JPS58135667A - Semiconductor device - Google Patents
Semiconductor deviceInfo
- Publication number
- JPS58135667A JPS58135667A JP1862582A JP1862582A JPS58135667A JP S58135667 A JPS58135667 A JP S58135667A JP 1862582 A JP1862582 A JP 1862582A JP 1862582 A JP1862582 A JP 1862582A JP S58135667 A JPS58135667 A JP S58135667A
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- dielectric thin
- gate
- si3n4
- sio2
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 7
- 239000010409 thin film Substances 0.000 claims abstract description 16
- 229910001218 Gallium arsenide Inorganic materials 0.000 abstract description 18
- 229920002120 photoresistant polymer Polymers 0.000 abstract description 18
- 229910052751 metal Inorganic materials 0.000 abstract description 9
- 239000002184 metal Substances 0.000 abstract description 9
- 238000005530 etching Methods 0.000 abstract description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052581 Si3N4 Inorganic materials 0.000 abstract description 4
- 239000010408 film Substances 0.000 abstract description 3
- 239000000758 substrate Substances 0.000 abstract description 3
- 229910052681 coesite Inorganic materials 0.000 abstract 3
- 229910052906 cristobalite Inorganic materials 0.000 abstract 3
- 239000000377 silicon dioxide Substances 0.000 abstract 3
- 235000012239 silicon dioxide Nutrition 0.000 abstract 3
- 229910052682 stishovite Inorganic materials 0.000 abstract 3
- 229910052905 tridymite Inorganic materials 0.000 abstract 3
- 230000004927 fusion Effects 0.000 abstract 2
- 238000001704 evaporation Methods 0.000 abstract 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 16
- 230000005669 field effect Effects 0.000 description 9
- 230000015556 catabolic process Effects 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- 229910052737 gold Inorganic materials 0.000 description 6
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 4
- 239000010931 gold Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 241000257465 Echinoidea Species 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 2
- 238000011109 contamination Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000001465 metallisation Methods 0.000 description 1
- JOHZPMXAZQZXHR-UHFFFAOYSA-N pipemidic acid Chemical compound N1=C2N(CC)C=C(C(O)=O)C(=O)C2=CN=C1N1CCNCC1 JOHZPMXAZQZXHR-UHFFFAOYSA-N 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Electrodes Of Semiconductors (AREA)
- Junction Field-Effect Transistors (AREA)
Abstract
Description
本発明は半導体装置の電極形成に関し、特に半導体材料
として砒イしガリウムを用いた電界効果型トランジスタ
の電極形成に関するものである。
高周波の高出力増幅素子としては、進行波管がその主力
であったが、通信システムに対する高い信頼性や小型、
軽量化が求められるに従って。
1Glz以下の周波数についてはバイポーラトランジス
タ、それ以上の周波数に対する三端子増幅素子として砒
化ガリウム電界効果トランジスタの開発が行なわれ、実
用化されてきた。砒化ガリウム電界効果型トランジスタ
の本位ゲート幅当りの出力を向上させる一つの要素とし
て、ゲートの逆方向耐圧を高くする方法がある。逆方向
耐圧は、ゲートク冒y)キー金属の形成方法に大きく左
右される。
ゲートゾ■ットキー金sn形成する方法は、飼えに@1
図に示すフォトレジストを用いたり7トオ7法がある。
すなわち、砒化ガリウムの活性層上の誘電体薄膜2にフ
ォトレジスト3を被覆し、このフォトレジスト3に開孔
The present invention relates to the formation of electrodes for semiconductor devices, and particularly to the formation of electrodes for field effect transistors using gallium arsenide as a semiconductor material. Traveling wave tubes have been the mainstay of high-frequency, high-output amplification elements, but they offer high reliability for communication systems, small size,
As weight reduction is required. Bipolar transistors have been developed for frequencies below 1 Glz, and gallium arsenide field effect transistors have been developed and put into practical use as three-terminal amplification elements for frequencies above that. One way to improve the output per standard gate width of a gallium arsenide field effect transistor is to increase the reverse breakdown voltage of the gate. The reverse breakdown voltage is greatly influenced by the method of forming the key metal (gate protection). How to form a gate zot key gold sn @1
There is a 7-to-7 method that uses the photoresist shown in the figure. That is, a dielectric thin film 2 on an active layer of gallium arsenide is coated with a photoresist 3, and holes are formed in the photoresist 3.
【設けて誘電体薄膜tオーバーエツチングしく第1図(
ml ) 、垂直上方から金w44¥It蒸着して7冒
ツ、トキーゲート4′tつくり(同図(b))、Lかる
のち、リフトオフによpフォトレジスト3をその上の金
属4もろとも除去(同図(C) )するものである。し
かしながら、かかるホトレジスト管用いたリフトオフに
よるゲート形成方法では、フォトレジスト3がついた状
態で金@4を被着させねばならず、被着前の処理や加熱
が制限されるほか、金@4の被着中に7オトレジスト3
からガスが出て砒化ガリウムウニ/Sの表面を汚染する
可能性もあり、逆方向耐圧の籠が不安定になりやすいと
いう欠点を有した。
また、@2図に示した従来の他の方法では、砒化ガリウ
ム活性層1上の誘電体薄膜2にフォトレジスト3を用い
て開口部r設け(第2図(a) ) 、フォトレジスト
3を除去した後に全表面にン璽ットキー接合tつくる金
嘱4を被着しく第2図(b)】、再びフォトレジス)5
に用いて金14w加工してゲート4′會形成する(18
2図(C))ものであつ九。
この方法では、金属を被着する際にウニ/Sには、フォ
トレジストがついていないので、金属被着前の処1方法
が自由に選択できる、ウエノ1−スを加熱できる、フォ
トレジストのようにガスを出す物質がないなどの点でゲ
ートシ雪ットキー4′の逆方向耐圧のIk不安定にする
要素はない、しかしながら、一番電界密度の高−7習ツ
トキーメタル4の端(A点ンと一書ひずみのかかる誘電
体薄112の断点(8点)とが一致又は非常に接近して
いるため、@2図で示し九方法によって形成され九ゲー
ト4の逆方向耐圧は低いという欠点を有してい九。
本発明の目的はりフトオフ法によらずに電極と誘電体薄
膜の端部とが接触しない電極構造を有するaP4体装置
を提供することにある。
本発明の他の目的は、ゲート逆方向耐圧が高くしかもウ
ェハの汚染や耐圧不安定等がない電界効果トランジスタ
を提供することにある。
本発明は、ウェハにフォトレジストがついていない状態
で全面に金属を被着する方法【採ることによp1逆方向
電圧の籠が不安定でなくなる欠点髪なくシ、かつ2種類
の鋳電体薄1[v用いそのエツチング速度の違いt利用
することにより、電極の端と誘電体薄膜の断点との間隔
を広げることを !・特徴とする。
つぎに本発明を実廁列により図面を用いて詳細に親羽す
る。
@3図(am)〜(e)は、本発明の一実m例による砒
化ガリウム電界効果トランジスタを製造工1111に示
した断面図である。まず、[@3図−)のように、半絶
縁性砒化ガリウム基板10上にNWiの砒化ガリウム活
性層lik有すウェハ上にシリコン酸化膜(8i0.)
12およびゾ“リコン窒化11(SisN4)13?そ
れぞれ200OA の厚さで成長する。
次に、同図(blのようにフォトレジスト14に用いて
CF4のガスを使ったドライエツチング法によJ)8i
sN413(!: sto、t 2 k−!−y?:
//す:b。
次rc、バッフアートエツチング液(フッ酸:7ツ化ア
ンモニウム−1=6)によpalIN、1Bと8io、
12¥It横方向にエツチングする。 81.N413
は、このバッフアートエツチング液を用いた場合8i0
,12に比べてエツチング速度は2桁以上小さく、その
結果、@3図(C) K示したように上部が狭く、下部
が広い形状に加工される。次に7オトレジスト14を除
去し、7箇ツトキーを形成する金lIiウニI・−ス全
面に蒸着し、第3図(d)のように、フォトレジスト1
6t−用いてゲート15の形成を行う、さらに、同図+
6)のようにゲートの両側にソース16およびドレイン
17のオーイック電極を形成することにより砒化ガリウ
ム電界効果臘トランジスタの基本的な構成が出来上る。
このような構成を有する砒化ガリウム電界効果臘トラン
ジスタ社、第3図(e)に示すように、Vロットキーメ
タルの噛(A点2と誘電体薄1112の断点(B、りと
の間隔を広げることが可能となるから、ゲートの逆方向
耐圧が高くなり、単位ゲート幅あた9の出力を向上させ
ることができる。また、ゲート電極15の形成時に7オ
トレジス)k用いていないので、ウェハの汚染や耐圧の
不安定も防止される。
以上本実JIIi!列では、2種の誘電体薄膜として8
i、N、と8i021用いたが、適当なエツチング液に
対し1桁近くエツチング速度が異なる組合わせであれば
1本発明に適用可能である。また、半導体材料も砒化ガ
リウムに限られる必要もない。[See Figure 1 for over-etching the dielectric thin film.
ml), Gold w44\It was evaporated from vertically upward for 7 steps to create the Toky gate 4't (Figure (b)), and after L, the P photoresist 3 was removed along with the metal 4 above it by lift-off. (Figure (C)). However, in this lift-off gate formation method using a photoresist tube, the gold@4 must be deposited with the photoresist 3 attached, which limits processing and heating before deposition, and also prevents the gold@4 from being deposited. 7 otore resist 3 while wearing
There is a possibility that gas may come out and contaminate the surface of the gallium arsenide sea urchin/S, and the cage with reverse pressure resistance tends to become unstable. In addition, in another conventional method shown in Fig. @2, an opening r is provided in the dielectric thin film 2 on the gallium arsenide active layer 1 using a photoresist 3 (Fig. 2(a)), and the photoresist 3 is After removing the photoresist (Fig. 2(b)), apply the metal layer 4 to the entire surface to form a glue bond (Fig. 2(b)).
The gate 4' is formed by processing gold 14w using
Figure 2 (C)). In this method, since there is no photoresist attached to the sea urchin/S when metal is deposited, the treatment method before metal deposition can be freely selected. There is no element that makes the reverse breakdown voltage Ik of the gate switch metal 4' unstable, as there is no substance that emits gas at the edge of the metal 4 (point A and Since the breaking points (8 points) of the dielectric thin film 112, which is subject to a single strain, coincide or are very close to each other, the reverse breakdown voltage of the 9-gate 4 formed by the 9-method shown in Figure @2 is low. It is an object of the present invention to provide an aP4 body device having an electrode structure in which the electrode and the end of the dielectric thin film do not come into contact without using the lift-off method. An object of the present invention is to provide a field effect transistor having a high gate reverse breakdown voltage and free from wafer contamination and breakdown voltage instability. In particular, the disadvantage that the cage of p1 reverse voltage becomes unstable is eliminated, and by using two types of cast electric thin film 1[v and taking advantage of the difference in etching speed between them, it is possible to remove the edge of the electrode and the dielectric thin film. It is characterized by widening the distance between the break points.Next, the present invention will be explained in detail using the drawings in an actual row. It is a sectional view showing a manufacturing process 1111 of a gallium arsenide field effect transistor according to an actual example.First, as shown in [@3-), a NWi gallium arsenide active layer is formed on a semi-insulating gallium arsenide substrate 10. Silicon oxide film (8i0.) on the wafer
12 and silicon nitride 11 (SisN4) 13? are each grown to a thickness of 200 OA.Next, in the same figure (as shown in BL, photoresist 14 is used and dry etching is performed using CF4 gas). 8i
sN413(!: sto, t 2 k-!-y?:
//su:b. Next rc, palIN, 1B and 8io with buffer etching solution (hydrofluoric acid: ammonium heptadide - 1 = 6),
12¥It is etched in the horizontal direction. 81. N413
is 8i0 when this buffer art etching solution is used.
, 12, the etching speed is more than two orders of magnitude lower, and as a result, the upper part is narrower and the lower part is wider, as shown in Figure 3 (C) K. Next, the 7 photoresist 14 is removed, and the gold lIi sea urchin I-- layer forming the 7 keys is deposited on the entire surface, and the photoresist 1
6t- is used to form the gate 15.
The basic structure of a gallium arsenide field effect transistor is completed by forming the source 16 and drain 17 ohmic electrodes on both sides of the gate as shown in 6). Gallium Arsenide Field Effect Transistor Co., Ltd. has such a configuration. Since it becomes possible to widen the gate electrode 15, the reverse breakdown voltage of the gate increases, and the output per unit gate width can be improved.Also, since the gate electrode 15 is not used when forming the gate electrode 15, Contamination of the wafer and instability of withstand voltage are also prevented.
Although I, N, and 8i021 were used, any combination of etching speeds that differ by nearly one order of magnitude with respect to an appropriate etching solution can be applied to the present invention. Furthermore, the semiconductor material need not be limited to gallium arsenide either.
!1図および11!2図は従来の砒化ガリウム電界効果
トランジスタの製法を示す製造工1断面図、@3図は本
発明の一実施列による砒化ガリウム電 ゛界効果トラ
ンジスタの製造工1!J[K示す断面図である。
1・・・・・・砒化ガリウム活性層、2・・・・・・誘
電体薄膜、3.5・・・・・・フォトレジスト、4・・
・・・・ゲート金属、4 ′・・・・・・ゲート電極、
10・・・・・・半絶縁性基板、11・・・・・・砒化
ガリウム活性層、12・・・・・・SiO,l[,13
・・・・・・S’sNa Wls 14−16・・・
・・・フォトレジスト。
15・・・・・・ゲート電極、16・・・・・・ソース
電極、17・・・・・・ドレイン電極。
(久2
(a]
猶1図
A3β7色
¥2関
讐3図! Figures 1 and 11!2 are cross-sectional views of manufacturing process 1 showing a conventional method for manufacturing a gallium arsenide field effect transistor, and Figure 3 is a cross-sectional view of manufacturing process 1 of a gallium arsenide field effect transistor according to one embodiment of the present invention. It is a sectional view showing J[K. 1...Gallium arsenide active layer, 2...Dielectric thin film, 3.5...Photoresist, 4...
...Gate metal, 4'...Gate electrode,
10... Semi-insulating substrate, 11... Gallium arsenide active layer, 12... SiO, l[, 13
...S'sNa Wls 14-16...
...Photoresist. 15...Gate electrode, 16...Source electrode, 17...Drain electrode. (Ku 2 (a) 1 figure A3 β 7 colors ¥ 2 relationship 3 figures
Claims (1)
薄膜はそれぞれ開口を有し、下部の誘電体薄膜に設けら
れた開口は上部の誘電体薄膜に設けられた開口よりも大
きく、前記上部の誘電体薄膜に設けられた開口を通して
露出する前記半導体層の部分に電極層が被着されている
ことを特徴とする半導体装置。Two types of dielectric thin films are provided on the semiconductor layer, each dielectric thin film has an opening, the opening provided in the lower dielectric thin film is larger than the opening provided in the upper dielectric thin film, A semiconductor device characterized in that an electrode layer is deposited on a portion of the semiconductor layer exposed through an opening provided in the upper dielectric thin film.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1862582A JPS58135667A (en) | 1982-02-08 | 1982-02-08 | Semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP1862582A JPS58135667A (en) | 1982-02-08 | 1982-02-08 | Semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS58135667A true JPS58135667A (en) | 1983-08-12 |
Family
ID=11976797
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP1862582A Pending JPS58135667A (en) | 1982-02-08 | 1982-02-08 | Semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58135667A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6367531A (en) * | 1986-09-10 | 1988-03-26 | Matsushita Electric Ind Co Ltd | Dielectric thin film element and its manufacture |
US5990555A (en) * | 1996-05-14 | 1999-11-23 | Fujitsu Limited | Electronic circuit device with multi-layer wiring |
-
1982
- 1982-02-08 JP JP1862582A patent/JPS58135667A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6367531A (en) * | 1986-09-10 | 1988-03-26 | Matsushita Electric Ind Co Ltd | Dielectric thin film element and its manufacture |
US5990555A (en) * | 1996-05-14 | 1999-11-23 | Fujitsu Limited | Electronic circuit device with multi-layer wiring |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0354464B2 (en) | ||
JPS58135667A (en) | Semiconductor device | |
JPH0472381B2 (en) | ||
JPS61199666A (en) | Field-effect transistor | |
JPH03165526A (en) | Manufacture of field effect transistor | |
JP3211786B2 (en) | Method for manufacturing semiconductor device | |
JP2914022B2 (en) | Method of forming gate electrode | |
JPH02192172A (en) | Superconducting transistor | |
JPS6292478A (en) | Manufacture of semiconductor device | |
JPS6159881A (en) | Semiconductor device and manufacture thereof | |
JPS61116877A (en) | Manufacture of field effect transistor | |
JPS6392062A (en) | Manufacture of field effect transistor | |
JP3153560B2 (en) | Method for manufacturing semiconductor device | |
JPS60198869A (en) | Manufacture of semiconductor device | |
JPS5850434B2 (en) | Method for manufacturing field effect transistors | |
JPS59126676A (en) | Field effect type transistor | |
JPH028454B2 (en) | ||
JPS6239071A (en) | Manufacture of semiconductor device | |
JPS61208877A (en) | Manufacture of schottky gate type field effect transistor | |
JPH0439941A (en) | Field-effect transistor | |
JPH0194673A (en) | Manufacture of field-effect transistor | |
JPS6290979A (en) | Manufacture of semiconductor device | |
JPH05175243A (en) | Manufacture of semiconductor device | |
JPH04212428A (en) | Manufacture of semiconductor device | |
JPS61292967A (en) | Compound semiconductor device |