JPS58205523A - Supply device of oxygen enriched air - Google Patents

Supply device of oxygen enriched air

Info

Publication number
JPS58205523A
JPS58205523A JP8946582A JP8946582A JPS58205523A JP S58205523 A JPS58205523 A JP S58205523A JP 8946582 A JP8946582 A JP 8946582A JP 8946582 A JP8946582 A JP 8946582A JP S58205523 A JPS58205523 A JP S58205523A
Authority
JP
Japan
Prior art keywords
oxygen
air
enriched air
amount
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8946582A
Other languages
Japanese (ja)
Inventor
Shiro Asakawa
浅川 史朗
Yukihiro Saito
幸広 斉藤
Yozo Yoshino
吉野 庸三
Hiroyuki Mitsutomi
光富 博之
Terushi Shimizu
清水 昭史
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Panasonic Holdings Corp
Original Assignee
Osaka Gas Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP8946582A priority Critical patent/JPS58205523A/en
Publication of JPS58205523A publication Critical patent/JPS58205523A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To economize charging energy for the entire part of a supply device for oxygen enriched air and to reduce the contamination of a filter by circulating part of oxygen lean air to a module accommodating chamber. CONSTITUTION:When a fan 4 is operated, the outside air passes through a filter 2 so as to be removed of dust and enters a module accommodating chamber 12. When an evacuation pump 3 is operated, the air in the chamber 12 is withdrawn through oxygen selective permeable membranes into modules 1 having said membranse on the surface. This air is discharged as oxygen enriched air through the discharge port 13 of the pump 3 past a header 8. On the other hand, the remaining oxygen lean air in the chamber 12 is discharged through a discharge port 6 by the fan 4, and part of the air is returned through a by-pass pipe 5 into the chamber 12. A control valve 7 for the flow rate of oxygen lean air and control valves 9-11 for the concn. and flow rate of the oxygen enriched air are provided.

Description

【発明の詳細な説明】 本発明は、酸素選択性透過膜を表面に有する酸素選択性
透過膜モジュールを用いた、酸素富化空気供給装置に関
する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen-enriched air supply device using an oxygen-selective permeable membrane module having an oxygen-selective permeable membrane on its surface.

酸素富化空気とは、通常空気(酸素濃度21vo1%)
よりも、酸素濃度比率の高い空気を意味し、燃焼用空気
、呼吸器系疾患者の治療、汚泥曝気処理、その他の産業
用と、広く利用しうるものである。
Oxygen-enriched air is normal air (oxygen concentration 21vo1%)
It means air with a higher oxygen concentration ratio than that of air, and can be widely used for combustion air, treatment of people with respiratory disorders, sludge aeration treatment, and other industrial uses.

この酸素富化空気としては、上記目的などに用いられる
場合、その酸素濃度としては比較的低濃度、例えば燃焼
用では23〜30%程度で良いが、低コストで得られる
ことが望まれる。このような酸素富化空気は、高純度酸
素を通常空気で稀釈することによって容易に得ることが
出来るが、従来の酸素源、すなわち徐冷液化法による酸
素やゼオライトによる吸着分離、いわゆるPSA法なと
による酸素を用いると、コスト、安全性などの問題点が
多く実用化を阻んでいる。このため近年、有機高分子の
膜を用い、空気より直接酸素を濃縮分離する試みが種々
検討されている。この方法は、空気の組成である酸素と
窒素に対し、窒素よりも酸素の方が透過し易い、いわゆ
る酸素選択性透過膜を用い、この膜の両側に適当な圧力
差を生じさせる。すると空気は、この膜を介して透過す
る1、この時、酸素の方が窒素より透過し易いため、膜
を透過して来た空気は、酸素濃度が元の通常空気よりも
濃度が+!:h <なった酸素富化空気となる。実際的
な態様としては、前記酸素選択性透過膜を一定の形にモ
ジュール化し、膜面の一方を空気に暴露させ、他の一方
it気密性を保たせて、例えば減圧ポンプ等に接続させ
る。減圧ポンプを作動させると、膜表面から空気がとり
こまれ、モジュール内部に侵入し、減圧ポンプを経て、
減圧ポンプの吐出口より酸素富化空気となって吐出する
。このようなシステムのひとつの具体的な構成としては
、複数枚のモジュールを収納したモジュール室、各モジ
ュールより透過気体を収集する配管、この配管と接続さ
れた減圧ポンプおよび流量を調節するため取りつけられ
た弁類より形成される。その他□ 必要に応じて、各種調整機構がこれに付加される。
When this oxygen-enriched air is used for the above-mentioned purposes, the oxygen concentration may be relatively low, for example, about 23 to 30% for combustion, but it is desired that it be obtained at low cost. Such oxygen-enriched air can be easily obtained by diluting high-purity oxygen with normal air. When oxygen is used, there are many problems such as cost and safety that hinder its practical application. For this reason, in recent years, various attempts have been made to directly concentrate and separate oxygen from air using organic polymer membranes. This method uses a so-called oxygen-selective permeable membrane in which oxygen and nitrogen, which are the constituents of air, permeate more easily than nitrogen, and creates an appropriate pressure difference on both sides of the membrane. Then, air permeates through this membrane 1. At this time, oxygen permeates more easily than nitrogen, so the air that has passed through the membrane has a higher oxygen concentration than the original normal air! : h < becomes oxygen-enriched air. In a practical embodiment, the oxygen-selective permeable membrane is modularized into a certain shape, one membrane surface is exposed to air, the other membrane is kept airtight, and connected to, for example, a vacuum pump. When the vacuum pump is activated, air is drawn in from the membrane surface, enters the inside of the module, passes through the vacuum pump, and
Oxygen-enriched air is discharged from the discharge port of the vacuum pump. One specific configuration of such a system includes a module room that houses multiple modules, piping that collects permeate gas from each module, a vacuum pump connected to this piping, and a vacuum pump installed to adjust the flow rate. It is formed from valves. Others □ Various adjustment mechanisms will be added to this as necessary.

前記モジュール室には、空気取入れ部に、空気中の塵埃
などの粒子を取り除くために、適当なフィルターを設置
することが望捷しく、またモジュール表面に空気の流れ
をつくるために、送風機(吸気型、排気型いずれでもよ
く、また併用しても良い)を取り付け、フィルターを介
して新鮮な空気をモジュール室に導入し、モジュール部
によって酸素富化空気を取り除かれた、残余の窒素富化
空気を排出することが望捷しい。このような構成によっ
て、酸素富化空気は、十分生産しうるものであるが、前
記した空気中の塵埃は、予想以上に多く、シばしばフィ
ルターの清掃を要し、また、このフィルターでの圧力損
失に抗して送風するだめの送風エネルギ〜は、決して小
さいものでは無い。
It is desirable to install a suitable filter in the air intake section of the module room to remove dust and other particles from the air, and also to install a blower (air intake) in order to create an air flow over the module surface. fresh air is introduced into the module room through a filter, and the remaining nitrogen-enriched air is removed by the module section. It is desirable to eliminate the With this configuration, sufficient oxygen-enriched air can be produced, but the amount of dust in the air is higher than expected, and the filter often requires cleaning. The amount of energy needed to blow air against the pressure loss is not small.

本発明は、このような欠点を改良するもので、フィルタ
ーの清掃を少くシ、送風ファンの消費エネルギーを少く
し、システム全体として、より高能率の酸素選択性透過
方式による酸素富化空気供給装置を提供するもの1、で
ある。
The present invention aims to improve these drawbacks by reducing the amount of filter cleaning required, reducing the energy consumption of the blower fan, and providing an oxygen-enriched air supply device using an oxygen-selective permeation method that achieves higher efficiency as a whole system. 1.

すなわち、本発明は、酸素選択性透過膜を表面に有する
酸素選択性透過膜モジュールを用い、これと減圧ポンプ
系を用いて酸素富化空気を供給する装置において、モジ
ー−ルを格納する部屋の一端が、塵埃を取り除くフィル
ターを介して外部に開放しており、他の一端が酸素貧化
空気の排出]lとなり、酸素貧化空気の一部が、モジュ
ール格納室に帰還されるようにされた酸素富化空気供給
装置であり□、更に、前記酸素貧化空気のモジュール格
納室への帰還割合が1、生成される酸素富化空気量の、
少くとも6倍を系外に排出した残余の隼であることを特
徴とするものである。
That is, the present invention uses an oxygen-selective permeable membrane module having an oxygen-selective permeable membrane on its surface, and uses this and a vacuum pump system to supply oxygen-enriched air. One end is open to the outside through a filter that removes dust, and the other end is used to exhaust oxygen-depleted air, and a portion of the oxygen-depleted air is returned to the module storage room. The oxygen-enriched air supply device is an oxygen-enriched air supply device □, and further, the rate of return of the oxygen-depleted air to the module storage chamber is 1, and the amount of oxygen-enriched air generated is
It is characterized in that it is the remaining Hayabusa that has been discharged out of the system at least six times as much.

以下図面を月1いて本発明の実施例について詳述する。Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例における酸素富化供給装置の
全体図で、1は表面に酸素選択性透過膜を有するモジー
−ル、2はフィルターである。
FIG. 1 is an overall view of an oxygen enrichment supply device according to an embodiment of the present invention, in which 1 is a module having an oxygen-selective permeable membrane on its surface, and 2 is a filter.

4は送風機で送風機4を作動させると、外部の空気はフ
ィルター2を通って塵埃が除かれ、モジュール格納室1
2に入る。減圧ポンプ3を作動させると、モジー−ル格
納室12内の空気はモジュール1内部に酸素選択性透過
膜を通って引きこまれ1、ラダ−T8を通って減圧ポン
プ3の吐出口13より酸素富化空気として吐出される3
)一方、モジュール格納室12内の残余の酸素貧化空気
は、送風機4によって排出口6より排出される。この時
、この酸素貧化空気の一部をバイパスパイプ6を経てモ
ジュール格納室12に戻す。7はこの帰還させる酸素貧
化空気量の調節弁である。9,10゜11は、生成され
る酸素富化空気の酸素濃度、流量などを調節する弁であ
る。
4 is a blower; when the blower 4 is activated, the outside air passes through the filter 2, removes dust, and enters the module storage chamber 1.
Enter 2. When the vacuum pump 3 is operated, the air in the module storage chamber 12 is drawn into the module 1 through the oxygen-selective permeable membrane 1, and then passes through the ladder T8 to the discharge port 13 of the vacuum pump 3. 3 discharged as enriched air
) On the other hand, the remaining oxygen-depleted air in the module storage chamber 12 is discharged from the exhaust port 6 by the blower 4. At this time, a portion of this oxygen-depleted air is returned to the module storage chamber 12 via the bypass pipe 6. Reference numeral 7 denotes a control valve for controlling the amount of oxygen-depleted air to be returned. 9, 10° 11 are valves that adjust the oxygen concentration, flow rate, etc. of the generated oxygen-enriched air.

このような構成において、弁7により、バイパスパイプ
6を経てモジュール格納室12に戻る空気量を変化させ
、得られる酸素富化空気の酸素濃度を調べた結果を第2
図に示す。この場合フィルター2を通ってモジュール格
納室12に流入してくる総空気量と減圧ポンプ3より吐
出される酸素富化空気量によって、到達酸素濃度は異っ
てくる。
In such a configuration, the amount of air returning to the module storage chamber 12 via the bypass pipe 6 is changed by the valve 7, and the results of examining the oxygen concentration of the oxygen-enriched air obtained are
As shown in the figure. In this case, the achieved oxygen concentration differs depending on the total amount of air flowing into the module storage chamber 12 through the filter 2 and the amount of oxygen-enriched air discharged from the decompression pump 3.

第2図のたて軸は酸素富化空気中の酸素濃度を、横軸は
帰還空気量を示す。図中曲線21は流入総空気量と酸素
富化空気との流量比が10:1の場合を、曲線22は流
入総空気量と酸素富化空気との流量比が20:1の場合
を示し、いずれの場合も膜材料として酸素透過係数と窒
素透過係数の比が約2であるポリジメメチルシロキサン
共重合体を用い、膜両面の圧力比が6となるような減圧
度にしたときの特性である。バイパスパイプ6からの帰
還がない場合、前者、すなわち流量比が10=1である
場合には到達酸素濃度は31.6チであり、酸素貧化空
気の総排出量の約26%の帰還量迄は帰還量を増加させ
るにつれて到達酸素濃度は徐々に低下するが酸素富化空
気としては実用上十分である。しかし帰還量が約26チ
を越えると、モジュール格納室12内の酸素濃度は大き
く低下し到達酸素濃度も大きく低下する。一方、後者、
すなわち流量比が20:1である場合には、バイパスパ
イプ6からの帰還がないときは到達酸素濃度は32.5
 %であり、酸素貧化空気をバイパスパイプ6より帰還
させると、帰還量が約50%までは到達酸素濃度は徐々
に低下するが酸素富化空気として実用的には十分である
。しかし、約60チを越えるとやはりモジュール格納室
12内の酸素含量が大きく低下し、得られる酸素富化空
気の酸素濃度も低下してし捷うので好ましくない。
The vertical axis in FIG. 2 indicates the oxygen concentration in oxygen-enriched air, and the horizontal axis indicates the amount of return air. Curve 21 in the figure shows the case where the flow rate ratio between the total inflow air amount and oxygen-enriched air is 10:1, and curve 22 shows the case where the flow rate ratio between the total inflow air amount and oxygen-enriched air is 20:1. In both cases, a polydimemethylsiloxane copolymer with a ratio of oxygen permeability coefficient to nitrogen permeability coefficient of approximately 2 is used as the membrane material, and the characteristics are obtained when the degree of vacuum is set such that the pressure ratio on both sides of the membrane is 6. It is. If there is no return from the bypass pipe 6, in the former case, that is, when the flow rate ratio is 10=1, the achieved oxygen concentration is 31.6 cm, and the return amount is about 26% of the total amount of oxygen-depleted air discharged. Up to this point, the oxygen concentration reached gradually decreases as the amount of return is increased, but it is sufficient for practical use as oxygen-enriched air. However, when the amount of feedback exceeds about 26 inches, the oxygen concentration in the module storage chamber 12 decreases significantly, and the oxygen concentration reached also decreases significantly. On the other hand, the latter
In other words, when the flow rate ratio is 20:1, the reached oxygen concentration is 32.5 when there is no return from the bypass pipe 6.
%, and when the oxygen-depleted air is returned through the bypass pipe 6, the oxygen concentration reached gradually decreases until the return amount reaches about 50%, but it is sufficient for practical use as oxygen-enriched air. However, if it exceeds about 60 inches, the oxygen content in the module storage chamber 12 will decrease significantly, and the oxygen concentration of the obtained oxygen-enriched air will also decrease, which is not preferable.

このように、モジュール格納室12に帰還させ得る酸素
貧化空気の量は、流入総空気量と得られる酸素富化空気
との比によって変わり、この比率が大きい程、帰還し得
る酸素貧化空気量も増大しうる。そこで総空気量と酸素
富化空気量との量比を変化させ、酸素貧化空気の系外へ
の排出量とモジー−ル格納室への帰還量とを変えて、実
質的に生成される酸素富化空気中の酸素濃度が、一定レ
ベル以上に保たれるような条件を測定した結果、酸素貧
化空気の、系外への排出量が、生成される酸素富化空気
の量に対し、少くとも5倍以上、好ましくは7.5倍以
上になるよう如調整し、残余の酸素貧化空気をモジュー
ル格納室に帰還すればよいことが判明した。
In this way, the amount of oxygen-depleted air that can be returned to the module storage chamber 12 varies depending on the ratio of the total amount of incoming air to the oxygen-enriched air obtained, and the larger this ratio is, the more oxygen-depleted air that can be returned. The amount can also be increased. Therefore, by changing the ratio between the total amount of air and the amount of oxygen-enriched air, and changing the amount of oxygen-depleted air discharged outside the system and the amount returned to the module storage room, the amount of oxygen-depleted air that is substantially generated is changed. As a result of measuring conditions under which the oxygen concentration in oxygen-enriched air is maintained above a certain level, the amount of oxygen-depleted air discharged outside the system is relative to the amount of oxygen-enriched air generated. It has been found that the remaining oxygen-depleted air can be returned to the module storage chamber by adjusting the amount to be at least 5 times or more, preferably 7.5 times or more.

以上のごとく酸素貧化空気の一部を帰還させると、この
空気は、既にフィルター2によって、塵埃のとり除かれ
た清浄な空気であり、また、フィルター2を通って流入
させる新鮮空気量をてい減出来るので、結果的に、空気
を流入させるための送風機4の消費エネルギーは少くな
り、しかもフィルター2の汚染も少くなる。
When a part of the oxygen-depleted air is returned as described above, this air is already clean air from which dust has been removed by the filter 2, and the amount of fresh air flowing through the filter 2 is As a result, the energy consumption of the blower 4 for introducing air is reduced, and the contamination of the filter 2 is also reduced.

以−トのように、本発明は酸素選択性透過膜を表面に有
する酸素選択性透過膜キジュールに減圧ポンプ系を接続
して、酸素選択性透過膜を通過した酸素富化空気を得る
酸素富化空気供給装置において、従来系外に排出させて
いた酸素貧化空気の一部をモジュール格納室に帰還させ
て再利用するようにし、た酸素富化空気供給装置で、酸
素富化空気供給装置全体としての投入エネルギーを節約
し、かつフィルターの汚染も少なくすることが出来て工
業的に非常に有効である。
As described above, the present invention connects a vacuum pump system to an oxygen-selective permeable membrane having an oxygen-selective permeable membrane on its surface to obtain oxygen-enriched air that has passed through the oxygen-selective permeable membrane. In the oxygen-enriched air supply system, part of the oxygen-depleted air that was conventionally discharged outside the system is returned to the module storage room and reused. It is industrially very effective because it saves the overall input energy and reduces filter contamination.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実鳩例における酸素富化空気供給装
置の概略構成図、第2図は本発明による酸素富化空気供
給装置の酸素貧化空気帰還量と到達酸素濃度との関係を
示す特性図である1)1・・・・・・モジュール、2・
・・・・・フィルタ啼、3・0・・・減圧ポンプ、4・
・・・・・送風機、5・−・・命・バイパスパイプ、6
・・・・・・排出口、7,9,10゜11・・・・・・
調節弁、8・■・・・ヘッダー、12・・・・・・モジ
ュール格納室。
Fig. 1 is a schematic configuration diagram of an oxygen-enriched air supply device according to an example of the present invention, and Fig. 2 is a relationship between the oxygen-depleted air return amount and the achieved oxygen concentration of the oxygen-enriched air supply device according to the present invention. 1) 1...Module, 2.
...filter, 3.0...reducing pump, 4.
...Blower, 5...Life/bypass pipe, 6
...Discharge port, 7,9,10°11...
Control valve, 8... Header, 12... Module storage chamber.

Claims (2)

【特許請求の範囲】[Claims] (1)酸素選択性透過膜を表面に有する酸素選択性透過
膜モジュールと、除塵フィルターを介して外部に開放し
た開放端を有し、前記酸素選択性透過膜モジュールを格
納するモジュール格納室と、前記酸素選択性透過膜モジ
ュールに連結された減圧ポンプ系と、前記モジュール格
納室より酸素貧化空気を排出させる手段と、排出された
酸素貧化空気の一部を前記モジュール格納室に帰還させ
る手段とを備えたことを4.j、徴とする酸素富化空気
供給装置。
(1) an oxygen-selective permeable membrane module having an oxygen-selective permeable membrane on its surface; and a module storage chamber that stores the oxygen-selective permeable membrane module and has an open end opened to the outside through a dust removal filter; A vacuum pump system connected to the oxygen-selective permeable membrane module, means for discharging oxygen-depleted air from the module storage chamber, and means for returning a portion of the exhausted oxygen-depleted air to the module storage chamber. 4. j. Oxygen-enriched air supply device.
(2)酸素貧化空気の帰還針が、生成される酸素富化空
気量の少くとも6倍の童の酸素富化空気を系外に排出し
た残余の縫であると・とを特徴とする特許請求の範囲第
1項記載の酸素富化空気供給装置。
(2) The return needle for the oxygen-depleted air is a residual stitch from which at least six times the amount of oxygen-enriched air generated is discharged from the system. An oxygen-enriched air supply device according to claim 1.
JP8946582A 1982-05-26 1982-05-26 Supply device of oxygen enriched air Pending JPS58205523A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8946582A JPS58205523A (en) 1982-05-26 1982-05-26 Supply device of oxygen enriched air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8946582A JPS58205523A (en) 1982-05-26 1982-05-26 Supply device of oxygen enriched air

Publications (1)

Publication Number Publication Date
JPS58205523A true JPS58205523A (en) 1983-11-30

Family

ID=13971452

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8946582A Pending JPS58205523A (en) 1982-05-26 1982-05-26 Supply device of oxygen enriched air

Country Status (1)

Country Link
JP (1) JPS58205523A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205603A (en) * 1985-03-08 1986-09-11 Teijin Ltd Oxygen enriching device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61205603A (en) * 1985-03-08 1986-09-11 Teijin Ltd Oxygen enriching device
JPH03325B2 (en) * 1985-03-08 1991-01-07 Teijin Ltd

Similar Documents

Publication Publication Date Title
US20080173175A1 (en) Oxygen humidifier
JPS5841891B2 (en) A device that supplies oxygen-rich air
US3930813A (en) Process for producing nitrogen dioxide-free oxygen-enriched gas
US7601202B2 (en) Method and device for reducing the carbon dioxide concentration in air
CA2542525C (en) Oxygen humidifier
JPS6214066B2 (en)
JPS58205523A (en) Supply device of oxygen enriched air
WO2020162228A1 (en) Air purification system
CN110906490A (en) Oxygen-enriched carbon dioxide-removing fresh air system with waste heat recovery function
JPH0829215B2 (en) Air conditioner
JPH06105873A (en) Oxygen tent
CN211822957U (en) Oxygen-enriched carbon dioxide-removing fresh air system with waste heat recovery function
JPS5987019A (en) Oxygen enriching apparatus
JPH0213452Y2 (en)
JP2001000553A (en) Oxygen thickening device for oxygen therapy
JPH04922B2 (en)
JP3596292B2 (en) Nitrogen enrichment equipment
JPH0679127A (en) Air cleaning apparatus and driving method thereof
JPS62125823A (en) Oxygen-enriching membrane membran unit
JPH0475841B2 (en)
JPH0623218A (en) Clean room
JPS60131805A (en) Oxygen enricher
JPS63216467A (en) Oxygen enriching apparatus for fermentation tank
JPH0474702A (en) Enrichment of oxygen in room
JPH01111429A (en) Oxygen-enriching apparatus