JPS58175792A - Heat accumulation type heat exchanger - Google Patents
Heat accumulation type heat exchangerInfo
- Publication number
- JPS58175792A JPS58175792A JP57057249A JP5724982A JPS58175792A JP S58175792 A JPS58175792 A JP S58175792A JP 57057249 A JP57057249 A JP 57057249A JP 5724982 A JP5724982 A JP 5724982A JP S58175792 A JPS58175792 A JP S58175792A
- Authority
- JP
- Japan
- Prior art keywords
- heat
- heat storage
- heat accumulation
- pebble
- opening
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/0056—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using solid heat storage material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の技術分野〕
本発明は蓄熱形熱交換器に係り、とくに燃焼ガスを用い
て高温ガスを得るに適する蓄熱形熱交換器蓄熱体形状に
関する。DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a regenerative heat exchanger, and more particularly to a regenerative heat exchanger with a shape suitable for obtaining high-temperature gas using combustion gas.
蓄熱形態交換器は第1図に示すように蓄熱体に温風およ
び冷風を交互に通して、加熱期間で吸収した熱を冷却朝
間で放熱するものである。蓄熱体は高屋命を上方に、低
温部を下方にとり蓄熱体重置を支持するに簡便ならしめ
、また温風は上方から下方へ、冷風は下方から上方へ逆
方向に流すものである。As shown in FIG. 1, the heat storage type exchanger alternately passes hot air and cold air through a heat storage body, and radiates the heat absorbed during the heating period during the cooling period. The heat storage body has the Takaya Life section at the top and the low temperature section at the bottom, making it easy to support the heat storage body, and hot air flows in the opposite direction from the top to the bottom, and cold air flows in the opposite direction from the bottom to the top.
蓄熱体は球形をしたペブル、練炭のような孔明形、積重
ね用煉瓦のチェッカー等があり、r−状に電ねられてい
る。Heat storage bodies include spherical pebbles, hole-shaped charcoal briquettes, checkerboard stacking bricks, etc., and are wired in an R-shape.
従来、蓄熱形態交換器では次のような欠点がもげられる
。第1点は加熱ガス(惺虱)瞳一定力式の琳純なペブル
蓄熱体構造においては各1−のペブル温度勾配が制約を
受は加熱ガスサイクル終r時における媛低部のペブル@
I&および加熱ガス出口温度が高くなることがさけがた
い。結果として起る問題は次の冷却サイクルの初めに浸
入してくる冷風とペブルの1蜜差が大きくなり、熱衝撃
を起しペブルの下半分が急冷されることとなり熱応力の
ためにペブルが破壊する。第2点はペブル蓄熱体は巣位
体積当りの伝熱面積が大きいので加熱ガス皺一定方式で
は酸上部のペブル温度勾配が大きく々ることがさけがた
〈熱衝撃を起しやすくベブルの上半部が急昇温し、熱応
力のためにペブルが破壊しやすいことである。第3点は
チェッカーは尋位体積当りの伝熱面積が小さいのでA1
が大型化しやすいという欠点がある。Conventionally, heat storage type exchangers have the following drawbacks. The first point is that in the pure pebble heat storage structure of the heating gas constant force type, the temperature gradient of each pebble is constrained.
It is unavoidable that the I& and heating gas outlet temperatures become high. The resulting problem is that at the beginning of the next cooling cycle, the difference between the incoming cold air and the pebble becomes large enough to cause a thermal shock that rapidly cools the lower half of the pebble, causing the pebble to collapse due to thermal stress. Destroy. The second point is that the pebble heat storage body has a large heat transfer area per nested volume, so in the constant heating gas wrinkle method, the pebble temperature gradient in the upper part of the acid is likely to be large. The temperature of the half part rises rapidly, and the pebble is prone to breakage due to thermal stress. The third point is A1 because the checker has a small heat transfer area per fathom volume.
The disadvantage is that it tends to become large.
本発明は上記欠点を解決するためになされたもので、加
熱時に上部蓄熱体、冷却時には下部蓄熱体の熱応力を減
少させた蓄熱杉熱ダ換4を提供することを目的とする。The present invention was made to solve the above-mentioned drawbacks, and an object of the present invention is to provide a heat storage cedar heat exchanger 4 that reduces thermal stress in the upper heat storage body during heating and the lower heat storage body during cooling.
本発明は蓄熱体形状を上部、中・&’j s 、下部の
3部分に分け、上部および下部を蓄熱用積電ね煉瓦であ
るチェッカーとし、中間部をペブルと1−九蓄熱形熱交
換器である。The present invention divides the shape of the heat storage body into three parts: an upper part, a middle part, and a lower part, and the upper part and the lower part are made of checkered bricks for heat storage, and the middle part is made of pebble and 1-9 heat storage type heat exchanger. It is a vessel.
この発明によれば単位体積当妙の伝熱rfJfJを小さ
くすることによ妙蓄熱体の熱応力を小さくすることが達
成される。According to this invention, it is possible to reduce the thermal stress of the heat storage body by reducing the heat transfer rfJfJ per unit volume.
蓄熱体の熱応力計算は大変むずかしく一般には#熱体の
平均温度上昇率を得ることにより熱応力を予想している
。例えばアルミナペブルでは約40(k/分)程度でペ
ブルの破壊が起こるとされている。Calculating the thermal stress of a heat storage body is very difficult, and generally the thermal stress is predicted by obtaining the average temperature rise rate of the heat storage body. For example, it is said that alumina pebbles break at about 40 k/min.
次に蓄熱形部交換器の蓄熱体最上部でのエネルギ平衡式
は次式であられれる。Next, the energy balance equation at the top of the heat storage body of the heat storage type exchanger is given by the following equation.
ここでm:蓄熱体重波、C:蓄熱体比熱。Here, m: heat storage heavy wave, C: heat storage body specific heat.
Tm:蓄熱体温度、t:時間、h二@格体と加熱ガスと
の熱伝達車、入:伝熱面積、
’rg:加熱がスmlf% q′:熱慣失普である。こ
こでq′=Oとし変形するとdl’m
となる、これより@髪勾配dtを下げるには比熱Cは材
料により一定値をとるので温度差Δ゛rを小さくする、
又は琳位体積当妙の伝熱面積(ニー)を小さくするか熱
伝達率りを小さくする方法が考えらhも。この中で熱伝
達率りと、嶺蜜差ΔTは大幅に変えることはむずかしい
ので、一番よい方法け−を変えることである。この方法
としては蓄熱体形状をペブルからチェッカーに変えるこ
とにより容易に115〜1/108!Ifに変えること
が出来、熱応力を下げることが出来る。Tm: temperature of the heat storage body, t: time, h2@heat transfer wheel between the body and the heating gas, input: heat transfer area, 'rg: heating is smlf%, q': thermal inertia. Here, when q'=O and deformed, it becomes dl'm.From this, @To lower the hair gradient dt, the specific heat C takes a constant value depending on the material, so reduce the temperature difference Δ゛r.
Alternatively, you can think of ways to reduce the heat transfer area (knee) or reduce the heat transfer rate. Among these, it is difficult to change the heat transfer coefficient and the difference ΔT significantly, so the best way is to change them. This method can be easily achieved by changing the shape of the heat storage body from pebble to checkered. If, the thermal stress can be lowered.
ま九ペブルの直径を変えることによっても−をn
変えることが出来る。ペブルの全型tを一定にし直径に
反比例するのでペブル直径を大きくするととによっても
熱応力を下げることが出来ろ。You can also change - by n by changing the diameter of the pebble. Since the overall shape t of the pebble is constant and is inversely proportional to the diameter, it is possible to reduce the thermal stress by increasing the pebble diameter.
第2図はこの発明に係る蓄熱形部交換器の一実施例を示
す断面模式図である。蓄熱体は上部にチェッカー8、中
間部にペブル7、下部にチェッカー6の3部分に分かれ
、支持板2でささえられている。支持板2は外周を断熱
材1により固定支持されている。蓄熱体の外周には断熱
材1がろり、婬風、冷風、蓄熱体からの熱損失を減少さ
せる。FIG. 2 is a schematic cross-sectional view showing an embodiment of the heat storage type exchanger according to the present invention. The heat storage body is divided into three parts: a checker 8 in the upper part, a pebble 7 in the middle part, and a checker 6 in the lower part, and is supported by a support plate 2. The outer periphery of the support plate 2 is fixedly supported by the heat insulating material 1. A heat insulating material 1 is placed around the outer periphery of the heat storage body to reduce heat loss from the cold wind and the heat storage body.
このように蓄熱体形状を変えることKより単位体小さく
出来る0次の利点としては蓄鴇体に加わるλ
熱応力が一定とすれば−を小さくすることにより蓄熱体
と加略濫風との@蜜差ΔTを大きく出来、加熱時間の短
縮が出来る。また蓄熱体の上部と下部のチェッカーの@
度勾配がペブルの温度勾配よ抄大をくとれるので蓄熱体
全体の温度差を大きくでき、鍛1成部の@蜜を下げると
とが出来熱衝隼を小さく出来る。By changing the shape of the heat storage body in this way, the zero-order advantage of being able to make the unit unit smaller than K is that if the thermal stress λ applied to the heat storage body is constant, by reducing -, the difference between the heat storage body and the heating wind can be reduced. The honey difference ΔT can be increased and the heating time can be shortened. Also checkered @ on the top and bottom of the heat storage body.
Since the temperature gradient is smaller than that of the pebble, the temperature difference in the entire heat storage body can be increased, and by lowering the temperature of the first part of the forging, the heat shock can be reduced.
また、礪2の実施例としては第3図に示すようにペブル
の直径を上部と下部を大きくシ、中1間部で小さくする
ことによ秒単位体積当りの伝熱面積を変えることによっ
ても達成さ’hも。また第2の実施例の変形としてはペ
ブルの直径を3部分だけでなく、もっと多くの部分、た
とえば4.5.6部分と多数に分けることによって熱応
力を下げることが出来る。In addition, as an example of the second embodiment, as shown in Fig. 3, the diameter of the pebble can be made larger at the upper and lower parts and smaller at the middle part, thereby changing the heat transfer area per volume per second. Achieved too. Further, as a modification of the second embodiment, the thermal stress can be reduced by dividing the diameter of the pebble into not only three parts but also more parts, for example, 4, 5, and 6 parts.
41図は従来の蓄熱形部交換器の断rfJ模式図、fs
2図はこの発明に係る蓄熱形部交換器の−実権例を示す
断面模式図、第3図は他の実施例を示す断面模式図であ
る。
2・・・支持板、6・・・チェッカー、7・・・ペブル
、8・・・チェッカー、9・・・大型ペブル、10・・
・小型ペブル、11・・・大型ペブル。
第1図 第2図
第 3 図Figure 41 is a schematic diagram of a conventional heat storage type exchanger, fs
FIG. 2 is a schematic cross-sectional view showing a practical example of the heat storage type exchanger according to the present invention, and FIG. 3 is a schematic cross-sectional view showing another embodiment. 2... Support plate, 6... Checker, 7... Pebble, 8... Checker, 9... Large pebble, 10...
・Small Pebble, 11...Large Pebble. Figure 1 Figure 2 Figure 3
Claims (1)
、上部および下部をチェッカー(蓄熱用積電ね煉瓦)と
し、中間部をペブルとしたことを特徴とする蓄熱形態交
換器。 (2)蓄熱体ペブルの大きさを上部、中間部、上部の3
部分に分け、上部と下部を中間部より犬きくしたことを
特徴とする特許請求の範囲4!1項記載の蓄熱形態交換
器。[Claims] (1) The shape of the heat storage body is divided into three parts: an upper part, a middle part, and a lower part, and the upper part and the lower part are made of checkers (heat storage stacking bricks), and the middle part is made of pebbles. Heat storage form exchanger. (2) The size of the heat storage pebble is divided into three parts: upper part, middle part, and upper part.
The heat storage type exchanger according to claim 4!1, characterized in that the heat storage type exchanger is divided into parts, and the upper and lower parts are set further apart from the middle part.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57057249A JPS58175792A (en) | 1982-04-08 | 1982-04-08 | Heat accumulation type heat exchanger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57057249A JPS58175792A (en) | 1982-04-08 | 1982-04-08 | Heat accumulation type heat exchanger |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58175792A true JPS58175792A (en) | 1983-10-15 |
Family
ID=13050248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57057249A Pending JPS58175792A (en) | 1982-04-08 | 1982-04-08 | Heat accumulation type heat exchanger |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58175792A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5992504A (en) * | 1994-06-17 | 1999-11-30 | Ngk Insulators, Ltd. | Honeycomb regenerator |
GB2485836A (en) * | 2010-11-27 | 2012-05-30 | Alstom Technology Ltd | Turbine bypass system |
WO2015169609A1 (en) * | 2014-05-06 | 2015-11-12 | Siemens Aktiengesellschaft | Heat accumulator |
-
1982
- 1982-04-08 JP JP57057249A patent/JPS58175792A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5992504A (en) * | 1994-06-17 | 1999-11-30 | Ngk Insulators, Ltd. | Honeycomb regenerator |
GB2485836A (en) * | 2010-11-27 | 2012-05-30 | Alstom Technology Ltd | Turbine bypass system |
US9726082B2 (en) | 2010-11-27 | 2017-08-08 | General Electric Technology Gmbh | Turbine bypass system |
WO2015169609A1 (en) * | 2014-05-06 | 2015-11-12 | Siemens Aktiengesellschaft | Heat accumulator |
CN106133470A (en) * | 2014-05-06 | 2016-11-16 | 西门子公司 | Thermophore |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2553633B2 (en) | Insulation method for high temperature furnace | |
US20090188426A1 (en) | Crystal-growing furnace with heating improvement structure | |
TWI529130B (en) | Apparatus and method for directional solidification of silicon | |
ES2701910T3 (en) | Heat accumulator | |
JPS58175792A (en) | Heat accumulation type heat exchanger | |
CN208862126U (en) | A kind of power battery pack radiator structure and new-energy automobile based on graphite flake | |
CN104651924B (en) | Tubular type growth furnace | |
CN104372403B (en) | Heat insulation block for polysilicon ingot casting furnace and polysilicon ingot casting furnace comprising heat insulation block | |
JPS59122893A (en) | Heat storage type heat exchanger | |
CN209263644U (en) | A kind of dental casting porcelain furnace embedding circle pallet | |
CN206878136U (en) | A kind of outside temperature control battery | |
CN207016891U (en) | A kind of cooling device of polycrystalline ingot furnace for oversize silicon ingot | |
JPS5941793A (en) | Heat accumulator | |
CN204803437U (en) | Directional solidification system stove and thermal -insulated subassembly and heating element that are used for this stove | |
JPH05272884A (en) | Regenerative heat exchanger | |
JPS54146054A (en) | Heat accumulator | |
JPS6130070Y2 (en) | ||
SU397738A1 (en) | CELL HEAT EXCHANGER | |
CN206188928U (en) | Thermal field structure of large capacity polycrystalline silicon ingot furnace | |
CN107326437A (en) | polysilicon foundry furnace | |
JPS63213794A (en) | Refractory for heat accumulating chamber | |
JPH064970Y2 (en) | Insulation cover for hot steel | |
JPH0330079B2 (en) | ||
JPS5832007B2 (en) | Mandrel for high temperature winding coiler | |
JPH0240559Y2 (en) |