JPH11291300A - Mold for plastic injection molding, production thereof and injection molding method using mold - Google Patents

Mold for plastic injection molding, production thereof and injection molding method using mold

Info

Publication number
JPH11291300A
JPH11291300A JP9708398A JP9708398A JPH11291300A JP H11291300 A JPH11291300 A JP H11291300A JP 9708398 A JP9708398 A JP 9708398A JP 9708398 A JP9708398 A JP 9708398A JP H11291300 A JPH11291300 A JP H11291300A
Authority
JP
Japan
Prior art keywords
mold
temperature
detection sensor
molding
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9708398A
Other languages
Japanese (ja)
Other versions
JP3400344B2 (en
Inventor
Takeshi Kato
毅 加藤
Hirofumi Tateyama
弘文 舘山
Kiyoshi Suzuki
喜代志 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku Munekata Co Ltd
Original Assignee
Tohoku Munekata Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Munekata Co Ltd filed Critical Tohoku Munekata Co Ltd
Priority to JP09708398A priority Critical patent/JP3400344B2/en
Priority to EP98308470A priority patent/EP0909626A3/en
Priority to US09/174,262 priority patent/US6203731B1/en
Publication of JPH11291300A publication Critical patent/JPH11291300A/en
Application granted granted Critical
Publication of JP3400344B2 publication Critical patent/JP3400344B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Injection Moulding Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mold for injection molding capable of molding a high transfer product within a short cycle under low pressure, a mold producing method and an injection molding method for a plastic product using the mold. SOLUTION: In an injection mold 1, a temp. detection sensor 18 is directly incorporated in the electroforming layer 9 as the molding surface material layer of the mold 1 and allowed to approach the surface of the electroforming layer 9 as near as possible to be integrated therewith. The heating or cooling medium circulated through a heating medium circulating pipeline 8 for regulating the temp. of the mold is controlled while the surface temp. of the mold 1 is detected by the temp. detection sensor 18 to perform the injection molding of a plastic product by using the mold 1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、プラスチック製品
を射出成形するための金型において、この金型の表面に
可及的に接近させて温度検出センサを組み込み、この温
度検出センサの検出温度に基づき金型の温度調整機から
金型の熱媒管路内に供給される加熱用熱媒体及び冷却用
熱媒体の加熱及び冷却温度を制御して、金型温度コント
ローラで設定した金型表面温度となるよう温度制御を行
い、製品に接する金型の表面温度を、材料樹脂が結晶性
の場合は樹脂の融点温度以上、非結晶性樹脂の場合は樹
脂のガラス転移温度以上まで急速に加熱し、樹脂充填時
間中この温度を保持した後、充填完了後は金型の表面を
短時間で急速に冷却することを特徴とする高転写なプラ
スチック製品を低圧で得るプラスチック製品の射出成形
用金型及びこの金型の製法並びにこの金型を用いて行う
プラスチック製品の射出成形法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a mold for injection-molding a plastic product, and incorporates a temperature detection sensor as close as possible to the surface of the mold. The heating and cooling temperatures of the heating heat medium and the cooling heat medium supplied from the mold temperature controller to the heat medium pipe of the mold are controlled based on the mold surface temperature set by the mold temperature controller. The temperature is controlled so that the surface temperature of the mold in contact with the product is rapidly increased to the melting point of the resin or higher if the material is crystalline, or to the glass transition temperature of the resin if the material is non-crystalline. A mold for injection molding of plastic products, which obtains a high-transfer plastic product at a low pressure, characterized in that the surface of the mold is rapidly cooled in a short time after the completion of the filling after maintaining this temperature during the resin filling time. And this money Regarding production methods and injection molding of plastic products performed using this mold.

【0002】[0002]

【従来の技術】金型全体を低温かつ一定温度に制御して
行う従来のプラスチック射出成形では、溶融した熱可塑
性樹脂等の材料樹脂が金型に接する表面から急速に冷却
され厚い固化層を形成、また、熱収縮するに起因して、
金型の表面と製品表面の転写が十分に行われず、フロー
マーク、ウェルド、ひけ等と呼ばれる転写不良が生じ
る。これは、樹脂表面の固い固化層が、樹脂の内圧によ
る変形を阻害して、金型の表面に樹脂表面が密着し、転
写するのを妨げるためである。
2. Description of the Related Art In conventional plastic injection molding in which the entire mold is controlled at a low and constant temperature, a material resin such as a molten thermoplastic resin is rapidly cooled from a surface in contact with the mold to form a thick solidified layer. , Also due to heat shrink,
Transfer between the surface of the mold and the surface of the product is not sufficiently performed, resulting in transfer defects such as flow marks, welds, sink marks, and the like. This is because the hard solidified layer on the resin surface inhibits the deformation of the resin due to the internal pressure, thereby preventing the resin surface from sticking to the surface of the mold and preventing transfer.

【0003】また、樹脂の機械的強度補強のため、ガラ
ス繊維やビーズといったフィラー、ブタジエン等のゴム
粒子を樹脂内に含有する場合、これらと樹脂の熱収縮差
によりガラス等のフィラー、ブタジエン等のゴム粒子が
樹脂表面に残され、微細な凹凸を形成して転写性を悪く
して製品外観が損なわれる。
[0003] When a resin such as filler such as glass fiber or beads and rubber particles such as butadiene are contained in the resin to reinforce the mechanical strength of the resin, a filler such as glass, butadiene or the like is caused by a difference in thermal shrinkage between these and the resin. The rubber particles are left on the resin surface, forming fine irregularities, deteriorating the transferability and impairing the product appearance.

【0004】このような製品の転写不良は、製品の見栄
えを損なって製品価値を低下させると共に、製品表面に
塗装を施す場合にも均質な塗装を阻害して美観を損ね、
補修のための費用が高くなる問題もある。また、極端な
場合、製品に要求される表面平滑精度あるいは外観を満
足できず、製品を無価値なものとする。
[0004] Such poor transfer of the product impairs the appearance of the product and lowers the product value, and also impairs the aesthetic appearance by impeding the uniform coating when coating the product surface.
There is also a problem that the cost for repair is high. In an extreme case, the surface smoothness or appearance required for the product cannot be satisfied, and the product is rendered worthless.

【0005】このような転写不良は、金型内の樹脂圧力
を高圧として樹脂の金型の表面への押しつけを強くした
り、材料樹脂に含入されるフィラー、ゴム粒子等の量の
低減、粒径の小型化等、材料樹脂自体の改良によっても
ある程度は改善できる。しかし、金型内圧を高圧にする
ことは、より高強度な金型や高圧を発生できる大型の成
形機を必要とし、費用が高くなる他、製品自体も内部歪
み、変形の発生等新たな問題を生じる。また、樹脂自体
の改善は、外観面を重視することで、必要な強度等の性
能が満足できなくなる問題も発生する。
[0005] Such poor transfer may be caused by increasing the pressure of the resin in the mold to a high pressure, forcing the resin to press against the surface of the mold, reducing the amount of fillers, rubber particles, etc. contained in the material resin, Improvement can be made to some extent by improving the material resin itself, such as reducing the particle size. However, increasing the internal pressure of the mold to a high pressure requires a higher-strength mold and a large-sized molding machine capable of generating a high pressure, which increases the cost and also causes new problems such as internal distortion and deformation of the product itself. Is generated. In addition, when the appearance of the resin is emphasized in improving the resin itself, there arises a problem that performance such as required strength cannot be satisfied.

【0006】最も転写不良に対し効果が高いのは、金型
の製品に接する面において、材料樹脂が非結晶性の場合
はガラス転移温度以上、結晶性樹脂の場合は融点温度以
上の高温に加熱することである。これは金型の表面を高
温にすることで、金型に接する樹脂の固化層が薄く、変
形しやすくなり、金型の表面を忠実に転写しやすくなる
ためである。
The most effective against transfer failure is that the surface of the mold in contact with the product is heated to a temperature higher than the glass transition temperature when the material resin is non-crystalline and higher than the melting point temperature when the material resin is a crystalline resin. It is to be. This is because when the surface of the mold is heated to a high temperature, the solidified layer of the resin in contact with the mold is thin and easily deformed, and the surface of the mold is easily transferred faithfully.

【0007】しかし、金型の表面を単に加熱すると、製
品表面が必要以上に長い時間高温にさらされ、製品に反
り、変形が生じたりする等の新たな問題を生じる他、成
形サイクルが延びて製品コストが高くなる弊害が生じ
る。また、必要な高い金型表面温度に達しなかったり、
金型表面温度が高過ぎても、製品に必要とされる外観、
形状精度が損なわれ、生産のロスが生じる。したがっ
て、金型の表面の温度を精度良く検出すると共に、金型
の温度応答性を良くして、検出した温度に基づき、金型
の表面を短時間で精度良く、目標とする温度、時間に加
熱、冷却温度制御することが必要不可欠である。
However, when the surface of the mold is simply heated, the product surface is exposed to a high temperature for an unnecessarily long period of time, causing new problems such as warping and deformation of the product, as well as prolonging the molding cycle. There is an adverse effect that the product cost increases. Also, if the required high mold surface temperature is not reached,
Even if the mold surface temperature is too high, the appearance required for the product,
Shape accuracy is impaired, resulting in production losses. Therefore, while accurately detecting the temperature of the mold surface, the temperature response of the mold is improved, and based on the detected temperature, the mold surface can be accurately and quickly set to the target temperature and time. It is essential to control the heating and cooling temperatures.

【0008】従来、金型温度を制御する方法は、金型の
表面温度を直接検出せずに、金型に供給される加熱用熱
媒体及び冷却用熱媒体の温度を媒体配管表面或いは配管
内に挿入した温度検出センサで検出し、この検出温度に
基づき媒体温度を制御して金型温度を制御することが行
われている。また、金型表面温度を直接検出する方法と
しては、温度検出センサを機械加工により金型入れ子内
に設置し、この入れ子ごと金型の表面にはめ込む等の方
法が用いられている。
Conventionally, a method of controlling the temperature of a mold is to directly detect the surface temperature of the mold without directly detecting the surface temperature of the mold. The temperature of the mold is controlled by detecting the temperature with a temperature detection sensor inserted in the mold and controlling the medium temperature based on the detected temperature. Further, as a method of directly detecting the mold surface temperature, a method of installing a temperature detection sensor in a mold nest by machining and fitting the entire nest into the surface of the mold is used.

【0009】また、金型の温度制御の応答性を良くし、
金型加熱時間の短縮、金型温度の制御精度を高めること
を図った装置として、以下の各種のものが提案されてい
る。 金型の外周に誘導コイルを設けたもの(実開昭62−
111832号公報)。 金型に銅パイプから成る高周波誘導コイルを設け、パ
イプ内に冷却水を流すようにしたもの(特開昭63−1
5707号公報)。 電熱ヒータを設けた可動入子を金型に出し入れ可能と
したもの(特開昭63−15719号公報)。
Further, the responsiveness of the temperature control of the mold is improved,
The following various devices have been proposed as devices aiming at shortening the mold heating time and increasing the control accuracy of the mold temperature. Induction coil provided on the outer periphery of the mold (Jpn.
No. 111832). A high-frequency induction coil made of a copper pipe is provided in a mold so that cooling water flows in the pipe (Japanese Patent Laid-Open No. 63-1).
No. 5707). One in which a movable insert provided with an electric heater can be taken in and out of a mold (JP-A-63-15719).

【0010】金型外部に金型温度調節用媒体を急速に
加熱、冷却あるいは加熱、冷却した熱媒体を切り替えて
金型に供給する装置を設け、供給される加熱、冷却用熱
媒体を金型内の温度調節用媒体循環路に通して金型を加
熱、冷却できるようにしたもの(特開昭62−1570
7号、特開昭62−208918号、特公平7−251
15号公報)。
[0010] A device for rapidly heating, cooling or switching between heated and cooled heat mediums and supplying the heated and cooled heat medium to the mold is provided outside the mold. The mold can be heated and cooled by passing through a temperature control medium circulation path in the inside (JP-A-62-1570).
7, JP-A-62-208918, JP-B-7-251
No. 15).

【0011】[0011]

【発明が解決しようとする課題】前述のように、製品の
転写不良は、金型の材料樹脂が流れる表面を高温に加熱
することによって改善できるが、加熱、冷却に時間をか
ければ、成形サイクルが延びて生産性が低下し、製品コ
ストの高騰を招くほか、製品自体反り等の新たな不良が
生じる。また、金型の表面温度の制御精度が悪く、金型
の表面温度として設定される温度、すなわち材料樹脂が
非結晶性樹脂の場合はガラス転移温度、結晶性樹脂の場
合は融点温度より低い金型表面温度のまま成形が行われ
れば、製品に転写不良が発生して生産ロスが生じ、逆に
金型表面温度が高温になりすぎたり、製品が長時間高温
にさらされる場合、材料樹脂の収縮量がさらに大きくな
り、後収縮等によりガラス等のフィラー、ブタジエン等
のゴム粒子が樹脂表面に残され転写不良が再度発生する
問題もある。
As described above, the improper transfer of a product can be improved by heating the surface on which the resin material of the mold flows to a high temperature. However, if the heating and cooling take time, the molding cycle can be improved. As a result, the productivity is lowered, the product cost is increased, and new defects such as warpage of the product itself occur. In addition, the control accuracy of the surface temperature of the mold is poor, and the temperature set as the surface temperature of the mold, that is, the glass transition temperature when the material resin is an amorphous resin, and the temperature lower than the melting point temperature when the material resin is a crystalline resin. If molding is performed at the mold surface temperature, transfer failure occurs in the product, resulting in production loss.Conversely, if the mold surface temperature becomes too high or the product is exposed to high temperature for a long time, the material resin There is also a problem that the amount of shrinkage further increases, and fillers such as glass and rubber particles such as butadiene are left on the resin surface due to post-shrinkage and the like, and transfer failure occurs again.

【0012】したがって、金型の表面の温度を精度良く
検出すると共に、金型の温度応答性を良くして、検出し
た温度に基づき、金型の表面を短時間で精度良く、目標
とする温度、時間に加熱、冷却温度制御することが必要
である。
Therefore, the temperature of the surface of the mold is accurately detected, and the temperature response of the mold is improved. It is necessary to control the heating and cooling temperatures over time.

【0013】しかし、金型の表面温度を制御する方法に
ついても、従来法のように、直接金型の表面温度を検出
せずに、金型に供給される加熱用熱媒体及び冷却用熱媒
体の温度を、熱媒体配管表面あるいは配管内に挿入した
温度検出センサで検出し、この検出温度に基づき熱媒体
温度を制御して金型の表面温度を制御する方法では、加
熱及び冷却用熱媒体温度と金型の表面温度との間におい
て、温度及び加熱、冷却時間に開きが生じ、また、それ
は制御温度によって変化して一定ではない。よって、こ
れら加熱及び冷却用熱媒体温度と金型の表面温度との温
度及び時間的な開きを、事前に全て予測して金型の表面
温度を精度良く、目標とする温度、時間に加熱、冷却制
御することは困難である。
However, the method of controlling the surface temperature of the mold also differs from the conventional method in that the heating medium and the cooling medium supplied to the mold are supplied without directly detecting the surface temperature of the mold. In the method of controlling the temperature of the mold by controlling the temperature of the mold by controlling the temperature of the heat medium based on the detected temperature, the heat medium for heating and cooling Between the temperature and the surface temperature of the mold there is an opening in the temperature and the heating and cooling times, which vary with the control temperature and are not constant. Therefore, the temperature and time difference between the heating and cooling heat medium temperature and the surface temperature of the mold are all predicted in advance, and the surface temperature of the mold is accurately adjusted, and the heating is performed at the target temperature and time. It is difficult to control the cooling.

【0014】温度検出センサを機械加工により金型入れ
子内に設置し、この入れ子ごと金型の表面内にはめ込ん
で金型の表面温度を検出し、この検出温度に基づき加熱
及び冷却用熱媒体温度を制御して金型の表面温度を制御
する方法では、加熱及び冷却用熱媒体温度と金型の表面
温度との間に発生する温度及び温度変化の時間的な開き
を小さくすることができる特徴がある。
A temperature detection sensor is installed in the mold nest by machining, and the nest is fitted into the surface of the mold to detect the surface temperature of the mold. Based on the detected temperature, the temperature of the heating and cooling heat medium is determined. In the method of controlling the surface temperature of the mold by controlling the temperature, it is possible to reduce the time difference between the temperature generated between the heating and cooling heat medium temperature and the surface temperature of the mold and the time change of the temperature change. There is.

【0015】しかし、この方式では、温度検出センサを
機械的加工により入れ子や金型に設置するため、温度検
出センサと入れ子や金型との間に隙間が存在し、伝熱が
悪かったり、また、このような温度検出センサを設置し
た入れ子自体には、加熱及び冷却用熱媒体等を通す管路
のような金型の温度を制御するための手段が設けられな
いことから、やはり、周囲の金型の表面温度と温度検出
センサによる検出温度との間には、温度及び温度変化に
時間的な開きが生じる。
However, in this method, since the temperature detection sensor is installed in the nest or the mold by mechanical processing, a gap exists between the temperature detection sensor and the nest or the mold, and heat transfer is poor, or However, since the nest itself in which such a temperature detection sensor is installed is not provided with a means for controlling the temperature of the mold such as a pipe through which a heat medium for heating and cooling passes, the surroundings are also provided. There is a temporal difference between the surface temperature of the mold and the temperature detected by the temperature detection sensor in terms of temperature and temperature change.

【0016】また、上記に加え、従来の金型構造では、
金型の温度調節用熱媒体管路と金型の温度検出センサは
金型の表面から数十ミリメートルも離れていることか
ら、この距離的な問題から温度及び時間的に開きが生
じ、金型の表面温度を精度良く制御する障害となってい
る。
In addition to the above, in the conventional mold structure,
Since the heat medium pipe for temperature control of the mold and the temperature detection sensor of the mold are several tens of millimeters away from the surface of the mold, the distance problem causes the temperature and time to open, and the mold is opened. This is an obstacle to accurately controlling the surface temperature of the device.

【0017】また、金型の温度応答性を良くし、金型の
加熱時間の短縮、金型の温度の制御精度を高めることを
図った方法についても、従来法には以下のような問題が
ある。前記した,の誘導コイルを設けるものは、金
型内に組み込むのに制約が多く、金型が大型化する。
の電熱ヒータを有する可動入子を設けたものは、金型に
可動入子の挿入部を設けなければならず、金型の構造が
複雑となる。また、加熱手段に汎用性がない。更に、冷
却については自然冷却によるため、成形サイクルが長く
なる。の外部装置より、加熱、冷却用熱媒体を金型内
の温度調節用熱媒体循環管路に通して金型の表面を加
熱、冷却するものは、汎用性があり、かつ金型の構造も
特殊な加工を要さないという利点がある。しかし、通常
設けられている範疇の金型内の温度調節用熱媒体循環路
を使用した場合、加熱、冷却する金型部分の熱容量が大
きいため、熱のロスが生じ、加熱、冷却に時間がかか
る。また、最終的には、金型の表面温度の応答が遅いた
めに、温度の制御精度が悪くなるという問題がある。
[0017] In addition, the conventional method has the following problems in improving the temperature responsiveness of the mold, shortening the heating time of the mold, and increasing the accuracy of controlling the temperature of the mold. is there. With the above-described arrangement in which the induction coil is provided, there are many restrictions on the incorporation into the mold, and the mold becomes large.
In the case where the movable insert having the electric heater is provided, the insertion portion of the movable insert must be provided in the mold, and the structure of the mold becomes complicated. Further, the heating means is not versatile. Furthermore, since the cooling is based on natural cooling, the molding cycle becomes longer. Heating and cooling the mold surface by passing the heat medium for heating and cooling through the heat medium circulation pipe for temperature adjustment in the mold from the external device of the above is versatile and the structure of the mold There is an advantage that no special processing is required. However, when a heat medium circulation path for temperature adjustment in a mold in a category that is usually provided is used, heat loss occurs due to a large heat capacity of a mold portion to be heated and cooled, and it takes time to heat and cool. Take it. In addition, since the response of the surface temperature of the mold is finally slow, there is a problem that the accuracy of controlling the temperature is deteriorated.

【0018】本発明は、上記事情に鑑みて発明されたも
のであり、金型の表面の温度を精度良く検出すると共
に、金型の温度応答性を良くして、検出した温度に基づ
き、金型の表面を短時間で精度良く、目標とする温度、
時間になるように加熱、冷却用熱媒体の温度を制御し
て、高転写な製品を低圧で得ることができるプラスチッ
ク製品の射出成形用金型及びこの金型の製法並びにこの
金型を用いる射出成形法を提案することを目的とする。
The present invention has been made in view of the above circumstances, and accurately detects the temperature of the surface of a mold, improves the temperature response of the mold, and sets the temperature based on the detected temperature. The target temperature,
A mold for injection molding of a plastic product capable of obtaining a high-transfer product at a low pressure by controlling the temperature of a heating and cooling heat medium so that time is reached, a method of manufacturing the mold, and injection using the mold. The aim is to propose a molding method.

【0019】[0019]

【課題を解決するための手段】本発明者らは、上記問題
解決のため、製品に接する金型温度を高温にして行う成
形法及び温度応答性及び温度制御性の良い金型の構造、
金型の製造法、金型温度の検出と制御方法及びその装置
について鋭意研究した。その結果、金型の表面に可及的
に接近して金型の成形表面材料層と一体に温度検出セン
サを組み込むと共に、金型温度調整機から金型に供給さ
れる加熱及び冷却用熱媒体の通る管路を用い、この温度
検出センサで検出した金型の表面温度に基づき、金型温
度調節機から金型に供給される加熱及び冷却用熱媒体の
加熱及び冷却温度を制御して、金型温度コントローラで
設定する目標金型表面温度及びプロファイル、すなわち
金型の表面温度を材料樹脂が結晶性の場合は樹脂の融点
温度以上まで、また、材料樹脂が非結晶性の場合は樹脂
のガラス転移温度以上まで、毎秒2℃以上の昇温速度で
短時間に高速かつ精度良く加熱温度制御し、樹脂充填時
間中、この温度を保持した後、充填完了後は金型の表面
温度を毎秒2℃以上の降温速度で短時間に高速に精度良
く冷却温度制御することで、高転写な製品を低圧で得る
ことができるプラスチック製品の射出成形用金型及びこ
の金型の製法並びにこの金型を用いる射出成形法を完成
するに至った。
Means for Solving the Problems To solve the above problems, the present inventors have proposed a molding method in which the temperature of a mold in contact with a product is raised to a high temperature, and a structure of a mold having good temperature responsiveness and temperature controllability.
The authors have conducted intensive research on mold manufacturing methods, mold temperature detection and control methods, and their apparatuses. As a result, the temperature detection sensor is integrated with the molding surface material layer of the mold as close as possible to the surface of the mold, and the heat medium for heating and cooling supplied to the mold from the mold temperature controller. Using a pipe through which, based on the surface temperature of the mold detected by this temperature detection sensor, by controlling the heating and cooling temperature of the heating and cooling heat medium supplied to the mold from the mold temperature controller, The target mold surface temperature and profile set by the mold temperature controller, i.e., the surface temperature of the mold is higher than the melting point of the resin when the material resin is crystalline, and the resin surface temperature when the material resin is non-crystalline. Heating temperature is controlled quickly and accurately at a temperature rise rate of 2 ° C or more per second up to the glass transition temperature or higher, and after maintaining this temperature during the resin filling time, after the filling is completed, the surface temperature of the mold is changed every second. In a short time at a temperature drop rate of 2 ° C or more By quickly and accurately controlling the cooling temperature, an injection molding die for a plastic product capable of obtaining a high-transferred product at a low pressure, a method for manufacturing the die, and an injection molding method using the die have been completed. Was.

【0020】具体的には、請求項1に記載の発明にあっ
ては、射出成形用金型において、この金型の成形表面材
料層内に温度検出センサを直接組み込むと共に、この温
度検出センサを成形表面に可及的に接近させて成形表面
材料層と一体化したことを特徴とするものである。
Specifically, according to the first aspect of the present invention, in the injection molding die, a temperature detection sensor is directly incorporated in the molding surface material layer of the die, and the temperature detection sensor is mounted on the molding surface material layer. It is characterized in that it is integrated with the molding surface material layer as close as possible to the molding surface.

【0021】更に、請求項2に記載の発明にあっては、
請求項1に記載の発明において、金型の成形表面材料層
が電鋳層で形成されていることを特徴とするものであ
る。
Furthermore, in the invention according to claim 2,
The invention according to claim 1 is characterized in that the molding surface material layer of the mold is formed by an electroformed layer.

【0022】更に、請求項3に記載の発明にあっては、
請求項1又は2記載の発明において、成形表面材料層内
に熱媒管路が形成されていることを特徴とするものであ
る。
Further, in the invention according to claim 3,
The invention according to claim 1 or 2, characterized in that a heat medium pipe is formed in the molding surface material layer.

【0023】更に、請求項4に記載の発明にあっては、
プラスチック射出成形用金型の製法において、金型の成
形表面材料層を電鋳層で形成する際、この電鋳層の形成
途中で、温度検出センサを金型の成形表面材料層内の成
形表面に可及的に接近した位置に配置することにより、
電鋳層内に温度検出センサを直接組み込んで一体化す
る、次に、後から溶出可能な空洞形成材料を用いて金型
の成形表面材料層の裏面に熱媒管路条を形成し、更にこ
の熱媒管路条の外側に電鋳層を形成した後、前記空洞形
成材料を溶出して金型の成形表面材料層内に温度検出セ
ンサ及び熱媒管路を一体に形成することを特徴とするも
のである。
Further, in the invention according to claim 4,
In the method of manufacturing a mold for plastic injection molding, when forming a molding surface material layer of the mold with an electroformed layer, during the formation of the electroformed layer, a temperature detection sensor is used to form a molding surface in the molding surface material layer of the mold. By placing it as close as possible to
The temperature detection sensor is directly incorporated into the electroformed layer and integrated.Next, a heat medium conduit is formed on the back surface of the molding surface material layer of the mold using a cavity forming material that can be eluted later, and further, After forming an electroformed layer outside the heat medium pipe, the cavity forming material is eluted to integrally form the temperature detection sensor and the heat medium pipe in the molding surface material layer of the mold. It is assumed that.

【0024】更に、請求項5に記載の発明にあっては、
プラスチック製品の射出成形法において、金型温度を制
御して行う射出成形において、金型の成形表面材料層の
表面に可及的に接近せしめて温度検出センサを直接組み
込むと共に、熱媒管路を一体に形成した金型を用い、前
記温度検出センサで検出した金型の成形表面温度に基づ
き、金型温度調節機から金型の前記熱媒管路に供給され
る熱媒の温度を制御して、材料樹脂が結晶性の場合は樹
脂の融点温度以上に制御すると共に、材料樹脂が非結晶
性の場合は樹脂のガラス転移温度以上に、金型の表面温
度が毎秒2℃以上の昇温速度になるように加熱用熱媒を
制御して、樹脂充填時間中この温度を保持した後、充填
完了後は金型に供給される冷却用熱媒の温度を金型の表
面温度が毎秒2℃以上の降温速度で降下するように制御
することを特徴とするものである。
Furthermore, in the invention according to claim 5,
In the injection molding method of controlling the temperature of the mold in the injection molding method of plastic products, the temperature detection sensor is directly incorporated by approaching the surface of the molding surface material layer of the mold as much as possible, and the heat medium pipe is connected. The temperature of the heat medium supplied to the heat medium pipe of the mold from the mold temperature controller is controlled based on the molding surface temperature of the mold detected by the temperature detection sensor using the integrally formed mold. When the material resin is crystalline, the temperature is controlled to be equal to or higher than the melting point of the resin. When the material resin is non-crystalline, the temperature is raised to a temperature equal to or higher than the glass transition temperature of the resin and the surface temperature of the mold is 2 ° C./second or more. After controlling the heating medium for heating so as to achieve the speed, and maintaining this temperature during the resin filling time, after the filling is completed, the temperature of the cooling medium supplied to the mold is changed to a surface temperature of the mold of 2 per second. Controlled to drop at a temperature drop rate of over ℃ Is shall.

【0025】更に、請求項6に記載の発明にあっては、
請求項5記載の発明において、金型の成形表面に可及的
に接近して金型の成形表面材料層と一体に形成した温度
検出センサ及び熱媒管路を有する金型を用いて射出成形
する際、前記温度検出センサで検出した金型の表面温度
に基づき、金型温度調節機から金型に供給される媒体の
温度を制御して、金型温度コントローラで設定する目標
金型表面温度及びプロファイルとなるよう温度制御を行
い、高速に加熱、冷却温度を制御する金型の表面部位
を、製品に接する金型の表面の一部もしくは製品可視面
側に接する金型の表面にのみ限定して行うことを特徴と
するものである。
Further, in the invention according to claim 6,
In the invention according to claim 5, injection molding is performed by using a mold having a temperature detection sensor and a heat medium pipe formed integrally with the molding surface material layer of the mold as close as possible to the molding surface of the mold. When controlling the temperature of the medium supplied to the mold from the mold temperature controller based on the mold surface temperature detected by the temperature detection sensor, the target mold surface temperature set by the mold temperature controller The temperature of the mold that controls the heating and cooling temperatures at a high speed is controlled so that it becomes a profile and is limited to only a part of the mold surface in contact with the product or the mold surface in contact with the visible side of the product It is characterized by performing.

【0026】更に、請求項7に記載の発明にあっては、
請求項5又は6記載の発明において、金型の成形表面に
可及的に接近して金型の成形表面材料層と一体に形成し
た温度検出センサ及び媒体管路を有する金型を用いて射
出成形する際、前記温度検出センサで検出した金型の表
面温度に基づき、金型温度調節機から金型に供給される
媒体の温度を制御して、金型温度コントローラで設定す
る目標金型表面温度及びプロファイルとなるよう温度制
御を行い、高速に加熱、冷却温度を制御する範囲を複数
の区分に分割し、この区分ごとに温度検出センサ及び熱
媒管路を設け、区分ごとに異なる加熱温度、冷却温度あ
るいは温度制御プロファイルで成形することを特徴とす
るものである。
Further, in the invention according to claim 7,
In the invention according to claim 5 or 6, the injection is performed by using a mold having a temperature detection sensor and a medium pipe formed integrally with the molding surface material layer of the mold as close as possible to the molding surface of the mold. During molding, the temperature of the medium supplied to the mold from the mold temperature controller is controlled based on the surface temperature of the mold detected by the temperature detection sensor, and the target mold surface set by the mold temperature controller. Performs temperature control to obtain a temperature and profile, divides the range for controlling heating and cooling temperature at high speed into a plurality of sections, and provides a temperature detection sensor and a heat medium pipe for each section, and different heating temperatures for each section It is characterized by molding with a cooling temperature or a temperature control profile.

【0027】上記発明において、急速に金型の表面を加
熱又は冷却を行うことができると共に、温度応答性の良
い金型の構造及び製造方法を、本発明者らは次の特許出
願において提案している。特願平9−284817号、
特願平8−184441号。
In the above invention, the present inventors have proposed in the following patent application a structure and a manufacturing method of a mold capable of rapidly heating or cooling the surface of the mold and having good temperature responsiveness. ing. Japanese Patent Application No. 9-284817,
Japanese Patent Application No. 8-184441.

【0028】また、本発明は、一般的な射出成形法のみ
ならず、ガスアシスト成形、圧縮成形法等にも適用可能
である。本発明のプラスチック射出成形方法及びその装
置の適用できる樹脂は、ポリオレフィン樹脂、ポリスチ
レン樹脂、ABS樹脂などの汎用性樹脂やポリカードネ
ード樹脂、ポリアミド樹脂などの工業用樹脂だけでな
く、各種の樹脂を混合したものや補強材或いは意匠性と
してメタリック、石目調の感じを出すための有機、無機
充填材、さらには発泡剤を混入したものも使用できる。
The present invention is applicable not only to a general injection molding method but also to a gas assist molding method, a compression molding method and the like. The resin to which the plastic injection molding method and the apparatus of the present invention can be applied includes not only general-purpose resins such as polyolefin resins, polystyrene resins, and ABS resins, but also industrial resins such as polycarbonate resins and polyamide resins, as well as various resins. A mixed material, a reinforcing material or an organic or inorganic filler for giving a metallic or stone-like feeling as a design property, or a material mixed with a foaming agent can also be used.

【0029】[0029]

【作用】上記のように、射出成形において、金型の表面
に近接して金型の表面と一体形成した温度検出センサ及
び金型温度調整機から金型に供給される加熱及び冷却用
熱媒体管路を用い、前記温度検出センサで検出した金型
の表面温度に基づき、金型温度調整機から金型に供給さ
れる加熱及び冷却用熱媒体の加熱及び冷却を温度を制御
して、金型温度コントローラで設定する目標金型の表面
温度及びプロファイル、すなわち金型の表面温度を材料
樹脂が結晶性の場合は樹脂の融点温度以上まで、また、
材料樹脂が非結晶性の場合は樹脂のガラス転移温度以上
まで、毎秒2℃以上の昇温速度で短時間に高速かつ精度
良く加熱温度制御し、樹脂充填時間中、この温度を保持
した後、樹脂充填完了後は、金型の表面温度を毎秒2℃
以上の降温速度で短時間に高速に精度良く冷却温度制御
を行った場合、充填時精度良く目標とする金型の表面温
度に加熱・制御されている金型の表面に接する樹脂表面
の固化層は、従来の低温な金型の表面温度での成形に較
べ、発達しにくく、薄く変形しやい。このため、樹脂の
内圧で容易に樹脂表面が金型の表面に密着して転写が良
くなり得る。かつ、密着により、樹脂及び金型の表面間
に高い物理的接合強度が得られて、樹脂の離型が遅れ、
この間に充分な強度まで固化層が発達するために樹脂の
熱収縮による影響が少ない。このため、材料樹脂中、収
縮の小さいガラス等のフィラー、ブタジエン等のゴム粒
子の樹脂表面への選択的残存に起因する転写不良が発生
せず、高転写な製品を得ることができる。
As described above, in the injection molding, a heating medium for heating and cooling supplied to the mold from the temperature detection sensor and the mold temperature controller formed integrally with the surface of the mold in the vicinity of the surface of the mold. Using a pipeline, based on the surface temperature of the mold detected by the temperature detection sensor, the temperature of the heating and cooling of the heating and cooling heat medium supplied to the mold from the mold temperature controller is controlled, and The surface temperature and profile of the target mold set by the mold temperature controller, that is, the surface temperature of the mold to the melting point temperature of the resin or higher when the material resin is crystalline,
When the material resin is non-crystalline, the heating temperature is controlled quickly and accurately to a temperature higher than the glass transition temperature of the resin at a rate of 2 ° C. or more per second in a short time, and after maintaining this temperature during the resin filling time, After filling the resin, the surface temperature of the mold is set to 2 ℃ per second
When the cooling temperature control is performed quickly and precisely at the above-mentioned cooling rate, the solidified layer of the resin surface in contact with the mold surface, which is heated and controlled to the target mold surface temperature with high accuracy during filling Is less likely to develop and is thinner and more deformable than conventional low-temperature mold surface temperature molding. For this reason, the resin surface can easily adhere to the surface of the mold due to the internal pressure of the resin, and the transfer can be improved. And, due to the close contact, a high physical bonding strength is obtained between the resin and the surface of the mold, and the release of the resin is delayed,
During this time, since the solidified layer develops to a sufficient strength, the influence of the heat shrinkage of the resin is small. For this reason, in the material resin, poor transfer does not occur due to the selective remaining of the filler such as glass and the rubber particles such as butadiene and the like on the resin surface with small shrinkage, so that a high-transfer product can be obtained.

【0030】しかも、樹脂表面が変形しやすいために、
金型の表面に樹脂表面を押し付けて転写させるのに必要
な樹脂内圧は低くてすみ、樹脂の固化層が薄いことか
ら、樹脂の圧力損失が小さく、従来の成形法より低い金
型内圧での成形が可能である。
Moreover, since the resin surface is easily deformed,
The internal pressure of the resin required to transfer the resin surface by pressing it against the surface of the mold is low, and the solidified layer of the resin is thin, so the pressure loss of the resin is small and the internal pressure of the mold is lower than that of the conventional molding method. Molding is possible.

【0031】また、特に本発明の特徴である金型の表面
温度を精度良く検出すると共に、金型の温度応答性を良
くして、検出した温度に基づき金型の表面を短時間で精
度良く、目標とする温度、時間に加熱、冷却温度を制御
することによって、次のような問題点が改善される。
In particular, the surface temperature of the mold, which is a feature of the present invention, is accurately detected, the temperature response of the mold is improved, and the surface of the mold is accurately detected in a short time based on the detected temperature. By controlling the heating and cooling temperatures to target temperatures and times, the following problems can be solved.

【0032】材料樹脂が高温な金型の表面に必要以上の
時間さらされた場合、材料樹脂の収縮量がさらに大きく
なり、後収縮によりガラス等のフィラー、ブタジエン等
のゴム粒子等、樹脂に混入されているものが樹脂表面に
残され、転写性不良が再発する。また、この場合には、
成形サイクルが長くなったり、余分なエネルギーが必要
となるなど、生産性及び消費エネルギーの問題が生じ、
製品コストも増加する。また、金型の表面温度の検出或
いは金型温度の制御精度が悪く、必要な高い金型の表面
温度に達しなければ、製品に必要とされる外観、形状精
度が損なわれ、生産のロスが生じる。さらに、金型の表
面を高温にして成形する場合、冷却への切り替わりが遅
いと製品に反り等の変形も生じやすい。
When the material resin is exposed to the surface of the high-temperature mold for an unnecessarily long time, the amount of shrinkage of the material resin further increases, and the resin is mixed into the resin such as fillers such as glass and rubber particles such as butadiene by post-shrinkage. What is removed is left on the resin surface, and poor transferability recurs. Also, in this case,
Productivity and energy consumption issues such as longer molding cycles and extra energy are required,
Product costs also increase. In addition, the accuracy of detecting the surface temperature of the mold or controlling the temperature of the mold is poor. If the required surface temperature of the mold is not reached, the appearance and shape accuracy required for the product are impaired, resulting in a loss of production. Occurs. Furthermore, when molding is performed at a high temperature on the surface of the mold, if the switching to cooling is slow, the product is likely to be deformed such as warping.

【0033】[0033]

【発明の実施の形態】本発明の実施例を以下に詳述す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail.

【0034】[0034]

【実施例1】本実施例は請求項1〜7に対応しており、
図1〜図3に基づいてその詳細を説明する。図1は、本
発明に係るプラスチック射出成形用金型の一実施例を示
す概略図である。図1に示すプラスチック射出成形用金
型1は大きく分けてコア2(製品非可視面側)とキャビ
ティー3(製品可視面側)からなり、共に図外の射出成
形機に連結されており、コア2側とキャビティー3側と
が開閉可能にされている。コア2とキャビティー3に
は、製品4の外形状に対応した凹部5が形成されてお
り、キャビティー3の所定箇所に設けられたスプルー6
を介して図外の射出成形機から溶融プラスチックが凹部
5に流し込まれ、製品4が成形されるようになってい
る。この製品4の製品可視面側は、金型表面高速加熱、
冷却用入れ駒7内の金型温度調節用熱媒体循環管路8内
を流れる熱媒体により成形時高速に高温に加熱、冷却さ
れ、固化後にプラスチック射出成形用金型1から取り出
される。金型表面高速加熱、冷却用入れ駒7内の金型温
度調節用熱媒体循環管路8内を流れる熱媒体は、金型温
度調節機14内の金型温度調節用媒体加熱装置15及び
金型温度調節用媒体冷却装置16を介して加熱、冷却さ
れ、金型表面高速加熱、冷却用入れ駒7に供給される。
Embodiment 1 This embodiment corresponds to claims 1 to 7,
The details will be described with reference to FIGS. FIG. 1 is a schematic view showing one embodiment of a plastic injection mold according to the present invention. The plastic injection mold 1 shown in FIG. 1 is roughly divided into a core 2 (product invisible surface side) and a cavity 3 (product visible surface side), and both are connected to an injection molding machine (not shown). The core 2 side and the cavity 3 side can be opened and closed. A recess 5 corresponding to the outer shape of the product 4 is formed in the core 2 and the cavity 3, and a sprue 6 provided at a predetermined position of the cavity 3 is formed.
The molten plastic is poured into the concave portion 5 from an injection molding machine (not shown) through the through-hole, and the product 4 is molded. The product visible surface side of this product 4 is a mold surface high-speed heating,
During molding, the mold is heated and cooled to a high temperature at a high speed by a heat medium flowing in the heat medium circulation pipe 8 for adjusting the temperature of the mold in the cooling piece 7, and is taken out of the plastic injection mold 1 after solidification. The heat medium flowing in the heat medium circulation pipe 8 for controlling the temperature of the mold in the mold 7 for high-speed heating and cooling of the mold surface is supplied to the mold temperature adjusting medium heating device 15 in the mold temperature controller 14 and the mold. It is heated and cooled through the mold temperature adjusting medium cooling device 16 and supplied to the mold insert 7 for high-speed heating and cooling of the mold surface.

【0035】なお、金型温度調節機14内の金型温度コ
ントローラ17は、金型表面高速加熱、冷却用入れ駒7
内の金型の表面電鋳層9内の金型の表面に可及的に接近
して予め埋め込まれ、金型の表面と一体形成された金型
温度検出センサ18により検出される金型の表面温度に
基づき、予め設定された金型温度となるよう、金型温度
調節用熱媒体加熱装置15及び金型温度調節用媒体冷却
装置16の出力を制御して金型温度調節用熱媒体循環管
路8内を流れる媒体温度をコントロールする。
The mold temperature controller 17 in the mold temperature controller 14 is provided with a mold surface high-speed heating and cooling insert 7.
The surface of the mold in the mold is embedded as close as possible to the surface of the mold in the electroformed layer 9 and is detected by a mold temperature detection sensor 18 integrally formed with the surface of the mold. Based on the surface temperature, the output of the mold temperature adjusting heat medium heating device 15 and the mold temperature adjusting medium cooling device 16 is controlled so that the mold temperature becomes a preset mold temperature. The temperature of the medium flowing in the pipe 8 is controlled.

【0036】図2及び図3は、図1の金型表面高速加
熱、冷却用入れ駒7の説明図である。製品可視面に接す
る金型表面材料層としての電鋳層9はNi−Crで形成
されており、内部には金型温度検出センサ18が埋め込
まれ、また、金型温度調節用熱媒体循環管路8が形成さ
れている。この金型温度検出センサ18を、金型表面電
鋳層9の形成途中で金型表面電鋳層9内の金型の表面に
可及的に接近した位置になるよう金型の表面から0.5
mmの位置に直接埋め込み(組み込み)、更に電鋳層9
で被覆して金型の表面と一体に形成して金型の表面温度
に近い温度が測定できるよう構成した。金型温度調節用
熱媒体循環管路8は、金型表面電鋳層9の金型内部面に
ロストワックスで管路条を形成後に電鋳層9でこの表面
を被覆し、その後ロストワックスを溶出させて空洞化
し、金型表面電鋳層9と一体構成とした。
FIGS. 2 and 3 are illustrations of the insert 7 for high-speed heating and cooling of the mold surface shown in FIG. An electroformed layer 9 as a mold surface material layer in contact with the visible surface of the product is formed of Ni-Cr, a mold temperature detection sensor 18 is embedded therein, and a heat medium circulation tube for mold temperature adjustment. A passage 8 is formed. The mold temperature detection sensor 18 is set at 0 mm from the surface of the mold so that the mold temperature detection sensor 18 is positioned as close as possible to the surface of the mold in the mold surface electroformed layer 9 during the formation of the mold surface electroformed layer 9. .5
mm directly embedded (embedded) and further electroformed layer 9
And formed integrally with the surface of the mold so that a temperature close to the surface temperature of the mold can be measured. The heat medium circulating conduit 8 for controlling the temperature of the mold is formed by forming a conduit strip with lost wax on the inner surface of the mold of the mold surface electroformed layer 9 and then covering the surface with the electroformed layer 9 and then removing the lost wax. It was eluted and hollowed out to form an integral structure with the mold surface electroformed layer 9.

【0037】金型温度調節用熱媒体循環管路8の断面形
状は、5mm×5mmの正方形で、ピッチは12mmで
ある。この金型温度調節用熱媒体循環管路8と、製品に
接する金型表面高速加熱、冷却用入れ駒7の表面間距離
は2mmとした。また、金型温度調節用熱媒体循環管路
8の裏面には、2mm程度厚のエポキシ及び補強材で構
成される断熱層10を設け、急加熱、冷却を行う金型部
位を熱的に隔離することで熱容量を小さく構成した。
The cross-sectional shape of the heat medium circulating conduit 8 for controlling the temperature of the mold is a square of 5 mm × 5 mm, and the pitch is 12 mm. The distance between the heat medium circulation pipe 8 for mold temperature adjustment and the insert 7 for high-speed heating and cooling of the mold surface in contact with the product was 2 mm. In addition, a heat insulating layer 10 made of epoxy and reinforcing material having a thickness of about 2 mm is provided on the back surface of the heat medium circulation pipe 8 for controlling the temperature of the mold, so that the mold portion for performing rapid heating and cooling is thermally isolated. By doing so, the heat capacity was reduced.

【0038】図1の装置と、金型の表面に実験用に別に
設置した温度検出センサを用い、この温度検出センサに
より検出される金型の表面温度に基づき、金型の表面温
度が100℃となるよう金型温度調節用媒体加熱装置1
5及び金型温度調節用媒体冷却装置16の出力を制御し
て金型温度調節用熱媒体循環管路8内を流れる媒体温度
をコントロールした。この時の金型の表面に実験用に別
に設置した温度検出センサと、金型表面高速加熱、冷却
用入れ駒7の金型表面電鋳層9内の金型の表面に近接し
て予め埋め込まれ、金型の表面と一体形成された金型温
度検出センサ18の検出温度の比較を、図4に示す。
Using the apparatus shown in FIG. 1 and a temperature detection sensor separately installed for experiments on the surface of the mold, the surface temperature of the mold is 100 ° C. based on the surface temperature of the mold detected by the temperature detection sensor. Mold temperature adjusting medium heating device 1
5 and the output of the mold temperature adjusting medium cooling device 16 were controlled to control the temperature of the medium flowing in the mold temperature adjusting heat medium circulation pipe 8. At this time, a temperature detection sensor separately installed for the experiment on the surface of the mold and a mold surface in the mold surface electroformed layer 9 of the mold surface high-speed heating / cooling insert 7 are embedded in advance near the surface of the mold. FIG. 4 shows a comparison of the detected temperatures of the mold temperature detecting sensor 18 integrally formed with the surface of the mold.

【0039】金型の表面に実験用に別に設置した温度検
出センサの検出温度が、設定金型温度の100℃に到達
した時の金型温度検出センサ18の検出温度は、102
℃で両検出温度の差は2℃と小さく、また、検出温度が
最高温度に到達した時の両検出温度の時間的差も1秒
と、温度的にも時間的にも両温度検出センサの差は極め
て微少であった。
When the temperature detected by the temperature detection sensor separately installed on the surface of the mold for the experiment reaches 100 ° C. of the set mold temperature, the temperature detected by the mold temperature detection sensor 18 is 102
The difference between the two detected temperatures at 2 ° C is as small as 2 ° C, and the time difference between the two detected temperatures when the detected temperature reaches the maximum temperature is 1 second. The difference was very small.

【0040】[0040]

【実施例2】図1の装置を用い、製品可視面側金型表面
温度を加熱時120℃、冷却時60℃となるよう金型温
度コントローラ17を設定し、加熱時の金型の表面温度
を測定した。加熱時に温度検出センサ18が示した最高
温度は121℃、金型の表面温度の最高は122℃で、
金型温度コントローラ17の設定温度との差は2℃(誤
差2%)と高い制御精度であった。また、加熱に要した
時間は18秒、冷却に要した時間は25秒であった。
EXAMPLE 2 Using the apparatus shown in FIG. 1, the mold temperature controller 17 was set so that the surface temperature of the mold on the visible side of the product was 120 ° C. during heating and 60 ° C. during cooling, and the surface temperature of the mold during heating was set. Was measured. The maximum temperature indicated by the temperature detection sensor 18 during heating is 121 ° C., and the maximum surface temperature of the mold is 122 ° C.
The difference from the set temperature of the mold temperature controller 17 was 2 ° C. (error 2%), indicating high control accuracy. The time required for heating was 18 seconds, and the time required for cooling was 25 seconds.

【0041】[0041]

【実施例3】図1の装置とガラスフィラー20%含入の
ABS樹脂(15G20,ガラス転移温度98℃,日本
合成ゴム)を用い、製品可視面側金型表面温度が樹脂ガ
ラス転移温度前後になるよう金型表面コントローラ17
の設定温度を変化させて射出成形を行った。この時、金
型の表面温度は、樹脂充填完了まで加熱後、短時間で冷
却する条件(条件)とした。また、この時の成形サイ
クル(射出〜保圧〜冷却〜取出し)は60秒、加熱に要
した時間は18秒、冷却に要した時間は25秒で、金型
の表面温度の昇温速度毎秒2℃、降温速度毎秒2℃とし
た。得られた製品の可視面光沢度測定結果を、図7に示
す。
Example 3 Using the apparatus of FIG. 1 and an ABS resin (15G20, glass transition temperature 98 ° C., Japan Synthetic Rubber) containing 20% of glass filler, the surface temperature of the mold on the visible side of the product was around the resin glass transition temperature. Mold surface controller 17
The injection molding was carried out while changing the set temperature of. At this time, the surface temperature of the mold was set to a condition (condition) in which heating was performed until resin filling was completed, followed by cooling in a short time. The molding cycle (injection-holding pressure-cooling-removal) at this time was 60 seconds, the time required for heating was 18 seconds, the time required for cooling was 25 seconds, and the rate of temperature increase of the mold surface temperature per second. The temperature was set to 2 ° C. and the rate of temperature decrease was set to 2 ° C. per second. FIG. 7 shows the measurement result of the glossiness of the visible surface of the obtained product.

【0042】上記条件では、金型温度コントローラ1
7の設定温度100℃、樹脂充填時の金型の表面温度が
樹脂のガラス転移温度以上の101℃かつ昇温、冷却速
度毎秒2℃で、製品面光沢度92の最大値となり、ガラ
スフィラー入りにもかかわらず、高光沢な製品が得られ
た。光沢は転写性の指標であり、型面を樹脂のガラス転
移温度以上に精度良く加熱後、高速に冷却することで高
い転写性を得ることができた。また、製品の取出し時点
において、製品は充分に固化しており、製品の反り等の
変形、離型の問題は生じなかった。
Under the above conditions, the mold temperature controller 1
7, the temperature of the mold at the time of filling the resin is 101 ° C. which is higher than the glass transition temperature of the resin, and the temperature is raised and the cooling rate is 2 ° C./sec. Nevertheless, a high gloss product was obtained. Gloss is an index of transferability, and high transferability could be obtained by heating the mold surface to a temperature higher than the glass transition temperature of the resin and then cooling it at high speed. Further, at the time of taking out the product, the product was sufficiently solidified, and there was no problem of deformation such as warpage of the product and release.

【0043】[0043]

【実施例4】実施例3と同じ装置と耐衝撃性ポリスチレ
ン(HT560 ガラス転移温度97℃,出光石油化
学)を用い、製品可視面側金型表面温度が樹脂ガラス転
移温度以上になるよう金型温度コントローラ17の設定
温度を樹脂充填時120℃、冷却時60℃に設定し、高
速に加熱、冷却して射出成形を行った(条件)。ま
た、この時の成形サイクル(射出〜保圧〜冷却〜取出
し)は60秒、加熱に要した時間は18秒、冷却に要し
た時間は25秒で、金型の表面温度の昇温速度毎秒3
℃、降温速度毎秒2℃とした。なお、金型の表面にはダ
イヤモンドチップで大きさの異なる四角錐状の圧痕を予
め付けておき、金型の表面と樹脂表面の圧痕の幅を計測
し、この幅の割合(樹脂表面圧痕幅/金型表面圧痕幅)
を転写率として転写性を評価した。得られた製品、金型
の圧痕転写率の測定結果を、図8に示す。
EXAMPLE 4 Using the same apparatus as in Example 3 and a high-impact polystyrene (HT560 glass transition temperature 97 ° C., Idemitsu Petrochemical), a mold in which the surface temperature of the mold on the product visible side is higher than the resin glass transition temperature. The temperature set in the temperature controller 17 was set to 120 ° C. when the resin was filled and 60 ° C. when the resin was cooled. The molding cycle (injection-holding pressure-cooling-removal) at this time was 60 seconds, the time required for heating was 18 seconds, the time required for cooling was 25 seconds, and the rate of temperature increase of the mold surface temperature per second. 3
° C, and the rate of temperature decrease was 2 ° C per second. In addition, square pyramid-shaped indentations of different sizes were previously attached to the surface of the mold with a diamond chip, and the widths of the indentations on the mold surface and the resin surface were measured, and the ratio of this width (resin surface indentation width) was measured. / Die surface impression width)
Was evaluated as the transfer rate to evaluate the transferability. FIG. 8 shows the measurement results of the indentation transfer rate of the obtained product and mold.

【0044】上記条件では、10ミクロンから100
ミクロンまでの大きさの異なる四角錐状の圧痕のいずれ
においても、転写率は、ほぼ100%と高い値を示し
た。また、保圧有無のいずれの条件でも、ほぼ同じ転写
率であり、保圧を要さず低圧で高い転写率を得ることが
できた。
Under the above conditions, from 10 microns to 100
The transfer rate showed a high value of almost 100% in any of the pyramid-shaped indentations having different sizes down to microns. In addition, the transfer rate was almost the same under both the conditions with and without the pressure holding, and a high transfer rate could be obtained at a low pressure without the need for the pressure holding.

【0045】[0045]

【実施例5】実施例1の金型温度検出センサ18は、金
型表面電鋳層9の形成途中で金型表面電鋳層9内の金型
の表面に近い位置に埋め込んでいるが、金型表面電鋳層
9が薄く、金型表面電鋳層9裏面と金型の表面との温度
差が小さい場合には、金型表面電鋳層9と断熱層10の
間に設置することも可能である。
Embodiment 5 The mold temperature detecting sensor 18 of Embodiment 1 is embedded in the mold surface electroformed layer 9 at a position close to the surface of the mold during the formation of the mold surface electroformed layer 9. When the mold surface electroformed layer 9 is thin and the temperature difference between the back surface of the mold surface electroformed layer 9 and the surface of the mold is small, it should be installed between the mold surface electroformed layer 9 and the heat insulating layer 10. Is also possible.

【0046】[0046]

【実施例6】実施例1の金型温度検出センサ18は、金
型の表面自体に異種金属を蒸着あるいは溶射等により電
極状に形成し、これを薄膜温度検出センサとすることも
可能である。
Sixth Embodiment The mold temperature detecting sensor 18 of the first embodiment can be formed into an electrode shape by depositing or spraying a dissimilar metal on the surface of the mold itself, and this can be used as a thin film temperature detecting sensor. .

【0047】[0047]

【比較例1】実施例1と同じ実験装置を用い、更に実験
用に金型の表面に入れ子を組み込んだ温度検出センサを
入れ子ごと設置し、また、金型温度調節機の熱媒体管路
内に温度検出センサを設置して温度を検出した。金型の
表面に実験用に別に設置した温度検出センサにより検出
される金型の表面温度に基づき、金型の表面温度が10
0℃になるよう、金型温度調節用熱媒体加熱装置15及
び金型温度調節用熱媒体冷却装置16の出力を制御して
金型温度調節用熱媒体循環管路8内を流れる媒体温度を
コントロールした。この時の金型の表面に入れ子ごと組
み込んだ温度検出センサと、金型温度調節機の熱媒体管
路内に設置した温度検出センサの検出温度を、図4に示
す。
COMPARATIVE EXAMPLE 1 The same experimental apparatus as in Example 1 was used, and a temperature detection sensor having a nest incorporated on the surface of the mold was further installed for the experiment, and the inside of the heat medium pipe of the mold temperature controller was also installed. The temperature was detected by installing a temperature sensor. Based on the surface temperature of the mold detected by a temperature detection sensor separately installed for the experiment on the surface of the mold, the surface temperature of the mold is 10
The temperature of the medium flowing in the mold temperature adjusting heat medium circulation pipe 8 is controlled by controlling the outputs of the mold temperature adjusting heat medium heating device 15 and the mold temperature adjusting heat medium cooling device 16 so as to be 0 ° C. Controlled. FIG. 4 shows the temperature detected by the temperature detection sensor incorporated into the mold surface together with the nest and the temperature detection sensor installed in the heat medium conduit of the mold temperature controller at this time.

【0048】金型の表面に実験用に別に設置した温度検
出センサの検出温度が、設定金型温度の100℃に到達
した時の金型の表面に入れ子ごと組み込んだ温度検出セ
ンサの検出温度は89℃で、両検出温度の差は11℃と
大きく、また、検出温度が最高温度に到達した時の両検
出温度の時間的差も2秒と、温度的にも時間的にも両温
度検出センサの差は大きかった。同じく金型温度調節機
の熱媒体管路内に設置した温度検出センサの検出温度
も、金型の表面温度との差が16℃と大きく、また、最
高温度に到達した時の時間的差も3秒と、温度的にも時
間的にも両温度検出センサの差は大きかった。
When the temperature detected by the temperature detection sensor separately installed for the experiment on the surface of the mold reaches 100 ° C. of the set mold temperature, the temperature detected by the temperature detection sensor integrated with the nest on the surface of the mold is: At 89 ° C, the difference between the two detected temperatures is as large as 11 ° C. When the detected temperature reaches the maximum temperature, the time difference between the two detected temperatures is 2 seconds. The difference between the sensors was large. Similarly, the temperature detected by the temperature detection sensor installed in the heat medium pipe of the mold temperature controller also has a large difference of 16 ° C from the surface temperature of the mold, and the time difference when the maximum temperature is reached. The difference between the two temperature detection sensors was 3 seconds, which was large in terms of both temperature and time.

【0049】[0049]

【比較例2】金型温度検出センサを、金型表面電鋳層9
内の金型の表面に近接して埋め込まれた金型温度検出セ
ンサ18から、比較例1の金型の表面に入れ子ごと組み
込んだ温度検出センサに変更した以外は、実施例2と同
じ装置を用い、製品可視面側金型の表面温度を加熱時1
20℃、冷却時60℃となるよう金型温度コントローラ
17を設定し、加熱時の金型の表面温度を測定した。加
熱時に金型の表面に入れ子ごと組み込んだ温度検出セン
サが示した最高温度は119℃、金型の表面温度の最高
は128℃で、金型温度コントローラ17の設定温度と
の差は8℃(誤差7%)と低い温度制御精度であった。
また、加熱に要した時間は21秒、冷却に要した時間は
29秒と、実施例2に比較して、時間が7秒(16%)
長くなった。
[Comparative Example 2] A mold temperature detection sensor was used as the mold surface electroformed layer 9.
The same apparatus as in Example 2 was used except that the mold temperature detection sensor 18 embedded near the surface of the mold inside was changed to the temperature detection sensor embedded in the mold surface of Comparative Example 1 together with the nest. When using, the surface temperature of the product visible surface side mold is heated 1
The mold temperature controller 17 was set to 20 ° C. and 60 ° C. during cooling, and the surface temperature of the mold during heating was measured. The maximum temperature indicated by the temperature detection sensor incorporated into the mold surface together with the nest at the time of heating is 119 ° C., the maximum surface temperature of the mold is 128 ° C., and the difference from the temperature set by the mold temperature controller 17 is 8 ° C. The temperature control accuracy was as low as 7%.
The time required for heating was 21 seconds, and the time required for cooling was 29 seconds, which was 7 seconds (16%) as compared with Example 2.
It became longer.

【0050】[0050]

【比較例3】実施例3と同じ実験装置、樹脂を用い、製
品可視面側金型の表面温度が樹脂ガラス転移温度前後に
なるよう金型温度コントローラ17の設定温度を変化さ
せて射出成形を行った。この時、金型の表面温度は樹脂
の充填から冷却まで定温に制御する条件とした(条件
)。また、この時の成形サイクル(射出〜保圧〜冷却
〜取出し)は60秒、加熱に要した時間は18秒、冷却
(加熱温度定温保持)時間は25秒で、金型の表面温度
の昇温速度毎秒2℃、降温速度は加熱温度定温保持のた
め毎秒0℃とした。得られた製品の可視面光沢度測定結
果を、図7に示す。
Comparative Example 3 Using the same experimental apparatus and resin as in Example 3, injection molding was performed by changing the set temperature of the mold temperature controller 17 so that the surface temperature of the product visible surface side mold was around the resin glass transition temperature. went. At this time, the surface temperature of the mold was controlled to a constant temperature from resin filling to cooling (condition). At this time, the molding cycle (injection-holding pressure-cooling-unloading) was 60 seconds, the time required for heating was 18 seconds, and the cooling time (heating temperature kept at a constant temperature) was 25 seconds, and the surface temperature of the mold was increased. The heating rate was 2 ° C./sec, and the cooling rate was 0 ° C./sec to maintain the heating temperature at a constant temperature. FIG. 7 shows the measurement result of the glossiness of the visible surface of the obtained product.

【0051】上記条件でも、金型の表面温度が、樹脂
のガラス転移温度付近では、製品可視面の光沢度は約9
0とガラスフィラー入りにもかかわらず高光沢な製品が
得られたが、実施例3に較べて光沢度は低下した。ま
た、金型の表面温度を樹脂のガラス転移温度以上とする
と製品可視面の光沢度は著しく低下し、更に製品の取出
し時点において、製品は充分に固化しておらず、製品の
反り等の変形、離型の問題が生じた。
Even under the above conditions, when the surface temperature of the mold is near the glass transition temperature of the resin, the glossiness of the visible surface of the product is about 9%.
Although a product with high gloss was obtained despite containing 0 and a glass filler, the glossiness was lower than that of Example 3. Also, if the surface temperature of the mold is higher than the glass transition temperature of the resin, the glossiness of the visible surface of the product is significantly reduced, and at the time of removal of the product, the product is not sufficiently solidified and the product is deformed such as warpage. The problem of mold release occurred.

【0052】[0052]

【比較例4】実施例3の金型表面高速加熱、冷却用入れ
駒7を鋼材S55C製で金型温度調節用熱媒体循環管路
8が横穴状に2本機械加工してある通常の金型の構造を
模擬した鋼材入れ駒19に交換し、また、金型温度コン
トローラ17に入力される温度を鋼材入れ駒19の表面
に入れ子にして組み込んだ温度検出センサ18に変更し
た以外は、実施例3と同じ装置、樹脂を用い、樹脂充填
時の製品可視面側が樹脂ガラス転移温度前後になるよう
金型温度コントローラ17の設定温度を変化させて射出
成形を行った。製品面の光沢が、最大値を示したのは金
型温度コントローラ17の設定温度を87℃、金型の表
面温度が樹脂のガラス転移温度以上の100℃のとき
で、これ以上低くても高くても、光沢度すなわち転写性
は低下する傾向を示した。また、この時の成形サイクル
(射出〜保圧〜冷却〜取出し)は84秒、加熱に要した
時間は39秒、冷却に要した時間は40秒で、金型の表
面温度の昇温速度毎秒1℃、降温速度毎秒1℃であっ
た。成形サイクルも、実施例2に較べ40%長くなっ
た。製品可視面の光沢度測定結果も、光沢度88と実施
例3の製品光沢℃92に較べて低下した。
COMPARATIVE EXAMPLE 4 A mold for high-speed heating and cooling of the mold surface of Example 3 is made of steel material S55C, and two heat medium circulation pipes 8 for mold temperature adjustment are machined into a horizontal hole. Except that the mold was replaced with a steel insert 19 simulating the structure of the mold, and the temperature input to the mold temperature controller 17 was changed to a temperature detection sensor 18 nested on the surface of the steel insert 19 and incorporated. Injection molding was performed using the same apparatus and resin as in Example 3, while changing the set temperature of the mold temperature controller 17 so that the visible side of the product at the time of filling the resin was around the resin glass transition temperature. The gloss of the product surface showed the maximum value when the temperature set by the mold temperature controller 17 was 87 ° C. and the surface temperature of the mold was 100 ° C. which was higher than the glass transition temperature of the resin. However, the gloss, that is, the transferability, tended to decrease. The molding cycle (injection-holding pressure-cooling-removal) at this time was 84 seconds, the time required for heating was 39 seconds, the time required for cooling was 40 seconds, and the rate of temperature increase of the mold surface temperature per second. The temperature was 1 ° C., and the rate of temperature decrease was 1 ° C. per second. The molding cycle was also 40% longer than in Example 2. The result of measuring the glossiness of the visible surface of the product was also lower than the glossiness of 88 and the product gloss of 92 in Example 3.

【0053】[0053]

【比較例5】実施例4と同じ装置、樹脂を用い、金型温
度コントローラ17の設定温度を60℃一定として射出
成形を行った(条件)。得られた製品、金型の圧痕転
写率の測定結果を、図8に示す。上記条件では、30
ミクロン以下の四角錐状圧痕では、転写率は0%となっ
た。また、保圧有の条件では保圧無しの条件に較べ、転
写率が若干良化するものの、実施例4のような高い転写
率は得られなかった。
COMPARATIVE EXAMPLE 5 Using the same apparatus and resin as in Example 4, injection molding was performed while the temperature set by the mold temperature controller 17 was kept constant at 60 ° C. (condition). FIG. 8 shows the measurement results of the indentation transfer rate of the obtained product and mold. Under the above conditions, 30
The transfer rate was 0% for the pyramidal indentations of submicron size. Further, although the transfer rate was slightly improved under the condition with the pressure holding compared to the condition without the pressure holding, a high transfer rate as in Example 4 could not be obtained.

【0054】[0054]

【比較例6】実施例4の金型表面高速加熱、冷却用入れ
駒7を鋼材S55C製で金型温度調節用熱媒体循環管路
8が横穴状に2本機械加工してある通常の金型の構造を
模擬した鋼材入れ駒19に交換し、また、金型温度コン
トローラ17に入力される温度を鋼材入れ駒19の表面
に入れ子にして組み込んだ温度検出センサ18に変更し
た以外は、実施例4と同じ装置を用い、製品可視面側金
型の表面温度を加熱時120℃、冷却時60℃となるよ
う金型温度コントローラ17を設定し、加熱時の金型の
表面温度を測定した。加熱時に鋼材入れ駒19の裏面側
に設置した金型温度検出センサ18が示した最高温度は
122℃、金型の表面温度の最高は137℃で、金型の
表面温度は目的とする温度より遥かに高くなり、金型温
度コントローラ17の設定温度との差は17℃(誤差1
7%)と大きく、低い温度制御精度であった。また、加
熱に要した時間は76秒、冷却に要した時間は77秒
と、サイクルが256%も長くなり、必要な金型の表面
温度に対し余分な加熱、冷却を行った分エネルギー損失
も大きかった。
COMPARATIVE EXAMPLE 6 A mold for high-speed heating and cooling of the mold surface of Example 4 is made of steel material S55C, and two heat medium circulation pipes 8 for mold temperature adjustment are machined into a horizontal hole. Except that the mold was replaced with a steel insert 19 simulating the structure of the mold, and the temperature input to the mold temperature controller 17 was changed to a temperature detection sensor 18 nested on the surface of the steel insert 19 and incorporated. Using the same apparatus as in Example 4, the mold temperature controller 17 was set so that the surface temperature of the product visible surface side mold was 120 ° C. during heating and 60 ° C. during cooling, and the surface temperature of the mold during heating was measured. . The maximum temperature indicated by the mold temperature detection sensor 18 installed on the back side of the steel work piece 19 during heating is 122 ° C., the maximum surface temperature of the mold is 137 ° C., and the surface temperature of the mold is higher than the target temperature. The temperature is much higher, and the difference from the set temperature of the mold temperature controller 17 is 17 ° C. (error 1).
7%) and low temperature control accuracy. In addition, the time required for heating is 76 seconds, and the time required for cooling is 77 seconds, which means that the cycle becomes 256% longer. It was big.

【0055】[0055]

【発明の効果】以上に詳述した本発明に係る射出成形用
金型及びこの金型の製法並びにこの金型を用いたプラス
チック製品の射出成形法によれば、金型の成形表面温度
を直接検出して熱媒体の温度を制御するすることができ
るので、高転写な製品を精度良くかつ成形サイクルを延
ばすことなく、しかも低圧で得ることができ、品質並び
にコストの面からもメリットが大きい。又、従来の金型
及び成形法に比較して、製品不良を大幅に低減すること
ができる。
According to the injection-molding mold and the method for producing this mold according to the present invention described above in detail, and the method for injection-molding plastic products using this mold, the molding surface temperature of the mold is directly controlled. Since the temperature of the heat medium can be controlled by detecting the temperature, a high-transfer product can be obtained with high accuracy without increasing the molding cycle and at a low pressure, which is advantageous in terms of quality and cost. In addition, product defects can be significantly reduced as compared with conventional molds and molding methods.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の成形法の実施例に係わる射出成形用金
型の一例を示す断面図。
FIG. 1 is a sectional view showing an example of an injection mold according to an embodiment of the molding method of the present invention.

【図2】金型表面高速加熱、冷却用入れ駒を、裏面側
(反製品面側)から見た断面図。
FIG. 2 is a cross-sectional view of the insert for high-speed heating and cooling of the mold surface as viewed from the back side (non-product side).

【図3】A−A′線断面図。FIG. 3 is a sectional view taken along line AA ′.

【図4】検出温度の比較例の説明図。FIG. 4 is an explanatory diagram of a comparative example of a detected temperature.

【図5】比較例4で用いた鋼材入れ駒を、裏面側(反製
品面側)から見た断面図。
FIG. 5 is a cross-sectional view of the steel insert used in Comparative Example 4, as viewed from the back side (non-product side).

【図6】B−B′線断面図。FIG. 6 is a sectional view taken along line BB ′.

【図7】光沢度の比較例の説明図。FIG. 7 is an explanatory diagram of a comparative example of glossiness.

【図8】転写率の比較例の説明図。FIG. 8 is an explanatory diagram of a comparative example of a transfer rate.

【符号の説明】[Explanation of symbols]

1 プラスチック射出成形用金型 2 コア 3 キャビティー 4 製品 5 凹部 6 スプルー 7 金型表面高速加熱、冷却用入れ駒 8 金型温度調節用熱媒体循環管路 9 金型表面電鋳層 10 断熱層 11 金型温度調節用熱媒体入口 12 金型温度調節用熱媒体出口 13 金型温度調節用熱媒体管路 14 金型温度調節機 15 金型温度調節用熱媒体加熱装置 16 金型温度調節用熱媒体冷却装置 17 金型温度コントローラ 18 金型温度検出センサ 19 鋼材入れ駒 20 鋼材 DESCRIPTION OF SYMBOLS 1 Mold for plastic injection molding 2 Core 3 Cavity 4 Product 5 Concave part 6 Sprue 7 Insert for high speed heating and cooling of mold surface 8 Heat medium circulation line for mold temperature control 9 Mold surface electroformed layer 10 Heat insulation layer 11 Heat medium inlet for mold temperature control 12 Heat medium outlet for mold temperature control 13 Heat medium pipe for mold temperature control 14 Mold temperature controller 15 Heat medium heating device for mold temperature control 16 Mold temperature control Heat medium cooling device 17 Mold temperature controller 18 Mold temperature detection sensor 19 Steel insert 20 Steel

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 射出成形用金型において、この金型の成
形表面材料層内に温度検出センサを直接組み込むと共
に、この温度検出センサを成形表面に可及的に接近させ
て成形表面材料層と一体化したことを特徴とするプラス
チック射出成形用金型。
In an injection molding die, a temperature detection sensor is directly incorporated in a molding surface material layer of the mold, and the temperature detection sensor is brought as close as possible to a molding surface to form a molding surface material layer. A plastic injection mold that is integrated.
【請求項2】 金型の成形表面材料層が電鋳層で形成さ
れていることを特徴とする請求項1記載のプラスチック
射出成形用金型。
2. The plastic injection mold according to claim 1, wherein the molding surface material layer of the mold is formed of an electroformed layer.
【請求項3】 成形表面材料層内に熱媒管路が形成され
ていることを特徴とする請求項1又は2記載のプラスチ
ック射出成形用金型。
3. The plastic injection mold according to claim 1, wherein a heat medium pipe is formed in the molding surface material layer.
【請求項4】 金型の成形表面材料層を電鋳層で形成す
る際、この電鋳層の形成途中で、温度検出センサを金型
の成形表面材料層内の成形表面に可及的に接近した位置
に配置することにより、電鋳層内に温度検出センサを直
接組み込んで一体化する、 次に、後から溶出可能な空洞形成材料を用いて金型の成
形表面材料層の裏面に熱媒管路条を形成し、更にこの熱
媒管路条の外側に電鋳層を形成した後、前記空洞形成材
料を溶出して金型の成形表面材料層内に温度検出センサ
及び熱媒管路を一体に形成するプラスチック射出成形用
金型の製法。
4. When forming a molding surface material layer of a mold with an electroformed layer, a temperature detection sensor is applied to the molding surface in the molding surface material layer of the mold as much as possible during the formation of the electroformed layer. By arranging them at close positions, the temperature detection sensor is directly incorporated into the electroformed layer and integrated. Next, heat is applied to the back surface of the molding surface material layer of the mold using a cavity forming material that can be eluted later. After forming a medium pipe line, and further forming an electroformed layer outside the heat medium pipe line, the cavity forming material is eluted to form a temperature detection sensor and a heat medium pipe in the molding surface material layer of the mold. A method of manufacturing a plastic injection mold that integrally forms a road.
【請求項5】 金型温度を制御して行う射出成形におい
て、金型の成形表面材料層の表面に可及的に接近せしめ
て温度検出センサを直接組み込むと共に、熱媒管路を一
体に形成した金型を用い、前記温度検出センサで検出し
た金型の成形表面温度に基づき、金型温度調節機から金
型の前記熱媒管路に供給される熱媒の温度を制御して、
材料樹脂が結晶性の場合は樹脂の融点温度以上に制御す
ると共に、材料樹脂が非結晶性の場合は樹脂のガラス転
移温度以上に、金型の表面温度が毎秒2℃以上の昇温速
度になるように加熱用熱媒を制御して、樹脂充填時間中
この温度を保持した後、充填完了後は金型に供給される
冷却用熱媒の温度を金型の表面温度が毎秒2℃以上の降
温速度で降下するように制御することを特徴とするプラ
スチック製品の射出成形法。
5. In injection molding performed by controlling the temperature of a mold, a temperature detection sensor is directly incorporated by approaching the surface of a molding surface material layer of the mold as much as possible, and a heat medium pipe is integrally formed. Using the mold, based on the molding surface temperature of the mold detected by the temperature detection sensor, by controlling the temperature of the heat medium supplied to the heat medium pipe of the mold from a mold temperature controller,
When the material resin is crystalline, the temperature is controlled to be higher than the melting point of the resin. When the material resin is non-crystalline, the temperature is raised to a temperature higher than the glass transition temperature of the resin. After controlling the heat medium for heating so as to maintain this temperature during the resin filling time, after the filling is completed, the temperature of the heat medium for cooling supplied to the mold is increased by 2 ° C. or more per second. An injection molding method for a plastic product, characterized in that the temperature is controlled to drop at a temperature decreasing rate.
【請求項6】 金型の成形表面に可及的に接近して金型
の成形表面材料層と一体に形成した温度検出センサ及び
熱媒管路を有する金型を用いて射出成形する際、前記温
度検出センサで検出した金型の表面温度に基づき、金型
温度調節機から金型に供給される媒体の温度を制御し
て、金型温度コントローラで設定する目標金型表面温度
及びプロファイルとなるよう温度制御を行い、高速に加
熱、冷却温度を制御する金型の表面部位を、製品に接す
る金型の表面の一部もしくは製品可視面側に接する金型
の表面にのみ限定して行う請求項5記載のプラスチック
製品の射出成形法。
6. Injection molding using a mold having a temperature detection sensor and a heat medium pipe formed integrally with a molding surface material layer of the mold as close as possible to the molding surface of the mold. Based on the surface temperature of the mold detected by the temperature detection sensor, by controlling the temperature of the medium supplied to the mold from the mold temperature controller, the target mold surface temperature and profile set by the mold temperature controller and Temperature control is performed so that the surface area of the mold that controls the heating and cooling temperatures at high speed is limited to only a part of the mold surface in contact with the product or the mold surface in contact with the product visible surface side. An injection molding method for the plastic product according to claim 5.
【請求項7】 金型の成形表面に可及的に接近して金型
の成形表面材料層と一体に形成した温度検出センサ及び
媒体管路を有する金型を用いて射出成形する際、前記温
度検出センサで検出した金型の表面温度に基づき、金型
温度調節機から金型に供給される媒体の温度を制御し
て、金型温度コントローラで設定する目標金型表面温度
及びプロファイルとなるよう温度制御を行い、高速に加
熱、冷却温度を制御する範囲を複数の区分に分割し、こ
の区分ごとに温度検出センサ及び熱媒管路を設け、区分
ごとに異なる加熱温度、冷却温度あるいは温度制御プロ
ファイルで成形する請求項5又は6記載のプラスチック
製品の射出成形法。
7. When injection molding is performed using a mold having a temperature detection sensor and a medium pipe formed integrally with a molding surface material layer of the mold as close as possible to a molding surface of the mold. Based on the surface temperature of the mold detected by the temperature detection sensor, the temperature of the medium supplied to the mold from the mold temperature controller is controlled to become the target mold surface temperature and profile set by the mold temperature controller. The temperature is controlled in such a manner that the range for controlling the heating and cooling temperatures at high speed is divided into a plurality of sections, and a temperature detection sensor and a heating medium pipe are provided for each section, and the heating temperature, the cooling temperature or the temperature which differs for each section. 7. The injection molding method for a plastic product according to claim 5, wherein the plastic product is molded with a control profile.
JP09708398A 1997-10-17 1998-04-09 Injection molding of plastic products Expired - Fee Related JP3400344B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP09708398A JP3400344B2 (en) 1998-04-09 1998-04-09 Injection molding of plastic products
EP98308470A EP0909626A3 (en) 1997-10-17 1998-10-16 Method and apparatus for injection moulding plastics
US09/174,262 US6203731B1 (en) 1997-10-17 1998-10-16 Method for injection molding of plastic products having excellent transcription properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09708398A JP3400344B2 (en) 1998-04-09 1998-04-09 Injection molding of plastic products

Publications (2)

Publication Number Publication Date
JPH11291300A true JPH11291300A (en) 1999-10-26
JP3400344B2 JP3400344B2 (en) 2003-04-28

Family

ID=14182757

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09708398A Expired - Fee Related JP3400344B2 (en) 1997-10-17 1998-04-09 Injection molding of plastic products

Country Status (1)

Country Link
JP (1) JP3400344B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514224A (en) * 2001-10-26 2005-05-19 アクララ バイオサイエンシーズ, インコーポレイテッド Systems and methods for injection micro-replication of microfluidic substrates
JP2005329555A (en) * 2004-05-18 2005-12-02 Mitsubishi Heavy Ind Ltd Mold
US20100170782A1 (en) * 2006-08-02 2010-07-08 Szokolay Robert E Mold Tooling with Integrated Thermal Management Fluid Channels and Method
EP2258543A2 (en) 2009-06-05 2010-12-08 Hitachi Industrial Equipment Systems Co., Ltd. Method and apparatus for controlling heating and cooling of transfer unit in precision hot press apparatus
JP4767955B2 (en) * 2004-09-06 2011-09-07 プリーアムス ジステーム テヒノロギース アーゲー Molding device with connectable pressure or temperature sensor
WO2011114378A1 (en) * 2010-03-18 2011-09-22 三菱重工プラスチックテクノロジー株式会社 Injection molding method, method for manufacturing molded product, and injection molding device
JP2012020514A (en) * 2010-07-15 2012-02-02 Nissan Motor Co Ltd Injection molding method and injection mold
JP2022501239A (en) * 2018-10-05 2022-01-06 キストラー ホールディング アクチエンゲゼルシャフト Methods for controlling injection molding systems

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005514224A (en) * 2001-10-26 2005-05-19 アクララ バイオサイエンシーズ, インコーポレイテッド Systems and methods for injection micro-replication of microfluidic substrates
JP2005329555A (en) * 2004-05-18 2005-12-02 Mitsubishi Heavy Ind Ltd Mold
JP4767955B2 (en) * 2004-09-06 2011-09-07 プリーアムス ジステーム テヒノロギース アーゲー Molding device with connectable pressure or temperature sensor
US8403659B2 (en) * 2006-08-02 2013-03-26 Robert E. Szokolay Mold tooling with integrated thermal management fluid channels and method
US20100170782A1 (en) * 2006-08-02 2010-07-08 Szokolay Robert E Mold Tooling with Integrated Thermal Management Fluid Channels and Method
US8735781B2 (en) 2009-06-05 2014-05-27 Hitachi Industrial Equipment Systems Co., Ltd. Method and apparatus for controlling heating and cooling of transfer unit in precision hot press apparatus
EP2258543A2 (en) 2009-06-05 2010-12-08 Hitachi Industrial Equipment Systems Co., Ltd. Method and apparatus for controlling heating and cooling of transfer unit in precision hot press apparatus
WO2011114378A1 (en) * 2010-03-18 2011-09-22 三菱重工プラスチックテクノロジー株式会社 Injection molding method, method for manufacturing molded product, and injection molding device
JP5345730B2 (en) * 2010-03-18 2013-11-20 三菱重工プラスチックテクノロジー株式会社 INJECTION MOLDING METHOD, MOLDED PRODUCT MANUFACTURING METHOD, AND INJECTION MOLDING DEVICE
US8741193B2 (en) 2010-03-18 2014-06-03 Mitsubishi Heavy Industries Plastic Technology Co., Ltd. Injection molding method, molded-article producing method, and injection molding apparatus
JP2012020514A (en) * 2010-07-15 2012-02-02 Nissan Motor Co Ltd Injection molding method and injection mold
JP2022501239A (en) * 2018-10-05 2022-01-06 キストラー ホールディング アクチエンゲゼルシャフト Methods for controlling injection molding systems
US11926085B2 (en) 2018-10-05 2024-03-12 Kistler Holding Ag Method for controlling an injection molding system

Also Published As

Publication number Publication date
JP3400344B2 (en) 2003-04-28

Similar Documents

Publication Publication Date Title
US6203731B1 (en) Method for injection molding of plastic products having excellent transcription properties
KR100850308B1 (en) Synthetic resin molding mold
EP1389517B1 (en) Method of controlling a shut-off nozzle with heating unit and cooling unit for hot runner systems of injection molding machines
JP2001113580A (en) Injection molding machine
JPH11291300A (en) Mold for plastic injection molding, production thereof and injection molding method using mold
JP2005138366A (en) Precise die
JPH10315292A (en) Method and device for plastic molding
JP4674241B2 (en) Method for heating molding mold and method for producing resin molded product
JPH1029215A (en) Mold for molding plastic product and manufacture of the mold
JP3946813B2 (en) Molding method to improve sink marks
JP2000000865A (en) Method for injection molding plastic
JP2010105363A (en) Temperature controller for molding die device, and molding die system
JPH11115013A (en) Plastic injection molding method
JPH1177762A (en) Injection molding die and manufacture of injection molded product
Kazmer et al. Towards controllability of injection molding
CN113910560B (en) Injection mold and application thereof
JP2009202348A (en) Molding equipment
JP2003112246A (en) Die for metal alloy injection molding
JP3058613B2 (en) Mold for plastic product molding
JPH11268081A (en) Mold for plastic molding
JP3379907B2 (en) Mold for injection molding of plastic products and method of manufacturing this mold
JPS59142108A (en) Mold for molding resin
JP2002530222A (en) Mold temperature control method for injection molding
JPH04173313A (en) Mold for injection molding and injection molding method using said mold
JPH0596576A (en) Mold

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees