water may be used.
段塔とスプレー塔に使用される吸収液は、同一であって
もよく異種であって4よい。The absorption liquids used in the tray column and the spray column may be the same or different.
次に本発明の詳細な説明する。Next, the present invention will be explained in detail.
すなわち、先ず段塔を用いて80.除去率で60〜90
襲までの802除去を行なり先後にスプレー吸収塔を用
いる事で
(1)スプレー吸収塔の最大の欠点とされていた亜硫酸
塩の酸化を段塔と同1!fKtで大幅に低下でき
(2) さらに、スプレー吸収塔の他の欠点とされて
いた排ガスのシw −)バスの悪影響をなくシ、かつス
プレ一本来の特長である高気液接触効率によりて9段塔
単独使用に比べ吸収後期の吸収速度低下を・大幅に改善
できる事によって、従来よりはるかに低い運転経費で8
03除去率を95哄以上の高除去率に歇もし1ti、i
L事ができる。That is, first, 80. Removal rate: 60-90
By removing 802 and using a spray absorption tower after the attack, (1) the oxidation of sulfites, which was considered to be the biggest drawback of spray absorption towers, is reduced to the same level as a tray tower! fKt can be significantly reduced. Compared to the use of a 9-stage column alone, the reduction in absorption rate in the latter stage of absorption can be significantly improved, resulting in a
03 If you keep the removal rate to a high removal rate of 95 or more, 1ti,i
I can do L things.
以下に本発明による実施例について説明する。Examples according to the present invention will be described below.
実施例1
多孔板3段からなる段塔の後に、スプレー有効高さ1.
5m1I%G(スプレー循環液量/排ガス量)=1〜2
(J/l/)のスプレー塔を組み合せた装置(図1)
を使用して、吸収液の供給量を変量してボイラー排ガス
中のSO,除去を行なった。吸収液は段塔及びスプレー
塔K Nsg Bozを主成分とする吸収液を用い、ス
プレー塔使用後1段塔へ供給する方式をとった。なお、
ボイラー使用重油は、硫黄含有1約2.7哄のC重油で
、その流量は6.000〜7、000 k17ufaで
あり九。Example 1 After a plate tower consisting of three perforated plates, the effective spray height was 1.
5m1I%G (spray circulation liquid volume/exhaust gas volume) = 1 to 2
(J/l/) spray tower combination device (Figure 1)
Using this method, SO was removed from boiler exhaust gas by varying the amount of absorption liquid supplied. The absorption liquid mainly contained in the plate column and the spray column K Nsg Boz was used, and a system was adopted in which the absorption liquid was supplied to the first column after the use of the spray column. In addition,
The heavy oil used in the boiler is C heavy oil containing about 2.7 liters of sulfur, and its flow rate is 6,000 to 7,000 k17ufa.
上記の排脱の結果を図2の■に示した。図かられかるよ
うに9本発明の方が後記する従来の方法(多孔板3段の
段塔のみ使用)よシも80!の除去率が優れている。ま
た、亜硫酸塩の酸化即ちN allK)4発生量につい
ては、従来の段塔(多孔板3段)のみによる場合と大差
なく、ともに吸収液量VH−に於て80〜10・OvH
■である。The results of the above evacuation are shown in ■ in FIG. As can be seen from the figure, the method of the present invention is 80 times better than the conventional method described later (using only a three-stage column with perforated plates). Excellent removal rate. In addition, the amount of sulfite oxidation (NallK)4 generated is not much different from the case using only the conventional plate column (3 stages of perforated plates), and in both cases, the amount of oxidation of sulfite (NallK)4 is 80 to 10 OvH at the absorption liquid volume VH-.
■It is.
一方、逆K 80.除去率を90哄に固定した運転を行
なうとSO,除去率が向上している為、再生コスト及び
吸収液補給コストを含めたガス吸収装置の運転経費は、
従来の多孔板3段の段塔のみの場合に比べて、3割減少
した。On the other hand, reverse K 80. When operating with the removal rate fixed at 90 liters, the SO removal rate improves, so the operating cost of the gas absorption equipment, including the regeneration cost and absorption liquid replenishment cost, is:
This is a 30% reduction compared to the conventional three-stage column with perforated plates.
比較例1
従来の方法に使用した多孔板3段からなる段塔のみを使
用し九以外は実施例1と同一条件でボイラー排ガス中の
SO,除去を行なった。その結果は図2の■に示した。Comparative Example 1 SO was removed from the boiler exhaust gas under the same conditions as in Example 1 except for using only the tray column consisting of three stages of perforated plates used in the conventional method. The results are shown in Figure 2 (■).
第1図は本発明に使用する装置7の一実施例のフ党シー
ト、第2図は実施例1.比較例IKおける80.除去率
と吸収液供給量との関係図である。
l・・・・・・・・・・・・・・・段塔 2・・
・・・・・・・・・・・・・スプレー塔特許出願人
日本合成ゴム株式会社FIG. 1 is a sheet showing an embodiment of the apparatus 7 used in the present invention, and FIG. 80 in Comparative Example IK. FIG. 3 is a diagram showing the relationship between removal rate and absorption liquid supply amount. l・・・・・・・・・・・・Tanto 2...
・・・・・・・・・・・・Spray tower patent applicant
Japan Synthetic Rubber Co., Ltd.
Claims (2)
いて除去する際に、除去すべき二酸化硫黄の60〜90
哄を段塔により除去し、残シをスプレー塔によ抄除去す
ることを特徴とする排ガス中の二酸化硫黄0除去方法。(1) When removing sulfur dioxide from exhaust gas using a gas absorption device, 60 to 90% of the sulfur dioxide to be removed
1. A method for removing sulfur dioxide from exhaust gas, which comprises removing sulfur dioxide using a tray tower and removing residue using a spray tower.
を特徴とする特許請求の範囲第(1)項記載の方法。(2) The method according to claim (1), characterized in that an apparatus in which a tray column and a spray column are integrated is used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56153225A JPS5855027A (en) | 1981-09-28 | 1981-09-28 | Removing method for sulfur dioxide in waste gas |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP56153225A JPS5855027A (en) | 1981-09-28 | 1981-09-28 | Removing method for sulfur dioxide in waste gas |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5855027A true JPS5855027A (en) | 1983-04-01 |
Family
ID=15557786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP56153225A Pending JPS5855027A (en) | 1981-09-28 | 1981-09-28 | Removing method for sulfur dioxide in waste gas |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5855027A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH078150U (en) * | 1993-07-20 | 1995-02-03 | 大和産業株式会社 | Moving walk cart |
US6126910A (en) * | 1997-10-14 | 2000-10-03 | Wilhelm; James H. | Method for removing acid gases from flue gas |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS529698A (en) * | 1975-07-14 | 1977-01-25 | Babcock Hitachi Kk | Generating method of high quality gypsum in the wet desulfurization me thod for flue gas |
JPS5487676A (en) * | 1977-12-26 | 1979-07-12 | Babcock Hitachi Kk | Wet-type desmoking desulfurization apparatus |
-
1981
- 1981-09-28 JP JP56153225A patent/JPS5855027A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS529698A (en) * | 1975-07-14 | 1977-01-25 | Babcock Hitachi Kk | Generating method of high quality gypsum in the wet desulfurization me thod for flue gas |
JPS5487676A (en) * | 1977-12-26 | 1979-07-12 | Babcock Hitachi Kk | Wet-type desmoking desulfurization apparatus |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH078150U (en) * | 1993-07-20 | 1995-02-03 | 大和産業株式会社 | Moving walk cart |
US6126910A (en) * | 1997-10-14 | 2000-10-03 | Wilhelm; James H. | Method for removing acid gases from flue gas |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2176543C2 (en) | Method of removal of sulfur dioxide from flue gases, waste gases of power stations and incinerators | |
FI56490C (en) | FOERFARANDE FOER AVLAEGSNANDE AV GASFORMIGA FOERORENINGAR UR SVAVELSYRAKONTAKTANORDNINGARS AVGASER | |
US4315872A (en) | Plate column | |
US20150352489A1 (en) | Effective removal of acidic sulfide gas using ammonia-based desulfurization | |
US20090148371A1 (en) | Two-Stage Quench Scrubber | |
KR101013472B1 (en) | Apparutus and process for extracting sulfur compounds from a hydrocarbon stream | |
EP0159495A3 (en) | Process for the removal of co2 and/or h2s from gases | |
RU2345823C2 (en) | Method for removal of ammonia and dust from spent gas exhausted in production of fertilisers | |
JPS60179120A (en) | Process for treating waste gas with separation and recovery of gypsum and dust | |
CN1169335A (en) | Method for taking off hydrogen sulfide from mixed gas | |
JPH11267442A (en) | Removing method of carbon dioxide in gas | |
JPS6215246B2 (en) | ||
JPS5855027A (en) | Removing method for sulfur dioxide in waste gas | |
US3893830A (en) | Co-current absorber for recovering inorganic compounds from plant effluents | |
JP3727086B2 (en) | Wet flue gas desulfurization method and apparatus | |
JPS61255993A (en) | Method of regenerating desulfurizing solution | |
CN203853003U (en) | Smoke desulfurization, denitration and demercuration system with organic absorbent method | |
JPH1066826A (en) | Flue gas desulfurization method and apparatus therefor | |
CN106039970A (en) | Method for removing sulfur dioxide from sulfuric acid industrial tail gas and recovering sulfuric acid, and apparatus thereof | |
CN105817130A (en) | Device for efficient treatment of exhaust gas hydrogen sulfide | |
CN114835118A (en) | Method for removing hydrogen sulfide from carbon disulfide | |
JPH02160020A (en) | Eliminating process for sulfur | |
JPS62225226A (en) | Wet stack-gas desulfurization facility | |
JPS5849590B2 (en) | gas purification equipment | |
US2110971A (en) | Purification process |