JPS5854211B2 - Torsion penetrating type PC spiral pile - Google Patents
Torsion penetrating type PC spiral pileInfo
- Publication number
- JPS5854211B2 JPS5854211B2 JP54140585A JP14058579A JPS5854211B2 JP S5854211 B2 JPS5854211 B2 JP S5854211B2 JP 54140585 A JP54140585 A JP 54140585A JP 14058579 A JP14058579 A JP 14058579A JP S5854211 B2 JPS5854211 B2 JP S5854211B2
- Authority
- JP
- Japan
- Prior art keywords
- pile
- concrete
- torsion
- strength
- helical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000000149 penetrating effect Effects 0.000 title description 7
- 241000208195 Buxaceae Species 0.000 claims description 3
- 238000010276 construction Methods 0.000 description 21
- 229910000831 Steel Inorganic materials 0.000 description 19
- 239000010959 steel Substances 0.000 description 19
- 239000004567 concrete Substances 0.000 description 14
- 239000000835 fiber Substances 0.000 description 11
- 239000002689 soil Substances 0.000 description 11
- 238000005336 cracking Methods 0.000 description 7
- 230000035515 penetration Effects 0.000 description 7
- 239000011210 fiber-reinforced concrete Substances 0.000 description 6
- 230000003014 reinforcing effect Effects 0.000 description 5
- 239000011372 high-strength concrete Substances 0.000 description 3
- 238000005452 bending Methods 0.000 description 2
- 238000012669 compression test Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 229920000535 Tan II Polymers 0.000 description 1
- 238000009412 basement excavation Methods 0.000 description 1
- 238000005056 compaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000007903 penetration ability Effects 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 239000011513 prestressed concrete Substances 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E02—HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
- E02D—FOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
- E02D5/00—Bulkheads, piles, or other structural elements specially adapted to foundation engineering
- E02D5/22—Piles
- E02D5/56—Screw piles
Landscapes
- Engineering & Computer Science (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Mining & Mineral Resources (AREA)
- Paleontology (AREA)
- Civil Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Piles And Underground Anchors (AREA)
- Placing Or Removing Of Piles Or Sheet Piles, Or Accessories Thereof (AREA)
Description
【発明の詳細な説明】
本発明はねじり貫入式PCらせん杭に関するものにして
、コンクリート杭を、直接土中に貫入せしめるという一
工程により基礎杭打作業を完了することを可能ならしめ
て、基礎工事の大幅な簡略化および完全な無振動、無騒
音化を実現することを目的とするものであって、その特
徴とするところは、らせん状つげ部を備えるPC杭にお
いて、前記らせん状つげ部の上面角と下面角が相互に異
なるように形成せしめたねじり貫入式PCらせん杭であ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a torsion penetrating type PC helical pile, which enables the foundation pile driving work to be completed in one step of directly penetrating the concrete pile into the soil. The purpose of this invention is to significantly simplify the process and achieve complete vibration-free and noise-free operation, and its feature is that in a PC pile equipped with a spiral boxwood part, the spiral boxwood part This is a torsion penetrating type PC helical pile in which the upper surface angle and the lower surface angle are formed to be different from each other.
都市部などに建設される土木および建築構造物の施工場
所は住民地域に近接していることが多く、このことから
騒音、振動の発生が一時的にせよ地域内の住民の生活環
境に影響を及ぼしたり、建造物などに損傷を与えるなど
大きな社会問題になってきている。Construction sites for civil engineering and architectural structures constructed in urban areas are often close to residential areas, and as a result, the generation of noise and vibration, even temporarily, can have an impact on the living environment of residents in the area. It has become a major social problem, causing damage to buildings and buildings.
このため、都市部またはその周辺部における建設工事は
工事時間の制限による工期の長期化、その施工方法およ
び工事内容の変更など工事の進行および工事費に著しく
支障をきたすケースが増える傾向にある。For this reason, construction work in urban areas or surrounding areas is increasingly likely to be subject to longer construction periods due to limited construction time, or changes to construction methods and content, which significantly impede construction progress and construction costs.
特に、都市周辺の構造物、建築の基礎工事に不可欠な杭
打ちは騒音ならびに振動の規制もあって、従来のように
ディーゼルハンマーやバイブロノ\ンマーなどによって
打設することは事実上不可能になってきているのが実状
である。In particular, noise and vibration regulations have made it virtually impossible to drive piles, which are essential for the foundation work of structures and buildings around cities, using diesel hammers, vibronomers, etc. as in the past. The reality is that this is happening.
そこで、既製杭の打撃工法で発生する騒音、振動を大幅
に減らすという社会的要請から、打撃工法の代替工法と
して、通常いわれている無騒音・無振動工法が発展して
きた。Therefore, in response to the social need to significantly reduce the noise and vibration generated by the hammer construction method of prefabricated piles, a noise-free and vibration-free construction method, which is commonly referred to as an alternative to the hammer construction method, has been developed.
そして都市内の建設工事が増えるにつれておびただしい
種類の工法が「無騒音・無振動工法」の名のもとに出現
してきた。As the amount of construction work in cities increases, a wide variety of construction methods have emerged under the name of "no-noise and vibration-free construction methods."
しかし、これらの無騒音・無振動工法はいずれも工程数
が多いとともに工費が既製杭の打撃工法に比較して極端
に増大する。However, all of these noise-free and vibration-free construction methods require a large number of steps, and the construction costs are extremely high compared to the hammer construction method using prefabricated piles.
しかもこれらの工法は工法自体が掘削を基本にしている
ため、地盤破壊やゆるみによる支持力不足が生ずる危険
性が犬である。Moreover, since these construction methods are based on excavation, there is a risk of insufficient support capacity due to ground failure or loosening.
本発明はかかる実状に鑑みなされたもので、設計施工の
面から、経済的でかつ確実な支持力が得られる無騒音・
無振動工法用の杭として開発されたねじり貫入式PCら
せん杭を提供するものである。The present invention has been developed in view of the above circumstances, and is economical in terms of design and construction, and provides a noiseless and reliable supporting capacity.
The present invention provides a torsion-penetration type PC helical pile developed as a pile for vibration-free construction methods.
次に本発明を例示図面により説明する。Next, the present invention will be explained with reference to illustrative drawings.
らせん状つば部1を備えるPC杭において、第3図に示
すように前記らせん状つば部1の上面角αと下面角βと
が相互に異なるようにαを75゜βを60°に夫々形成
したねじり貫入式PCらせん杭aである。In a PC pile equipped with a spiral flange 1, as shown in FIG. 3, the upper surface angle α and the lower surface angle β of the spiral flange 1 are formed so that α is 75° and β is 60°, respectively. This is a torsion penetrating type PC helical pile a.
さらに詳述するならば第1図に示すように鋼棒5、補強
鉄筋5aおよびらせん状鉄筋5bを組立てて遠心力成型
用枠(図示せず)に入れ、鋼繊維3を混入した高強度コ
ンクリート4を投入して、上面角αと下面角βとが相互
tこ異なるらせん状のっぽ(フランジ)1をつけて遠心
力成型されたプレストレストコンクリート杭aであって
、この杭aに、トルクにより回転を与えて、土中に貫入
し、この杭a自身が摩擦杭または支持杭として支持力を
得ることができるようにしたものである。More specifically, as shown in FIG. 1, steel rods 5, reinforcing bars 5a, and spiral reinforcing bars 5b are assembled and placed in a centrifugal force forming frame (not shown), and high-strength concrete is mixed with steel fibers 3. A prestressed concrete pile a is centrifugally formed with a helical flange 1 having a top surface angle α and a bottom surface angle β different by t. This allows the pile a to penetrate into the soil and obtain supporting force as a friction pile or support pile.
2はコンクリート杭である。2 is a concrete pile.
この場合、杭aに回転を与えてねじ込むためのつば1は
、従来の普通コンクリートでは転石への衝突や無理な貫
入等によって割れや欠けが生じるため、十分な貫入能力
を有する大きさのフランジを付けることが不可能とされ
ていた。In this case, the collar 1, which is used to rotate and screw into the pile a, must have a flange of a size that has sufficient penetration capacity, since cracks and chips occur in conventional ordinary concrete due to collisions with boulders, forced penetration, etc. It was considered impossible to attach it.
因に、コンクリートに直径が0.3〜0.5 mmで、
長さが25〜30vtm程度の鋼繊維3を一様に分散さ
せて混入した鋼繊維補強コンクリートは、普通コンクリ
ートには見られないような多くの長所を有している。Incidentally, if the concrete has a diameter of 0.3 to 0.5 mm,
Steel fiber-reinforced concrete, in which steel fibers 3 having a length of about 25 to 30 vtm are uniformly dispersed, has many advantages not found in ordinary concrete.
■、靭性が高く、衝撃力に対する抵抗性が大きい。■High toughness and high resistance to impact forces.
2、引張強度、曲げ強度が高い。2. High tensile strength and bending strength.
3、端部や隅角部における割れや欠けが少い。3. Fewer cracks and chips at edges and corners.
4、耐疲労性が高い。4. High fatigue resistance.
5、耐撚性や凍結融解に対する抵抗性が大きい。5. High resistance to twisting and freezing and thawing.
したがって、このような鋼繊維補強コンクIJ mトを
用いることにより割れや欠けが生じにくい、十分な強度
を有するつば部1を形成することができる。Therefore, by using such a steel fiber-reinforced concrete IJm, it is possible to form a flange portion 1 that is resistant to cracking or chipping and has sufficient strength.
本発明のPCらせん杭aに用いる鋼繊維コンクリートの
圧縮試験用供試体による28日基準強度はσ28ニア5
0kg/−以上であり、次表の如き売方配合で製造した
。The 28-day standard strength of the steel fiber concrete compression test specimen used for the PC helical pile a of the present invention is σ28 near 5
The weight was 0 kg/- or more, and the product was manufactured according to the sales formula as shown in the following table.
この配合による鋼繊維補強コンクリートの28日圧縮強
度はσ28−767kg/−であり、鋼繊維を混入しな
いコンクリートの圧縮強度σ28=753kg/cys
tとほぼ同じであるが引張強度はσt=83kg/cr
Aに対してσt=59kg/c1rLであり、鋼繊維を
混入することにより約1.4倍に引張強度が上昇した。The 28-day compressive strength of steel fiber reinforced concrete with this mixture is σ28-767kg/-, and the compressive strength of concrete without steel fibers mixed is σ28=753kg/cys.
It is almost the same as t, but the tensile strength is σt=83kg/cr
σt=59 kg/c1rL for A, and the tensile strength increased approximately 1.4 times by mixing steel fibers.
また、鋼繊維補強コンクリートの衝撃力による割れや欠
けに対する抵抗性を鋼繊維を混入しないコンクリートと
比較するために、材令28日の曲げ試験用供試体をスパ
ン45crILで単純支持し、そのスパン中央に重さ7
.5に41の鋼球を高さ30CrrLから繰り返し落下
させ、ひび割れが発生する回数および破壊回数を調べた
。In addition, in order to compare the resistance of steel fiber-reinforced concrete to cracking and chipping due to impact force with concrete that does not contain steel fibers, a 28-day-old bending test specimen was simply supported with a span of 45 cr IL, and the span center weight 7
.. In No. 5, 41 steel balls were repeatedly dropped from a height of 30 CrrL, and the number of times cracks occurred and the number of times they broke were investigated.
その結果、鋼繊維を混入しないコンクリートでは3回の
衝撃回数でひび割れが発生し、これと同時に破壊したが
、鋼繊維を混入したコンクリートでは41回の衝撃回数
でひび割れが発生し、146回で破壊するに至った。As a result, concrete without steel fibers cracked after 3 impacts and broke at the same time, but concrete with steel fibers cracked after 41 impacts and broke after 146 impacts. I ended up doing it.
しかして、らせん杭aの十分な貫入能力に必要な大きさ
のつば部1が、転石への衝突や無理な貫入等による割れ
や欠けに対して十分な耐久性を有していることがわかっ
た。Therefore, it has been found that the collar 1, which has a size necessary for sufficient penetration ability of the helical pile a, has sufficient durability against cracking and chipping due to collision with boulders, forced penetration, etc. Ta.
本発明のPCらせん杭aは、標準圧縮試験用供試体によ
る28日基準強度がσ28=750kg/d以上という
高強度の鋼繊維補強コンクリートを使用する。The PC helical pile a of the present invention uses high-strength steel fiber reinforced concrete whose 28-day standard strength is σ28 = 750 kg/d or more based on a standard compression test specimen.
又、PCらせん杭aは遠心力成型するので、十分な縮固
めと脱水により、さらに強度は20%程度増加する。Furthermore, since the PC spiral pile a is formed by centrifugal force, the strength can be further increased by about 20% through sufficient compaction and dewatering.
このような高強度コンクリートにおいては引張強度も当
然増加し、圧縮強度の約15分の1の引張強度を有して
いる。Such high-strength concrete naturally has an increased tensile strength, and has a tensile strength that is approximately one-fifteenth of its compressive strength.
さらに鋼繊維で補強することにより引張強度は約1.3
倍に増加する。Furthermore, by reinforcing with steel fiber, the tensile strength is approximately 1.3
increase twice.
さらに杭にトルクを作用させると杭の断面にはせん断力
が発生し、杭の外周に最も大きいせん断応力が発生する
。Furthermore, when torque is applied to the pile, shear force is generated in the cross section of the pile, and the largest shear stress is generated at the outer periphery of the pile.
杭の外周の表面をとり出すと、トルクにより純せん断応
力状態となっている。If you take out the outer surface of the pile, it will be in a state of pure shear stress due to the torque.
この場合のせん断応力をτとすると、主応力σ および
σ2は、
1)
σ1−−σ2−τ
となり、杭軸に対する主応力σ1の方向は、tan 2
ψ=■、ψ=45゜
となり、杭軸方向と45°の方向(こσ1−τの引張応
力が生じ、これに直交してσ2−−での圧縮応力が生ず
る。If the shear stress in this case is τ, the principal stresses σ and σ2 are: 1) σ1−−σ2−τ, and the direction of the principal stress σ1 with respect to the pile axis is tan 2
ψ=■, ψ=45°, and a tensile stress of σ1−τ is generated in a direction 45° with respect to the pile axis direction, and a compressive stress of σ2−− is generated perpendicular to this.
この主応力σ1がコンクリートの引張強度σtに達する
と引張応力に直交する方向にひび割れが発生すると考え
てよい。When this principal stress σ1 reaches the tensile strength σt of concrete, it can be considered that cracks occur in the direction perpendicular to the tensile stress.
すなわち、ひび割れが発生するせん断心力はτ二σtで
ある。That is, the shear core force at which cracks occur is τ2σt.
次に杭σ。Next is the pile σ.
(圧縮応力)のプレストレスを導入すると杭にトルクを
作用させたときの、杭の外周の表面の応力状態は、杭軸
方向にσ。When a prestress (compressive stress) is introduced and a torque is applied to the pile, the stress state on the outer surface of the pile is σ in the axial direction of the pile.
の圧縮応力とせん断心力τを同時に受ける組合せ応力状
態となり、この場合の主応力σ1およびσ2はとなり、
杭軸に対する主応力σ1の方向は、となる。The result is a combined stress state where the compressive stress and shear core force τ are simultaneously applied, and the principal stresses σ1 and σ2 in this case are as follows.
The direction of the principal stress σ1 with respect to the pile axis is as follows.
すなわち、杭軸方向とψの方向にσ1の引張応力が、こ
れに直交する方向にσ2の圧縮応力が生ずる。That is, a tensile stress of σ1 is generated in the direction of the pile axis and ψ, and a compressive stress of σ2 is generated in a direction orthogonal thereto.
この主応力σ1がコンクリートの引張強度σtに達する
とひび割れが発生すると考えてよいことになる。It can be considered that cracks will occur when this principal stress σ1 reaches the tensile strength σt of the concrete.
これにより、ひび割れが発生するせん断心力τcrは、 となり、杭軸に対するひび割れの方向は、となる。As a result, the shear core force τcr at which cracks occur is: The direction of the crack relative to the pile axis is .
本発明PCらせん杭aで用いる材令28日の基準残寒が
σ2a = 750 kgl−のコンクリートでは、遠
心力成型することにより、圧縮強度は約20%増加し、
σc = 900kg/cwt程度となる。For the concrete used in the PC spiral pile a of the present invention with a standard residual cold of σ2a = 750 kgl- at 28 days of age, the compressive strength increases by about 20% by centrifugal forming.
σc = approximately 900 kg/cwt.
これに対する引張強度は圧縮強度の約15分の1で、σ
t=60kgl−であり、鋼繊維で補強することにより
約1.3倍の引張強度σt =78 kg/cy?iが
得られる。The tensile strength for this is about one-fifteenth of the compressive strength, and σ
t = 60 kgl-, and by reinforcing with steel fiber, the tensile strength is approximately 1.3 times σt = 78 kg/cy? i is obtained.
この場合のひび割れが発生する時のせん断心力はプレス
トレスを導入しない場合、τcr−σt= 78 ky
//C1?Lとなるが、100kg/criYのプレス
トレスを導入すると、σo= 100 kglcrtt
を用いて、rcr = 118 kglc11t、とな
り、ひび割れの方向はψ、−25°となる。In this case, when no prestress is introduced, the shear core force when cracking occurs is τcr−σt=78 ky
//C1? However, if a prestress of 100 kg/criY is introduced, σo = 100 kglcrtt
Using , rcr = 118 kglc11t, and the direction of the crack is ψ, -25°.
また、200 kglcaのプレストレスを導入すると
τcr = 147kg/cr?rとなり、ひび割れの
方向は、18°となる。Also, if a prestress of 200 kglca is introduced, τcr = 147kg/cr? r, and the direction of the crack is 18°.
すなわち、100kg/−のプレストレスを杭に導入す
ると、ひび割れが発生するトルクは、プレストレスを導
入しない場合の約1.5倍に、200 kFl/cri
tのプレストレスに対しては約1.9倍となる。In other words, when a prestress of 100 kg/- is introduced into a pile, the torque that causes a crack is 200 kFl/cri, which is approximately 1.5 times that when no prestress is introduced.
It is approximately 1.9 times the prestress of t.
また、ひび割れの方向は、プレストレスを導入しない場
合、杭軸に対して45°であるが、プレストレスを導入
することにより杭軸方向に傾き、ひび割れの角度が小さ
くなる。In addition, the direction of the crack is 45° with respect to the pile axis when prestress is not introduced, but by introducing prestress, the direction of the crack is tilted toward the pile axis, and the angle of the crack becomes smaller.
これらのことにより、プレストレスの導入応力が大きい
ほどひび割れが発生するトルクを増大させることができ
、ひび割れの角度を杭軸に対して小さくすることができ
る。By these means, the larger the stress introduced by prestress is, the more the torque that causes cracks can be increased, and the angle of cracks can be made smaller with respect to the pile axis.
これにより、トルクを与えて回転させ、土中に貫入する
PCらせん杭においては、高強度コンクリートを用いて
プレストレスを大きくした方が有利である。For this reason, it is advantageous to use high-strength concrete to increase the prestress in PC helical piles that are rotated by applying torque and penetrate into the soil.
またらせん鉄筋5bをひび割れ方向と直角に近く配筋す
ることにより、さらにひび割れが発生するトルクを増大
させることができる。Moreover, by arranging the spiral reinforcing bars 5b close to perpendicular to the direction of cracking, it is possible to further increase the torque that causes cracking.
次に、外径300mrn、肉厚60關の従来のPC杭と
長さ1.2mの本発明のPCらせん杭aでねじり試験を
行なったが下表の如き結果であった。Next, a torsion test was conducted using a conventional PC pile with an outer diameter of 300 mrn and a wall thickness of 60 mrn and a PC helical pile a of the present invention with a length of 1.2 m, and the results were as shown in the table below.
鋼繊維補強コンクリートで得られる程度のひび割れねじ
りモーメントを有していれば、杭基礎を必要とする地盤
へのねじりによる貫入は安全率を考慮しても十分可能で
ある。As long as it has a cracking torsional moment of the same degree as that obtained with steel fiber reinforced concrete, torsional penetration into the ground that requires a pile foundation is sufficiently possible, even taking into account the safety factor.
本発明の太きいねじり強度を有するPCらせん杭のつば
部1の大きさ、形状およびピッチを変化させることによ
り、砂質土から粘性土に至るまで、さらにゆるんだ地盤
から硬い地盤に至るまであらゆる条件に対してもトルク
により回転を与えて土中に貫入することが可能である。By changing the size, shape, and pitch of the collar part 1 of the PC helical pile with high torsional strength of the present invention, it can be used on all types of soil, from sandy soil to clayey soil, and from loose soil to hard ground. Even under certain conditions, it is possible to penetrate the soil by applying rotation with torque.
すなわち、ねじりによる貫入実験によると、つばの高さ
が大きく、ピンチが大きい場合には土の排出量は多いが
、杭をねじり貫入させるに必要なトルクは小さく硬いし
まった土に適している。In other words, according to torsional penetration experiments, when the height of the brim is large and the pinch is large, a large amount of soil is ejected, but the torque required to twist the pile to penetrate is small and suitable for hard soil.
このような場合には、貫入された杭のつば部の下側に空
隙が生じ摩擦杭としての支持力の減少が危惧される場合
には杭の中空部よりモルタルの圧入等により杭先端より
この空隙をモルタルで充填することにより、より大きい
支持力が期待できる。In such a case, if there is a gap under the collar of the pile that has been penetrated and there is a concern that the bearing capacity as a friction pile will decrease, this gap should be removed from the tip of the pile by pressing mortar into the hollow part of the pile. By filling it with mortar, greater supporting capacity can be expected.
つばの高さが小さく、ピッチが小さい場合には、土の排
出量は少く他の無振動無騒音工法のように地盤破壊やゆ
るみを生ずることなくむしろ地盤を締固めさらに杭自身
にフランジを有するため地盤との摩擦を極端に増大させ
ることができるため、大きい支持力が期待できる。When the height of the brim is small and the pitch is small, the amount of soil discharged is small, and unlike other vibration-free and noise-free construction methods, it does not cause ground destruction or loosening, but rather compacts the ground.Furthermore, the pile itself has a flange. Therefore, it is possible to dramatically increase the friction with the ground, so a large supporting capacity can be expected.
このような場合にはねじり貫入させるのに必要なトルク
は太きくゆるんだ地盤に適している。In such cases, the torque required for torsional penetration is suitable for thick, loose ground.
また本PCらせん杭aを軟弱地盤に貫入することにより
、無振動・無騒音で地盤の改良を行うことができる。Furthermore, by penetrating the present PC helical pile a into soft ground, the ground can be improved without vibration or noise.
なお実公昭47−29681号公報のようにらせん状つ
は部の上面角と下面角が同一角度に形成されている場合
は、杭を初めは貫入することができてもある程度貫入が
進むと空回り状態になってそれ以上進入することが非常
に困難だが、本発明では第3図に示すようにらせん状つ
ば部1の上面角αと下面角βとが相互に異なるように形
成されているため最後までねじり貫入が完了でき大きな
支持力が得られ施工も安全、確実なものである。In addition, if the top and bottom angles of the spiral groove are formed at the same angle as in Japanese Utility Model Publication No. 47-29681, even if the pile is able to penetrate at first, it will become idle after penetrating to a certain extent. However, in the present invention, as shown in FIG. 3, the upper surface angle α and the lower surface angle β of the spiral collar portion 1 are formed to be different from each other. The torsional penetration can be completed to the end, providing a large supporting capacity, and the construction is safe and reliable.
図面は本発明の実施例であり、第1図はPCらせん杭の
一部切欠状態を示す要部の正面図、第2図は要部の正面
図、第3図はっは部の断面図である。
1・・・・・・つば部、2・・・・・・コンクリート杭
、3・・・・・・鋼繊維。The drawings show examples of the present invention, and Fig. 1 is a front view of the main part showing a partially cut-out state of the PC spiral pile, Fig. 2 is a front view of the main part, and Fig. 3 is a cross-sectional view of the part marked with . It is. 1...Brim portion, 2...Concrete pile, 3...Steel fiber.
Claims (1)
ん状つげ部の上面角と下面角が相互に異なるように形成
したことを特徴とするねじり貫入式PCらせん杭。1. A torsion-penetration type PC helical pile having a helical collar, characterized in that the top and bottom angles of the helical boxwood part are formed to be different from each other.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54140585A JPS5854211B2 (en) | 1979-10-31 | 1979-10-31 | Torsion penetrating type PC spiral pile |
GB8001909A GB2062073B (en) | 1979-10-31 | 1980-01-21 | Pre-stressed concrete spiral pile |
IT48051/80A IT1127376B (en) | 1979-10-31 | 1980-02-29 | DRIVING PROCEDURE FOR SCREWING OF POLES WITH PORTLAND CONCRETE ELECOIDAL SPIRAL AND THE SAME POLES |
FR8009960A FR2468696A1 (en) | 1979-10-31 | 1980-05-05 | METHOD FOR PRESSING PRECONTRATED CONCRETE HELICOIDAL CONCRETE PILES BY TORSION PENETRATION AND PRECONTRATED CONCRETE HELICOID PILES FOR CARRYING OUT THE PROCESS |
NL8002777A NL8002777A (en) | 1979-10-31 | 1980-05-13 | A method for driving a pile of prestressed concrete into the ground, as well as a pile of prestressed concrete for use in this method. |
DE19803041125 DE3041125A1 (en) | 1979-10-31 | 1980-10-31 | METHOD FOR THE ROTARY DRIVING IN OF CONCRETE CONCRETE BORED PILE AND CAST CONCRETE BORED PILE FOR THIS |
DE19808029098U DE8029098U1 (en) | 1979-10-31 | 1980-10-31 | TAPERED CONCRETE DRILL PILE TO DRIVE IN TURNING |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP54140585A JPS5854211B2 (en) | 1979-10-31 | 1979-10-31 | Torsion penetrating type PC spiral pile |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5719417A JPS5719417A (en) | 1982-02-01 |
JPS5854211B2 true JPS5854211B2 (en) | 1983-12-03 |
Family
ID=15272105
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP54140585A Expired JPS5854211B2 (en) | 1979-10-31 | 1979-10-31 | Torsion penetrating type PC spiral pile |
Country Status (6)
Country | Link |
---|---|
JP (1) | JPS5854211B2 (en) |
DE (2) | DE3041125A1 (en) |
FR (1) | FR2468696A1 (en) |
GB (1) | GB2062073B (en) |
IT (1) | IT1127376B (en) |
NL (1) | NL8002777A (en) |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58185627U (en) * | 1982-06-07 | 1983-12-09 | 丹羽 友道 | Screw-in PC concrete pile |
NL8301556A (en) * | 1983-05-03 | 1984-12-03 | Pieter Faber | CONCRETE FOUNDATION POLE, APPARATUS FOR MANUFACTURING AND APPARATUS FOR GROUNDING THEREOF. |
DE3521627A1 (en) * | 1985-06-15 | 1986-12-18 | Strabag Bau-AG, 5000 Köln | Method of producing an inclined composite grouted pile |
DE3617025A1 (en) * | 1986-05-21 | 1987-11-26 | Delmag Maschinenfabrik | PRE-PREPARED CONCRETE PILE AND METHOD AND DEVICE FOR ITS PLACING INTO THE GROUND |
GB8816849D0 (en) * | 1988-07-15 | 1988-08-17 | Helix Reinforcements Ltd | Improvements relating to earth reinforcement |
DE3827703A1 (en) * | 1988-08-16 | 1990-02-22 | Bilfinger Berger Bau | Supporting elements for forming foundation bodies |
DE9007428U1 (en) * | 1990-06-29 | 1991-09-19 | Pfleiderer Verkehrstechnik GmbH & Co KG, 8430 Neumarkt | Reinforced concrete foundation pile |
DE19743415A1 (en) * | 1997-10-01 | 1999-06-10 | Josef Dipl Ing Behrens | Self boring concrete pile |
NL1007476C2 (en) | 1997-11-07 | 1999-05-10 | Peter Cornelis Peters | Method for manufacturing a reinforced elongated longitudinal load-bearing concrete product, and a pile. |
GB2362672A (en) * | 2000-05-22 | 2001-11-28 | Laing Rail Ltd | Conical foundation pile having a screw thread for urging the pile into the ground |
FR2915498B1 (en) | 2007-04-25 | 2011-09-30 | Jean Marie Renovation | DEVICE AND METHOD FOR ESTABLISHING A FOUNDATION HELICOIDAL MICROPY |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE255282C (en) * | ||||
GB252975A (en) * | 1925-10-23 | 1926-06-10 | Alexander George Rotinoff | Improvements relating to reinforced concrete |
DE1634356A1 (en) * | 1966-09-23 | 1970-06-18 | Feidner Dipl Ing Erich | Pile foundations for buildings as well as methods and tools for their production |
US3986885A (en) * | 1971-07-06 | 1976-10-19 | Battelle Development Corporation | Flexural strength in fiber-containing concrete |
SE7712323L (en) * | 1976-11-02 | 1978-05-03 | Gillen Jr William Francis | THREADED CONCRETE POLE |
-
1979
- 1979-10-31 JP JP54140585A patent/JPS5854211B2/en not_active Expired
-
1980
- 1980-01-21 GB GB8001909A patent/GB2062073B/en not_active Expired
- 1980-02-29 IT IT48051/80A patent/IT1127376B/en active
- 1980-05-05 FR FR8009960A patent/FR2468696A1/en not_active Withdrawn
- 1980-05-13 NL NL8002777A patent/NL8002777A/en not_active Application Discontinuation
- 1980-10-31 DE DE19803041125 patent/DE3041125A1/en not_active Withdrawn
- 1980-10-31 DE DE19808029098U patent/DE8029098U1/en not_active Expired
Also Published As
Publication number | Publication date |
---|---|
NL8002777A (en) | 1981-06-01 |
DE8029098U1 (en) | 1981-11-26 |
JPS5719417A (en) | 1982-02-01 |
IT8048051A0 (en) | 1980-02-29 |
GB2062073B (en) | 1983-03-16 |
FR2468696A1 (en) | 1981-05-08 |
GB2062073A (en) | 1981-05-20 |
IT1127376B (en) | 1986-05-21 |
DE3041125A1 (en) | 1981-05-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS5854211B2 (en) | Torsion penetrating type PC spiral pile | |
Salau et al. | Characteristic strength of concrete column reinforced with bamboo strips | |
CN1609346A (en) | Superposed pile structure and construction method | |
CN107605103A (en) | A kind of FRP tendons reinforcing bar composite strengthening ECC/ concrete combination columns | |
CN201730091U (en) | Cast-in-situ pile | |
CN109338874A (en) | The compound pillarwork of bridge and construction technology based on orientation ECC | |
JP2021017738A (en) | Reinforcement structure and reinforcement method of masonry construction structure | |
Hadi | Reinforcing concrete columns with steel fibres | |
CN112081098B (en) | Rock breaking steel pipe pile for temporary support | |
Syiemiong et al. | Flexural behavior of low strength masonry wallettes strengthened with welded wire mesh | |
CN101153493A (en) | Short beam-anchor rod composite structure for preventing and treating side slope shallow layer collapse | |
JP2000017615A (en) | Prestressed concrete bridge pier | |
CN205444176U (en) | Sedimentation pipe stake is prevented in explosion slip casting | |
CN210766868U (en) | Reinforcing structure for existing gravity retaining wall | |
Herlihy | Precast concrete floor support and diaphragm action | |
JP2000336945A (en) | Construction method for non-reinforced and non-anchor earthquake-resistant reinforced wall | |
JP3759995B2 (en) | Concrete structure | |
Parameswaran et al. | Current research and applications of fiber reinforced concrete composites in India | |
KR200402857Y1 (en) | A concrete pile the head reinforcement utilized by steel pipe and cohesion construction with foundation concrete | |
CN111502084A (en) | Combined steel plate wall connecting structure | |
CN218843067U (en) | Prestressed concrete pipe pile | |
YUASA | The Transition of Demolition Techniques for Reinforced Concrete Structure in Japan | |
CN213596965U (en) | Prefabricated reinforced concrete soil nailing pile | |
CN216974265U (en) | The external ring beam is connected with the original structure wall body by adopting L-shaped anchor bars | |
CN219343214U (en) | Spiral soil nail |