JPS58153902A - Fabry-perot type optical modulator - Google Patents
Fabry-perot type optical modulatorInfo
- Publication number
- JPS58153902A JPS58153902A JP57037691A JP3769182A JPS58153902A JP S58153902 A JPS58153902 A JP S58153902A JP 57037691 A JP57037691 A JP 57037691A JP 3769182 A JP3769182 A JP 3769182A JP S58153902 A JPS58153902 A JP S58153902A
- Authority
- JP
- Japan
- Prior art keywords
- fabry
- plates
- perot
- modulation
- optical modulator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims description 16
- 230000003247 decreasing effect Effects 0.000 claims 1
- 238000002834 transmittance Methods 0.000 abstract description 11
- 230000007423 decrease Effects 0.000 abstract description 4
- 230000005540 biological transmission Effects 0.000 description 19
- 238000010586 diagram Methods 0.000 description 5
- 238000006073 displacement reaction Methods 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000005083 Zinc sulfide Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229910052984 zinc sulfide Inorganic materials 0.000 description 1
- DRDVZXDWVBGGMH-UHFFFAOYSA-N zinc;sulfide Chemical compound [S-2].[Zn+2] DRDVZXDWVBGGMH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/02—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colours
- G01J3/12—Generating the spectrum; Monochromators
- G01J3/26—Generating the spectrum; Monochromators using multiple reflection, e.g. Fabry-Perot interferometer, variable interference filters
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Light Control Or Optical Switches (AREA)
- Optical Filters (AREA)
- Spectrometry And Color Measurement (AREA)
- Optical Elements Other Than Lenses (AREA)
Abstract
Description
【発明の詳細な説明】
本発明はファブリペロ型光学変調器に関するものである
。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Fabry-Perot optical modulator.
第1図に示すように2枚の透明な平板1,2を微少な間
隔dをもたせて、ヌペーサ3を介して平行に配置すると
、いわゆるファブリペロ干渉器になり、第2甲に示すよ
うな光学透過特性を持つようになる。ここで平板1,2
の内側の向い合う面の反射率をRとし外側の面は反射率
ゼロとすると、垂直入射光の場合 λ=2nd/mなる
波長の光の透過率は100%である。こζで、nは空気
または真空の屈折率であり、n = 1であり、mは正
の整数である。一方、 λ= 4nd/(2m−1)な
る時、透過率が最低になり。As shown in Fig. 1, when two transparent flat plates 1 and 2 are arranged in parallel with a small distance d between them via a Nupaca 3, it becomes a so-called Fabry-Perot interferometer, and the optical Becomes transparent. Here, flat plates 1 and 2
Assuming that the reflectance of the inner facing surfaces is R and the reflectance of the outer surface is zero, the transmittance of light with a wavelength of λ=2nd/m is 100% in the case of vertically incident light. where n is the refractive index of air or vacuum, n = 1, and m is a positive integer. On the other hand, when λ=4nd/(2m-1), the transmittance is the lowest.
でm1n=(1−R)/(1千R) −−−−(1
)であられされる。So, m1n=(1-R)/(1,000R) -----(1
).
ここで、τminは最低透過率、mは正の整数であり、
n = 1である。Here, τmin is the minimum transmittance, m is a positive integer,
n=1.
m = 1の透過ピ〜りの半値巾WはHの値で決まり第
3図に示すようになシ、式(2)で表わすことができる
。The half-width W of the transmission peak when m=1 is determined by the value of H, and can be expressed by equation (2) as shown in FIG.
但し、λ0==2nd である。However, λ0==2nd.
さて、ここで微少間隔dを変化させることによリ、透過
帯域を変化させることができる。従って、赤外フィルタ
などと組み合せて、特定波長帯域の光を変調することが
できる。Now, by changing the minute distance d, the transmission band can be changed. Therefore, in combination with an infrared filter or the like, light in a specific wavelength band can be modulated.
ところが、この場合の変調度は大きくとれない。However, in this case, the degree of modulation cannot be increased.
たとえばRm66%とすると、(2)式又は第3図より
!=0,133X2dとなシ、このとき波長のスケール
で半値幅に相当する分だけ振らしたときの透過特性は第
4図のようになゐ。図において、曲線6は微少間隔dを
変化させないときの特性、曲線6は微少間隔dをd−W
に変化させたときの特性である。このとき、特定波長帯
域(λ=2d−〜2d+!−)における光の透過率は、
曲2 2
線6については図中7で示した領域となり、rON中8
0q6となる。一方向線6については8で示した領域と
なり゛roty−キ25%となり、結局変調度としては
でON −rotyキ8O−25=55%程度であり大
きく変調できない。。For example, if Rm is 66%, then from equation (2) or Figure 3! =0.133X2d, and in this case, when the wavelength scale is swung by an amount corresponding to the half width, the transmission characteristics are as shown in Fig. 4. In the figure, curve 6 is the characteristic when the minute distance d is not changed, and curve 6 is the characteristic when the minute distance d is changed to d-W.
This is the characteristic when changed to . At this time, the light transmittance in the specific wavelength band (λ=2d-~2d+!-) is
For song 2 2 line 6, the area is indicated by 7 in the figure, and 8 in rON.
It becomes 0q6. Regarding the one-way line 6, it is in the area indicated by 8, and the rotary key is 25%, and the modulation degree is approximately 55% (ON-roty key 8O-25), and cannot be significantly modulated. .
本発明はこの変調度を大きく改善することのできるファ
ブリペロ型光学変調器を提供するものである。以下図面
を用いてその一実施例を詳細に説萌する。The present invention provides a Fabry-Perot optical modulator that can greatly improve the degree of modulation. One embodiment will be explained in detail below using the drawings.
第6図は本発明によるファブリペロ型光変調器の原理を
示すダブルファブリペロ干渉器の構成である。図におい
て、11.12.13は透明な平板で、平板11.13
の外側の面は反射率ゼロとし、内側の面は反射率Rとす
る。平板12は両面ともに反射率Rとする。各平板11
.12.13はスペーサ14により一定間隔dを保って
配される。この構成で平板12の位置のみが微変動(Δ
d)すれば、各面間隔は一方はd+Δd、他方はd−Δ
dとなり、この2重ファブリペロ干渉器は第6図に示す
ような光変調機能を発揮することになる。ここで、21
はΔd =O,すなわちダブルファブリペロ型変調器が
01gのときの光透過特性、23.24はΔdも0のと
き、すなわち各ダブルファブリペロ干渉器がOFFのと
きの各光透過特性、22は曲線23,24を合成して得
られるダブルファブリペロ型変調器がOFFのときの光
透過特性である。FIG. 6 shows the configuration of a double Fabry-Perot interferometer showing the principle of the Fabry-Perot optical modulator according to the present invention. In the figure, 11.12.13 is a transparent flat plate, and the flat plate 11.13
The outer surface of is assumed to have a reflectance of zero, and the inner surface is assumed to have a reflectance of R. The flat plate 12 has a reflectance R on both sides. Each flat plate 11
.. 12 and 13 are arranged at a constant distance d by a spacer 14. With this configuration, only the position of the flat plate 12 changes slightly (Δ
d) Then, the spacing between each surface is d + Δd on one side and d - Δ on the other.
d, and this double Fabry-Perot interferometer exhibits an optical modulation function as shown in FIG. Here, 21
are the light transmission characteristics when Δd = O, that is, the double Fabry-Perot modulator is 01 g, 23.24 are the light transmission characteristics when Δd is also 0, that is, when each double Fabry-Perot interferometer is OFF, and 22 is the light transmission characteristic when the double Fabry-Perot interferometer is OFF. This is a light transmission characteristic obtained by combining curves 23 and 24 when the double Fabry-Perot modulator is OFF.
ここで、前記と同様Rm66俤、 W =Q、133X
2d 。Here, as above, Rm66, W = Q, 133X
2d.
Δci=wとすると、特定波長帯域における曲線21に
よる光透過率は70)lキ、76チ、曲線22による光
透過率70yyキ 4チである。したがって特定波長帯
域の光変調度は約70%に向上する。これはファブリペ
ロを2重にし、両者t−1e逆方向に変調したことによ
る効果で、特に光を遮断する機能が改善されていること
が明らかである。透過機能は若干低下するが、透過帯の
珍状が、急傾斜で立上り、立下っているので、透過率低
下の程度は少ない。When Δci=w, the light transmittance according to the curve 21 in the specific wavelength band is 70)l, 76ch, and the light transmittance according to the curve 22 is 70yyx4. Therefore, the degree of optical modulation in the specific wavelength band is improved to about 70%. This is the effect of duplicating Fabry-Perot and modulating both in t-1e opposite directions, and it is clear that the light blocking function is particularly improved. Although the transmission function is slightly reduced, since the transmission band has a unique shape with steep slopes rising and falling, the degree of reduction in transmittance is small.
変調器の機能として重要なものは、変調率であるが、こ
の変調率は微少間隔の金動率に左右されると同時に使用
する特定波長帯域の幅にも影響をうける。この特定波長
帯域の幅にあわせて、透過領域の半値幅を決定すること
が望ましい。An important function of a modulator is the modulation rate, which is influenced by the metal dynamic rate of minute intervals and also by the width of the specific wavelength band used. It is desirable to determine the half-width of the transmission region in accordance with the width of this specific wavelength band.
式(2)で示すように、この半値幅は平行平面の反射率
Rで決まるので、要求される仕様に基づいてR値の設計
をすることになる。但し、第2図に示すように、高次の
透過ピークが短波長側に存在するので、特定波長帯域の
幅には上限があり、最大で、中心波長(λo=2nd)
の60チ程度である。As shown in equation (2), this half-width is determined by the reflectance R of the parallel plane, so the R value is designed based on the required specifications. However, as shown in Figure 2, since the higher-order transmission peak exists on the short wavelength side, there is an upper limit to the width of the specific wavelength band, and the maximum is the center wavelength (λo = 2nd).
It is about 60 inches.
従って、第3図に示すように、平行平面の反射率は約2
4係以上でなければ、本変調器は機能を発揮しないこと
がわかる。Therefore, as shown in Figure 3, the reflectance of parallel planes is approximately 2.
It can be seen that this modulator does not function unless the ratio is 4 or higher.
特定波長帯域が狭くてよい場合、R値を大きくして透過
ピークの半値幅を狭くして、微少間隔の変動率を少くて
すむようにできる。従って、R値は変調器の要求仕様に
あわせて決定することになるが、この場合も24チ以上
の反射率が必要である。If the specific wavelength band can be narrow, the R value can be increased to narrow the half-width of the transmission peak, so that the rate of fluctuation of minute intervals can be reduced. Therefore, the R value is determined according to the required specifications of the modulator, and in this case as well, a reflectance of 24 or more is required.
一方、外側に面する平面は、干渉現象になんらのかかわ
りもないことが望ましく、干渉面と平行でなくわすかな
角をなし又理想的には反射率Rはゼロがよい。現実には
、反射率をゼロにすることは不可能なので、なるべく反
射率を低くする。その反射率をRmとすると、この反射
による損失率は(21m −1m2)である。実用上は
、Rm=0.1で損失率が約20チ程度まで許される。On the other hand, it is preferable that the plane facing the outside has no relation to the interference phenomenon, is not parallel to the interference surface but forms a slight angle, and ideally has a reflectance R of zero. In reality, it is impossible to reduce the reflectance to zero, so the reflectance is made as low as possible. If the reflectance is Rm, then the loss rate due to this reflection is (21 m -1 m2). In practice, when Rm=0.1, a loss rate of about 20 inches is allowed.
揶7図に本発明によるファブリペロ型変調器の一実施例
を示す。平板31.33はゲルマニウム板で外側の面は
硫化亜鉛蒸着膜で反射防止コーティングしてあり、特定
波長帯域14〜16μmで平均反射率2チになっている
。中央の平板32に対向した面と、中央の平板32の両
面は反射率66チにしてあり各々の間隔dは7.6μで
、平行度はλ/10o(λ=15.ci)である。平板
31.33は保持台36に固定されており、中央の平板
32は、積層圧電素子34を介し゛て保持台にセットさ
れている。積層圧電素子34は変調用電源36から、電
圧を加えられることにより、厚さが1μm減少するよう
構成されており、したがって電圧印加により、平板31
と32の間隔は1μm減じ6.6μmとなり、一方、平
板32と33の間隔は1μm増すので8.6μmとなる
。この結果、各ファブリペロ干渉計の光透過特性は第6
図の曲線23及び24の状態になり両者の合成透過率は
曲線22の状態になり、はとんど光を通さない。この実
施例ではRmによる光学損失を加味すると、電圧印加時
の光透過率(14〜16μm帯)は7oyシ=4チ印加
していない時の透過率は701 = 72 all、で
あり、光変調率は68チを達成している。FIG. 7 shows an embodiment of a Fabry-Perot modulator according to the present invention. The flat plates 31 and 33 are germanium plates whose outer surfaces are anti-reflection coated with a zinc sulfide vapor-deposited film, and have an average reflectance of 2 cm in a specific wavelength band of 14 to 16 μm. The surface facing the central flat plate 32 and both sides of the central flat plate 32 have a reflectance of 66 inches, the distance d between each is 7.6 μ, and the parallelism is λ/10o (λ=15.ci). The flat plates 31 and 33 are fixed to a holding stand 36, and the central flat plate 32 is set on the holding stand via a laminated piezoelectric element 34. The laminated piezoelectric element 34 is configured such that its thickness decreases by 1 μm when a voltage is applied from the modulation power source 36.
The distance between the plates 32 and 32 is reduced by 1 μm to 6.6 μm, while the distance between the flat plates 32 and 33 is increased by 1 μm to 8.6 μm. As a result, the light transmission characteristics of each Fabry-Perot interferometer are
The state of curves 23 and 24 in the figure is reached, and the combined transmittance of both becomes the state of curve 22, where almost no light passes through. In this example, when optical loss due to Rm is taken into account, the light transmittance (14 to 16 μm band) when voltage is applied is 7oy = 4 The transmittance when no voltage is applied is 701 = 72 all, and the light modulation The rate has achieved 68chi.
実施例1の場合と同様の構成で、中央板を固定し、両側
の平板を積層圧電素子で変動させる方式を第8図8に示
す。図中第7図と同一部分には同一符号を付して説明を
省略する。44.45は積層圧電素子である。この場合
、平板31と33は互に同一方向に変位するように設計
する。実施例1と異るのは、この場合、変位の程度をそ
れぞれ別々に加減できるので、たとえば長波長側にかた
よらせる割合を少し押え気味にして、高次の透過ピーク
が特定波長帯域にかからないようにし、一方、短波長側
への変位は、゛ピークのすそ引きを考慮して大きめにす
ることができる。これによシ変調効率は70%を越える
ことが出来た。FIG. 8 shows a system in which the center plate is fixed and the flat plates on both sides are moved by laminated piezoelectric elements, with the same configuration as in Example 1. Components in the figure that are the same as those in FIG. 7 are designated by the same reference numerals, and their explanation will be omitted. 44 and 45 are laminated piezoelectric elements. In this case, the flat plates 31 and 33 are designed to be mutually displaced in the same direction. The difference from Embodiment 1 is that in this case, the degree of displacement can be adjusted separately, so for example, the ratio of shifting toward longer wavelengths can be slightly suppressed so that the high-order transmission peak does not fall in a specific wavelength band. On the other hand, the displacement toward the short wavelength side can be made larger in consideration of the narrowing of the peak. As a result, the modulation efficiency was able to exceed 70%.
尚、第6図かられかるように本発明によるファプリペロ
ー変調器は、利用波長帯域のみに注目すると、フィルタ
の併用なしで変調できる。但し、1’ ”’f1
高次の透過ピークを遮断しなければいけないので、利用
波長帯域及びそれよシ長波長帯域を透過し、隣接する高
次の透過ピーク及びそれよ〕短波長帯域を遮断するよう
なローパスフィルタの併用が必要である。As can be seen from FIG. 6, the Fabry-Perot modulator according to the present invention can perform modulation without using a filter if only the wavelength band to be used is focused. However, since it is necessary to block the higher-order transmission peak, the wavelength band used and the longer wavelength band are transmitted, and the adjacent higher-order transmission peak and the shorter wavelength band are blocked. It is necessary to use a low-pass filter such as
しかし、ローパスフィルタより比較的高価で、透過効率
が悪い帯域フィルタを使う必要はなくなる。However, it is no longer necessary to use a bandpass filter, which is relatively more expensive and has lower transmission efficiency than a low-pass filter.
また、積層圧電素子を用いることにより、第7図、第8
図に示すように、比較的容易に本発明の7アプリペロ変
調器を構成することができた。In addition, by using a laminated piezoelectric element, it is possible to
As shown in the figure, it was possible to construct the 7-approximate modulator of the present invention relatively easily.
以上のように本発明は3社の平板を利用して、各平板間
に形成される微少な間隔を、=方の間隔が減少した′と
き他方の間隔が増大するよう変化させたブアブリベロ型
光学変調器あり、従来のファブν・σb型光孝変、調器
に比して変調度を大幅に向上させることができる。As described above, the present invention utilizes flat plates from three companies and changes the minute distance formed between each flat plate so that when the distance on the = side decreases, the distance on the other side increases. With a modulator, the degree of modulation can be significantly improved compared to conventional fab ν/σb type optical modulators and modulators.
第1図は従来のファブリペロ干渉器の構成を示す断面図
、第2図は第1図の7アプリペロ干渉器の透過特性を示
す図、第3図はファブリペロ干渉器し1次透過帯の半値
巾と平行平面の反射率の関堡を示す図、第4図は従来の
ファブリペロ変調器め変調の様子を示す図、第5図は本
発明のダブルファブリペロ干渉器の原理構成を示す断面
図、第6図は本発明によるファブリペロ型光変調器の変
調の様子を示す図、第7図は本発明によるファブリペロ
型光変調器の一実施例を示す断面図、第8図は本発明に
よるファブリペロ型光変調器の他の実施例を示す断面図
である。
11.12,13・・・・・・透明な平板、14・・・
・・・スペーサ、31.32.33・・・・・・ゲルマ
ニウム平板、34.44.45・・・・・・積層圧電素
子、35・・・・・・保持台、36・・・・・・電源。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図
d
ボ眠艮(入λ
第3t!1
第4図
第5図
4
第6図
第7図Figure 1 is a cross-sectional view showing the configuration of a conventional Fabry-Perot interferometer, Figure 2 is a diagram showing the transmission characteristics of the 7-application-Perot interferometer shown in Figure 1, and Figure 3 is a diagram showing the half-width of the first-order transmission band of the Fabry-Perot interferometer. 4 is a diagram showing the state of modulation in a conventional Fabry-Perot modulator, and FIG. 5 is a sectional view showing the principle configuration of the double Fabry-Perot interferometer of the present invention. FIG. 6 is a diagram showing the state of modulation of the Fabry-Perot optical modulator according to the present invention, FIG. 7 is a sectional view showing an embodiment of the Fabry-Perot optical modulator according to the present invention, and FIG. 8 is a diagram showing the Fabry-Perot optical modulator according to the present invention. FIG. 7 is a cross-sectional view showing another example of the optical modulator. 11.12,13...Transparent flat plate, 14...
... Spacer, 31.32.33 ... Germanium flat plate, 34.44.45 ... Laminated piezoelectric element, 35 ... Holding stand, 36 ... ·power supply. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Fig. d Bo Sleep (Enter λ) 3rd t! 1 Fig. 4 Fig. 5 Fig. 4 Fig. 6 Fig. 7
Claims (2)
以上の平面である光学板を中央に配し微少な間隔を介し
てその両側に前記平板をはさむように2枚の透明平板を
配装置し、中央部の平板の各面と両側の平板との向い合
う面との微少な間隔を、一方の間隔が減じている時は他
方は増大するように変化させることを特徴とするファブ
リペロ型光学変調器。(1) Transparent to a specific wavelength band, with a reflectance of 24% on both sides
The above-mentioned flat optical plate is placed in the center, and two transparent flat plates are placed on both sides of the flat plate with a slight interval between them, and each surface of the central flat plate is connected to the flat plates on both sides. A Fabry-Perot optical modulator characterized in that the minute distance between opposing surfaces is changed so that when one distance is decreased, the other distance is increased.
微少間隔を変化させることを特徴とする特許請求の範囲
第1項記載のファプリペロ 型光学変調器。(2) The Fappre-Perot optical modulator according to claim 1, characterized in that the minute spacing between the parallel planes is changed by energizing the laminated piezoelectric element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57037691A JPS58153902A (en) | 1982-03-09 | 1982-03-09 | Fabry-perot type optical modulator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57037691A JPS58153902A (en) | 1982-03-09 | 1982-03-09 | Fabry-perot type optical modulator |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58153902A true JPS58153902A (en) | 1983-09-13 |
JPS628765B2 JPS628765B2 (en) | 1987-02-24 |
Family
ID=12504580
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57037691A Granted JPS58153902A (en) | 1982-03-09 | 1982-03-09 | Fabry-perot type optical modulator |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58153902A (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63271322A (en) * | 1987-04-30 | 1988-11-09 | Olympus Optical Co Ltd | Transmissivity characteristic varying element |
JPS6446720A (en) * | 1987-07-15 | 1989-02-21 | American Telephone & Telegraph | Fabry-perot cavity |
JPH0194312A (en) * | 1987-10-06 | 1989-04-13 | Sharp Corp | Variable interference device |
JPH02262024A (en) * | 1989-02-21 | 1990-10-24 | Internatl Business Mach Corp <Ibm> | Tunable optical filter |
JPH02278132A (en) * | 1989-02-21 | 1990-11-14 | Internatl Business Mach Corp <Ibm> | Optical filter |
JPH04226412A (en) * | 1990-04-30 | 1992-08-17 | Internatl Business Mach Corp <Ibm> | Optical filter |
JPH04232910A (en) * | 1990-05-31 | 1992-08-21 | Alcatel Nv | Optical apparatus |
EP0667548A1 (en) * | 1994-01-27 | 1995-08-16 | AT&T Corp. | Micromechanical modulator |
JP2004012642A (en) * | 2002-06-04 | 2004-01-15 | Nec Corp | Tunable filter, method of manufacturing the same, and optical switching apparatus using the same |
JP2006189575A (en) * | 2005-01-05 | 2006-07-20 | Ricoh Co Ltd | Optical element, laser machining apparatus, and laser manipulation apparatus |
JP2012108370A (en) * | 2010-11-18 | 2012-06-07 | Denso Corp | Wavelength-selective filter |
JP2014233344A (en) * | 2013-05-31 | 2014-12-15 | Hoya株式会社 | Optical filter element, wavelength variable optical bandpass filter module, wavelength variable light source apparatus, and spectroscopic endoscope apparatus |
-
1982
- 1982-03-09 JP JP57037691A patent/JPS58153902A/en active Granted
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63271322A (en) * | 1987-04-30 | 1988-11-09 | Olympus Optical Co Ltd | Transmissivity characteristic varying element |
JPS6446720A (en) * | 1987-07-15 | 1989-02-21 | American Telephone & Telegraph | Fabry-perot cavity |
JPH0194312A (en) * | 1987-10-06 | 1989-04-13 | Sharp Corp | Variable interference device |
JP2528533B2 (en) * | 1989-02-21 | 1996-08-28 | インターナシヨナル・ビジネス・マシーンズ・コーポレーシヨン | Tunable optical filter |
JPH02262024A (en) * | 1989-02-21 | 1990-10-24 | Internatl Business Mach Corp <Ibm> | Tunable optical filter |
JPH02278132A (en) * | 1989-02-21 | 1990-11-14 | Internatl Business Mach Corp <Ibm> | Optical filter |
JPH04226412A (en) * | 1990-04-30 | 1992-08-17 | Internatl Business Mach Corp <Ibm> | Optical filter |
JPH04232910A (en) * | 1990-05-31 | 1992-08-21 | Alcatel Nv | Optical apparatus |
EP0667548A1 (en) * | 1994-01-27 | 1995-08-16 | AT&T Corp. | Micromechanical modulator |
JP2004012642A (en) * | 2002-06-04 | 2004-01-15 | Nec Corp | Tunable filter, method of manufacturing the same, and optical switching apparatus using the same |
JP2006189575A (en) * | 2005-01-05 | 2006-07-20 | Ricoh Co Ltd | Optical element, laser machining apparatus, and laser manipulation apparatus |
JP4523420B2 (en) * | 2005-01-05 | 2010-08-11 | 株式会社リコー | Optical element, laser processing apparatus and laser manipulation apparatus |
JP2012108370A (en) * | 2010-11-18 | 2012-06-07 | Denso Corp | Wavelength-selective filter |
JP2014233344A (en) * | 2013-05-31 | 2014-12-15 | Hoya株式会社 | Optical filter element, wavelength variable optical bandpass filter module, wavelength variable light source apparatus, and spectroscopic endoscope apparatus |
Also Published As
Publication number | Publication date |
---|---|
JPS628765B2 (en) | 1987-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58153902A (en) | Fabry-perot type optical modulator | |
US4729640A (en) | Liquid crystal light modulation device | |
US6014192A (en) | Illumination device and application thereof to the illumination of a transmissive screen | |
US4394069A (en) | Liquid crystal tuned birefringent filter | |
US6947215B2 (en) | Optical element, optical functional device, polarization conversion device, image display apparatus, and image display system | |
EP1510838B1 (en) | Polarization beam splitter, optical system and image displaying apparatus using the same | |
JP3879411B2 (en) | Dispersion compensator | |
US7236655B2 (en) | Polarization element and optical device using polarization element | |
Post | Analysis of moiré fringe multiplication phenomena | |
JPS61501798A (en) | optical spatial frequency filter | |
JPH09292591A (en) | Band-pass filter | |
KR930002868A (en) | Liquid crystal display | |
Kitson et al. | Surface profile dependence of surface plasmon band gaps on metallic gratings | |
US6606197B2 (en) | Dual grating filtering system | |
JPH03213802A (en) | Diffraction grating | |
JPS6149649B2 (en) | ||
JPS5919920A (en) | Multibeam acoustooptic modulator | |
JP4017127B2 (en) | Hologram color filter system | |
JP2005321562A5 (en) | ||
JP2922534B2 (en) | Wedge type double diffraction grating | |
Liu et al. | Polarization device employing the combination effect of double refraction and diffraction | |
JPH03217825A (en) | Space optical modulating element | |
JPS5983102A (en) | Fabry-perot type infrared rays modulator | |
JPS5983101A (en) | Fabry-perot type infrared rays modulator | |
JPH05173019A (en) | Polarization canceler |