JPS5819169A - Controlling method for pwm control converter - Google Patents

Controlling method for pwm control converter

Info

Publication number
JPS5819169A
JPS5819169A JP56115209A JP11520981A JPS5819169A JP S5819169 A JPS5819169 A JP S5819169A JP 56115209 A JP56115209 A JP 56115209A JP 11520981 A JP11520981 A JP 11520981A JP S5819169 A JPS5819169 A JP S5819169A
Authority
JP
Japan
Prior art keywords
current
pwm control
converter
filter
deviation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP56115209A
Other languages
Japanese (ja)
Inventor
Toshiaki Okuyama
俊昭 奥山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP56115209A priority Critical patent/JPS5819169A/en
Publication of JPS5819169A publication Critical patent/JPS5819169A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/505Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means
    • H02M7/515Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only
    • H02M7/525Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a thyratron or thyristor type requiring extinguishing means using semiconductor devices only with automatic control of output waveform or frequency

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

PURPOSE:To control a PWM control converter with good responsiveness by removing a harmonic wave by a filter and setting a firing element ON or OFF whenever the deviation between the output current of the filter and the current command pattern is displaced from the prescribed range. CONSTITUTION:The output current i of an inverter 4 becomes a superposed wave of a sinusoidal current and a triangular current, the output signal of an arithmetic circuit 11 is sinusoidal current, the outputs of arithmetic units 14-16 are produced with the harmonic component as a deviation. When the deviation signal becomes larger than the prescribed value by comparators 17-19 having hysteresis characteristic, a firing element of P side of the converter 4 is fired, and when it becomes smaller than the prescribed value, the firing element on N side of the converter is fired. In this manner, control of good responsiveness can be performed without control delay and phase delay without causing loss with the harmonic wave.

Description

【発明の詳細な説明】 本発明はPWM制御変換器の制御方法に係シ、特に、負
荷を応答遅れ及び位相遅れ無く制御するに最適なPWM
制御変換器の制御方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a control method for a PWM control converter, and in particular to a PWM control method that is optimal for controlling a load without response delay or phase delay.
The present invention relates to a control method for a control converter.

近年、Q’l’Q’(Qate Turn Qff)サ
イリスタ等の自己消弧形の高周波電力半導体素子が開発
され、電動機駆動用PWM制御変換器(インバータ)に
多く用いられている。特にPWM制御のチョッピング周
波数を従来のサイリスタ式に比べ十分に高めることがで
きるため、出力電流波形を正弦波に近づけることができ
、トルクリプルの少ない優れたシステムが実現される。
In recent years, self-extinguishing high frequency power semiconductor devices such as Q'l'Q' (Qate Turn Qff) thyristors have been developed and are often used in PWM control converters (inverters) for driving electric motors. In particular, since the chopping frequency of PWM control can be sufficiently increased compared to the conventional thyristor type, the output current waveform can be made closer to a sine wave, and an excellent system with less torque ripple can be realized.

ところで、この出力電流にはPWM制御に由来する高次
高調波成分が含まれており、それにより誘導される電動
機の二次電流成分により損失が増大するという問題があ
った。特にその二次電流成分は高周波なものであるため
、表皮効果により二次巻線回路の実効抵抗が大きくなり
、損失が増大する傾向のあることが知。
However, this output current includes a high-order harmonic component derived from PWM control, and there is a problem in that loss increases due to the secondary current component of the motor induced thereby. In particular, since the secondary current component has a high frequency, it is known that the skin effect tends to increase the effective resistance of the secondary winding circuit and increase loss.

られている。              \高調波成
分を除去する簡単な方法は、ローパスフィルタを挿入す
ることであるが、周知の如くフィルタは一般にコンデン
サとりアクドルの組合せによって構成されている。この
ために時定数を有し、応答遅れを生じることになり、負
荷制御に制御遅れや位相遅れを生じることになる。
It is being A simple method to remove harmonic components is to insert a low-pass filter, but as is well known, the filter is generally constructed from a combination of a capacitor and an axle. For this reason, it has a time constant, which causes a response delay, resulting in a control delay and a phase delay in load control.

系の応答性および安定性を向上させるためにはフィード
バックループを持つことが必要であるが、高調波除去の
だめにフィルタを用いれば前述の如くフィルタの時定数
により応答遅れが出るという不都合がある。この場合、
フィルタを用いずにフィードバック系を構成した場合に
は、リプルを充分に抑制できない不都合があるばかりで
なく、前述の如く2次巻線回路による損失は減少できな
いという不都合がある。
In order to improve the responsiveness and stability of the system, it is necessary to have a feedback loop, but if a filter is used to remove harmonics, there is an inconvenience that a response delay occurs due to the time constant of the filter, as described above. in this case,
If the feedback system is constructed without using a filter, there is the disadvantage that not only ripple cannot be sufficiently suppressed, but also the loss due to the secondary winding circuit cannot be reduced as described above.

このように、応答性を高めるにはフィードバック系が必
要であり、高調波による損失を無くすにはフィルタが必
要であるが、かといって両者を単純に組合せることもで
きないというのが従来の現状であった。
In this way, a feedback system is necessary to improve responsiveness, and a filter is necessary to eliminate loss due to harmonics, but the current situation is that it is not possible to simply combine the two. Met.

本発明の目的は、応答性および効率に優れた制御性のよ
いPWM制御変換器の制御方法を提供するにある。
An object of the present invention is to provide a method for controlling a PWM control converter with excellent controllability and excellent responsiveness and efficiency.

本発明は、フィルタによって高調波を除去し、該フィル
タの出力電流と電流指令パターンとの偏差値が所定値範
囲をはずれる毎に変換器(インバータ)の点弧素子をオ
ン・オフ制御するようにしたものである。
The present invention removes harmonics using a filter, and controls the ignition element of a converter (inverter) on and off every time the deviation value between the output current of the filter and the current command pattern deviates from a predetermined value range. This is what I did.

第1図は本発明の一実施例を示すブロック図である。図
に示す例はインバータによって直流を交流に変換する場
合である。
FIG. 1 is a block diagram showing one embodiment of the present invention. The example shown in the figure is a case where direct current is converted to alternating current using an inverter.

交流電源ACの電力をダイオード整流器1によって直流
電力に変換する。変換された電力は直流リアクトル2お
よび平滑コンデンサ3で構成されるフィルタで平滑され
る。平滑後の直流電力はダイオードおよびGTOサイリ
スタを相数分組合せ“で構成したPWM制御変換器(イ
ンバータ)4によって交流に変換される。とのPWM制
御インバータ4の出力は、コンデンサおよびリアクトル
で構成されたフィルタ5で高調波分が除去され、正弦波
として負荷である誘導電動機6に供給される。
A diode rectifier 1 converts power from an alternating current power source AC into direct current power. The converted power is smoothed by a filter composed of a DC reactor 2 and a smoothing capacitor 3. The DC power after smoothing is converted into AC by a PWM control converter (inverter) 4 composed of a combination of diodes and GTO thyristors for the number of phases.The output of the PWM control inverter 4 is composed of a capacitor and a reactor. The harmonic components are removed by a filter 5 and supplied as a sine wave to an induction motor 6, which is a load.

誘導電動機6に連結された速度検出器8のアナログ信号
は、速度指令回路7との偏差が演算器9でとられ、速度
偏差増幅器10で増幅されたのち演算回路11に送出さ
れる。演算回路11は増幅器10より出力される速度偏
差に応じた信号および速度検出器8の出力信号とに基づ
いて電動機電流の指令パターン信号(正弦波信号)を発
生する。
An analog signal from a speed detector 8 connected to an induction motor 6 is subjected to a calculation unit 9 in which a deviation from a speed command circuit 7 is calculated, and after being amplified by a speed deviation amplifier 10, it is sent to a calculation circuit 11. The arithmetic circuit 11 generates a motor current command pattern signal (sine wave signal) based on the signal corresponding to the speed deviation output from the amplifier 10 and the output signal of the speed detector 8.

演算回路11ば、相数に対応した出力信号数を持ち、こ
れらの各信号とフィルタ5より変流器12゜13で検出
した負荷電流との偏差を演算器14゜15.16でとり
、比較器17’、18.19の各各に送出する。これら
比較器は、ヒステリシス特性を有し、入力信号が設定値
を越え或いは設定値を越えるときに出力信号を発生する
。比較器17゜18.19の各出力は、ゲートアンプ2
0,21゜22の各々に出力され、ゲートアンプ20〜
22の各出力信号がGTOサイリスタに対する点弧信号
となり、P側およびN側を交互にターンオンならびにタ
ーンオフさせる。
The arithmetic circuit 11 has the number of output signals corresponding to the number of phases, and the deviation between each of these signals and the load current detected by the current transformer 12, 13 from the filter 5 is calculated and compared by the arithmetic unit 14, 15, 16. 17', 18, and 19 respectively. These comparators have hysteresis characteristics and produce an output signal when the input signal exceeds or exceeds a set value. Each output of comparator 17, 18, 19 is connected to gate amplifier 2.
0,21°22, and gate amplifiers 20~
Each output signal of 22 serves as a firing signal for the GTO thyristor, alternately turning the P and N sides on and off.

第2図(a)、Φ)t (C)、 (d)は第1図の装
置の各部動作波形図である。第2図を参照しながら第1
図の実施例の動作を説明する。ここでは電源系は周知で
あるので説明を省略し、制御系についてのみ説明する。
2(a), Φ)t(C), and (d) are operation waveform diagrams of each part of the apparatus of FIG. 1. 1 while referring to Figure 2.
The operation of the illustrated embodiment will be explained. Since the power supply system is well known, the explanation will be omitted here, and only the control system will be explained.

インバータ4の出力電流iは、インバータのP側のGT
Oサイリスタあるいはダイオードが導通する際に増加し
、また、N側が導通する際には減少する。このような繰
返しを行うため、出力電流は正弦波電流に増加減少を繰
返す三角波状電流が重畳されたものとなる。出力電流が
リアクトルとコンデンサからなるフィルタ5を通過する
際、その三角波状の高調波分が減衰する。演算回路11
の出力信号は速度指令信号および実速度に基づいた第2
図(a)の如き正弦波信号であり、一方、変流器12.
13の各出力は第2図(b)の如く減衰されてはいるが
リプル分(高調波信号)が重畳された正弦波信号である
。これらの信号を入力信号とする演算器(14〜16)
の出力は第2図(C)の如く高調波分のみが偏差として
出力される。
The output current i of the inverter 4 is
It increases when the O thyristor or diode conducts, and decreases when the N side conducts. Because such repetition is performed, the output current becomes a sinusoidal current superimposed with a triangular waveform current that repeatedly increases and decreases. When the output current passes through the filter 5 made up of a reactor and a capacitor, its triangular wave-like harmonics are attenuated. Arithmetic circuit 11
The output signal is a second signal based on the speed command signal and the actual speed.
It is a sine wave signal as shown in Figure (a), and on the other hand, the current transformer 12.
Each of the outputs 13 is a sine wave signal which is attenuated as shown in FIG. 2(b) but has a ripple component (harmonic signal) superimposed thereon. Arithmetic units (14 to 16) that use these signals as input signals
As shown in FIG. 2(C), only the harmonic component is output as a deviation.

比較器17〜19は第3図に示す如きヒステリシス特性
を有しており、そのヒステリシス幅を演算器(14〜1
6)の出力信号が越える(正、負いずれの側においても
)と出力信号(正または負)を発生する。即ち、演算回
路11からの電流指令パターン信号(U相)と電流検出
器12からの電流検出信号(U相)とが比較され、前者
が後者に比べて所定値以上に犬となる偏差信号が演算器
14より出力されると、第2図(d)に示す如くサイリ
スタあるいけダイオードがターンオンするように制御し
、逆に前者が後者に比べ所定値以上小となる際において
は、同様にN側がターンオンするように制御する。V相
及びW相電流についても同様に制御される。なおW相に
ついては、次式の関係に基づき、U相電流iu及びV相
電流ivがらW相電流Iwを求めて電流検出器を一基省
略しである。
The comparators 17 to 19 have hysteresis characteristics as shown in FIG.
6) generates an output signal (positive or negative) when it is exceeded (on either the positive or negative side). That is, the current command pattern signal (U phase) from the arithmetic circuit 11 and the current detection signal (U phase) from the current detector 12 are compared, and a deviation signal in which the former is higher than the latter by a predetermined value or more is determined. When the output from the arithmetic unit 14 is output, the thyristor or the diode is controlled to turn on as shown in FIG. Control the side to turn on. The V-phase and W-phase currents are similarly controlled. Regarding the W phase, the W phase current Iw is determined from the U phase current iu and the V phase current iv based on the relationship of the following equation, and one current detector is omitted.

iy = −(jt+ + jv )  ・・・・凹曲
・凹曲・凹曲(1)以上の結果、各相の電動機電流は各
相の電流指令パターン信号に追従するよう制御される。
iy = −(jt+ + jv) ... Concave curve, concave curve, concave curve (1) As a result of the above, the motor current of each phase is controlled to follow the current command pattern signal of each phase.

ところで、前記実施例においては、フィルタ5の出側か
ら電流検出信号を得ているが、フィルタ5の入側から取
出した場合には従来技術で説明し・たと同様の問題を生
じる。フィルタ5の出側から取出すことによシ本発明の
目的が達せられることは前述の通シであるが、いずれの
側から取出すかによる相違を次に列挙する。
Incidentally, in the embodiment described above, the current detection signal is obtained from the output side of the filter 5, but if the current detection signal is obtained from the input side of the filter 5, the same problem as described in the prior art will occur. As mentioned above, the object of the present invention can be achieved by taking out the filter 5 from the outlet side, but the differences depending on which side the filter 5 takes out from are listed below.

l)電動機電流を直接検出制御するため、フィルタによ
る電流の制御遅れ並びに位相遅れを補償でき、電動機電
流を指令パターン信号に遅れなく忠実に制御することが
できる。したがって、電流指令パターン信号に対して遅
れなく電動機のトルクを制御することができること並び
に電流指令パターン信号に対して位相遅れなく電流を制
御できることから、電動機電流の励磁電流成分及びトル
ク作用電流成分を独立に制御する、いわゆるベクトル制
御を精度よく行わせることができる。
l) Since the motor current is directly detected and controlled, it is possible to compensate for the current control delay and phase delay caused by the filter, and it is possible to faithfully control the motor current without delay in accordance with the command pattern signal. Therefore, since the torque of the motor can be controlled without delay with respect to the current command pattern signal, and the current can be controlled with no phase delay with respect to the current command pattern signal, the excitation current component and the torque acting current component of the motor current are independent. It is possible to perform so-called vector control with high precision.

2)電動機電流の高調波分は、フィルタの入力側電流に
比べ小さいため、比較器のヒステリシス幅(電流実際値
の電流指令値に対する最大偏差値)は小さく設定でき、
電流制御の精度が向上する。
2) Since the harmonics of the motor current are smaller than the input current of the filter, the hysteresis width of the comparator (the maximum deviation value of the actual current value from the current command value) can be set small.
Improves accuracy of current control.

また、フィルタ5により高調波分が除去されるため、前
述した電動機内部における損矢の発生を低減することが
できる。
Further, since the harmonic components are removed by the filter 5, it is possible to reduce the occurrence of the aforementioned loss of arrow inside the electric motor.

第4図は本発明の他の実施例を示すブロック図である。FIG. 4 is a block diagram showing another embodiment of the present invention.

本実施例は、変換器によって交流から直流を得る場合で
あシ、図中、第1図に用いたと同一部材であるものには
同一符号を用いている。
This embodiment deals with the case where direct current is obtained from alternating current using a converter, and the same reference numerals are used in the figure for the same members as used in FIG. 1.

第4図に示すように、電流検出とフィルタの位置が異な
るほか、速度信号を直流電圧検出値(直流電圧指令)に
変えた点が第1図の実施例と異る点である。即ち、フィ
ルタ5は交流電源ACとPWM制御変換器4との間に挿
入し、その入側より電流検出信号を得る。一方、速度検
出信号に変え交流電源ACの電圧を電源電圧検出器23
よシ得た交流電圧信号を演算回路11に送出する。また
、電圧偏差は、直流電圧指令回路24の出力信号と電圧
検出器28による直流出力電圧検出値との偏差を演算器
25でとり、さらに電圧偏差増幅器26で所定の増幅を
行って得ている。なお、直流出力側に挿入されているコ
ンデンサ27は平滑用である。
As shown in FIG. 4, the difference from the embodiment shown in FIG. 1 is that the current detection and filter positions are different, and the speed signal is changed to a DC voltage detection value (DC voltage command). That is, the filter 5 is inserted between the AC power source AC and the PWM control converter 4, and a current detection signal is obtained from its input side. On the other hand, the power supply voltage detector 23 converts the voltage of the alternating current power supply AC into a speed detection signal.
The obtained AC voltage signal is sent to the arithmetic circuit 11. Further, the voltage deviation is obtained by calculating the deviation between the output signal of the DC voltage command circuit 24 and the DC output voltage detection value by the voltage detector 28 in the arithmetic unit 25, and further amplifying it by a predetermined value in the voltage deviation amplifier 26. . Note that the capacitor 27 inserted on the DC output side is for smoothing.

次に、この回路の動作を説明する。変換器4の交流入力
電流(図示i)は、N側のGTOサイリスタあるいはダ
イオードが導通する際に増加し、同様にP側が導通する
とき減少する。このため、交流入力電流は正弦波電流に
三角波状電流が重畳されたものとなる。交流入力電流が
フィルタ5を通過する際、その三角波状の高調波分が吸
収され交流電源(系統)に伝わる量が減少する。演算回
路10からの電流指令パターン信号(R相)と電流検出
器11により検出した電源電流(R相)が演算器14〜
16にて比較され、前者が後者に比べ所定値以上大とな
る偏差量においては、N側GTOサイリスタあるいはダ
イオードがターンオンするように制御され、逆に前者が
後者に比べ所定値以上小となる際においては、同様にP
側がターンオンするように制御される。なおT相につい
ては、次式の関係に基づき、R相電流iII及びS相電
流1BからT相電流i丁を求めて電流検出器を省略しで
ある。
Next, the operation of this circuit will be explained. The alternating current input current (i) of the converter 4 increases when the N-side GTO thyristor or diode conducts, and likewise decreases when the P-side conducts. Therefore, the AC input current is a sine wave current with a triangular wave current superimposed on it. When the AC input current passes through the filter 5, its triangular harmonics are absorbed and the amount transmitted to the AC power supply (system) is reduced. The current command pattern signal (R phase) from the arithmetic circuit 10 and the power supply current (R phase) detected by the current detector 11 are transmitted to the arithmetic units 14 to 14.
16, when the former is larger than the latter by a predetermined value or more, the N-side GTO thyristor or diode is controlled to turn on, and conversely, when the former is smaller than the latter by a predetermined value or more, the N-side GTO thyristor or diode is controlled to turn on. Similarly, P
The side is controlled to turn on. Regarding the T-phase, the T-phase current i is determined from the R-phase current iII and the S-phase current 1B based on the relationship of the following equation, and the current detector is omitted.

”T=  (IR+l1l)  ・・・・・・・・・・
・・・・・・・・・・・・・・・・・・・・(2)以上
の結果、各相の電源電流は各相の電流指令パターン信号
に追従するよう制御される。
”T= (IR+l1l) ・・・・・・・・・
(2) As a result of the above, the power supply current of each phase is controlled to follow the current command pattern signal of each phase.

ところで、変換器4の交流入力電流を検出して同様の制
御を行う場合と比較すると、電源電流の高調波分は変換
器の交流入力電流におけるものに比べ小さいため、比較
器のヒステリシス幅は小さく設定できる。そのため、電
流制御の精度が向上して電源電圧に対し電源電流を所定
位相に精度よく制御することができる。したがって、電
源力率を常時1.0に制御することなどが精度よく行え
る。
By the way, compared to the case where similar control is performed by detecting the AC input current of the converter 4, the harmonic component of the power supply current is smaller than that of the AC input current of the converter, so the hysteresis width of the comparator is small. Can be set. Therefore, the accuracy of current control is improved, and the power supply current can be precisely controlled to a predetermined phase with respect to the power supply voltage. Therefore, the power factor of the power source can always be controlled to 1.0 with high precision.

また、フィルタ5により高調渡分を除去でき、交流電源
系統に及はす高調波の影響を防止することができる。
Further, the filter 5 can remove harmonic components, and can prevent the influence of harmonics on the AC power supply system.

以上より明らかなように本発明によれば、高調波による
損失を生じることなく制御遅れ及び位相遅れのない応答
性の良い制御を実現できる。
As is clear from the above, according to the present invention, responsive control without control delay and phase delay can be realized without causing loss due to harmonics.

前記実施例においては、誘導電動機を駆動するものにつ
いて述べたが、同期電動機を制御するものへも本発明を
適用して同様の効果が得られる。
In the above embodiment, a description has been given of a device that drives an induction motor, but the present invention can also be applied to a device that controls a synchronous motor to obtain similar effects.

その場合、第1図における演算回路11には、速度検出
信号に代り電動機の回転位置を検出するための位置検出
器の信号が入力され、電動機の誘導起電力に同期した電
流指令パターン信号が取り出される。
In that case, a signal from a position detector for detecting the rotational position of the motor is input to the arithmetic circuit 11 in FIG. 1 instead of the speed detection signal, and a current command pattern signal synchronized with the induced electromotive force of the motor is taken out. It will be done.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すブロック図、第2図(
時、 (b)、 (C)、 (d)は第1図の実施例の
各部動作波形図、第3図は本発明に係る比較器の動作説
明図、第4図は本発明の他の実施例を示すブロック図で
ある。 1・・・ダイオード整流器、2・・・直流リアクトル、
3゜27・・・平滑コンデン、す、4・・・PWM制御
変換器、5・・・フィルタ、6・・・誘導電動機、7・
・・速度指令回路、8・・・速度検出器、9,14,1
5,16゜25・・・演算器、10・・・速度偏差増幅
器、11・・・演算回路、12.13・・・変流器、1
7,18.19・・・比較器、20,21.22・・・
ゲートアンプ、23・・・電源電圧検出器、24・・・
直流電圧指令回路、第1図 ケ 男2図 時間− 第3図 第牛図
FIG. 1 is a block diagram showing one embodiment of the present invention, and FIG. 2 (
(b), (C), and (d) are operational waveform diagrams of each part of the embodiment of FIG. 1, FIG. 3 is an explanatory diagram of the operation of the comparator according to the present invention, and FIG. It is a block diagram showing an example. 1... Diode rectifier, 2... DC reactor,
3゜27... Smooth condenser, 4... PWM control converter, 5... Filter, 6... Induction motor, 7...
...Speed command circuit, 8...Speed detector, 9, 14, 1
5,16゜25... Arithmetic unit, 10... Speed deviation amplifier, 11... Arithmetic circuit, 12.13... Current transformer, 1
7, 18.19... Comparator, 20, 21.22...
Gate amplifier, 23... Power supply voltage detector, 24...
DC voltage command circuit, Figure 1 Figure 2 Time - Figure 3 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 1、指令値と実際値とに基づいて生成される電流指令信
号または電圧指令信号により順変換または逆変換操作を
行って負荷に電力を供給するPWM制御変換器の制御方
法において、前記PWM制御変換器の電源側または負荷
側に設けられたフィルタの非前記PWM制御変換器側に
流れる電流検出値と前記指令信号との偏差が予め定めら
れた設定値を越える毎に点弧制御信号を前記PWM制御
変換器を構成する開閉素子に印加することを特徴とする
PWM制御変換器の制御方法。
1. In a method of controlling a PWM control converter that supplies power to a load by performing a forward conversion or inverse conversion operation using a current command signal or a voltage command signal generated based on a command value and an actual value, the PWM control conversion Every time the deviation between the detected value of the current flowing to the non-PWM control converter side of the filter provided on the power supply side or the load side of the device and the command signal exceeds a predetermined setting value, the ignition control signal is switched to the PWM control converter side. A method for controlling a PWM control converter, the method comprising applying voltage to switching elements constituting the control converter.
JP56115209A 1981-07-24 1981-07-24 Controlling method for pwm control converter Pending JPS5819169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP56115209A JPS5819169A (en) 1981-07-24 1981-07-24 Controlling method for pwm control converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP56115209A JPS5819169A (en) 1981-07-24 1981-07-24 Controlling method for pwm control converter

Publications (1)

Publication Number Publication Date
JPS5819169A true JPS5819169A (en) 1983-02-04

Family

ID=14657056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP56115209A Pending JPS5819169A (en) 1981-07-24 1981-07-24 Controlling method for pwm control converter

Country Status (1)

Country Link
JP (1) JPS5819169A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012568U (en) * 1983-07-06 1985-01-28 株式会社東芝 elevator drive device
US5383107A (en) * 1992-11-06 1995-01-17 Sundstrand Corporation Harmonic control for an inverter by use of an objective function
GB2418787B (en) * 2003-06-21 2008-01-02 Weatherford Lamb Drive circuit and electric motor for submersible pumps
US7971650B2 (en) 2003-06-21 2011-07-05 Oilfield Equipment Development Center Limited Electric submersible pumps
US8739790B2 (en) 2002-10-28 2014-06-03 Aptar France Sas Electronic display device and a fluid dispenser device including such a display device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6012568U (en) * 1983-07-06 1985-01-28 株式会社東芝 elevator drive device
US5383107A (en) * 1992-11-06 1995-01-17 Sundstrand Corporation Harmonic control for an inverter by use of an objective function
US8739790B2 (en) 2002-10-28 2014-06-03 Aptar France Sas Electronic display device and a fluid dispenser device including such a display device
GB2418787B (en) * 2003-06-21 2008-01-02 Weatherford Lamb Drive circuit and electric motor for submersible pumps
US7971650B2 (en) 2003-06-21 2011-07-05 Oilfield Equipment Development Center Limited Electric submersible pumps
US8672641B2 (en) 2003-06-21 2014-03-18 Oilfield Equipment Development Center Limited Electric submersible pumps

Similar Documents

Publication Publication Date Title
US4788485A (en) Apparatus for controlling electric motor
US5373223A (en) Power converter/inverter system with instantaneous real power feedback control
US5136494A (en) Power conversion system with instantaneous real power feedback control
KR100934311B1 (en) Inverter device
US4904919A (en) Dual mode control of a PWM motor drive for current limiting
JPS6137864B2 (en)
JPS6148167B2 (en)
JPH0344508B2 (en)
JP3236985B2 (en) Control device for PWM converter
JPS5819169A (en) Controlling method for pwm control converter
JP3296065B2 (en) Control circuit of PWM converter
JPS58141699A (en) Motor controller
JPH0219718B2 (en)
JPS6038960B2 (en) Inverter voltage control device
JP2926931B2 (en) Harmonic suppression device
JP2781602B2 (en) Power converter control device and system thereof
JPH0748951B2 (en) Power converter
JPH0865810A (en) Electric railcar controller
JPH0789742B2 (en) Power converter
JPH10164845A (en) Pwm rectifier
JPH0321926B2 (en)
JPH0731192A (en) Controller and control method for variable speed drive system
JPH0356093A (en) Induction motor controller
JPH07115770A (en) Control system for power converter
JPH0419796B2 (en)