JPH11164492A - Battery charging circuit and battery charger - Google Patents

Battery charging circuit and battery charger

Info

Publication number
JPH11164492A
JPH11164492A JP9339420A JP33942097A JPH11164492A JP H11164492 A JPH11164492 A JP H11164492A JP 9339420 A JP9339420 A JP 9339420A JP 33942097 A JP33942097 A JP 33942097A JP H11164492 A JPH11164492 A JP H11164492A
Authority
JP
Japan
Prior art keywords
circuit
resistor
voltage
charging
reference line
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9339420A
Other languages
Japanese (ja)
Other versions
JP3180188B2 (en
Inventor
Ichiro Yokomizo
伊知郎 横溝
Eiji Nakagawa
英二 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohm Co Ltd
Original Assignee
Rohm Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co Ltd filed Critical Rohm Co Ltd
Priority to JP33942097A priority Critical patent/JP3180188B2/en
Priority to GB9825419A priority patent/GB2331639B/en
Priority to CN98123026A priority patent/CN1089959C/en
Publication of JPH11164492A publication Critical patent/JPH11164492A/en
Application granted granted Critical
Publication of JP3180188B2 publication Critical patent/JP3180188B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a battery charging circuit and battery charger for lithium ion battery or the like, which is able to restrain variance in detected charging current and conduct proper charging. SOLUTION: This device involves a charging current supply circuit 2, which supplies prescribed current to a battery 3 via a charging current detecting resistor R, and a charging current detection circuit 9. The charging current detection circuit 9 is provided with a voltage follower which receives power supply for the operation with a power source side reference line +Vc connected to the first terminal 6 on the charging current supply circuit 2 side of the resistor R and involves an input terminal to a second terminal 7 on the battery 3 side of the resistor R, and a converting circuit involving a resistor R6 , which receives a current value according to the potential difference between a reference line +Vc and the output of the voltage follower and converts it into a voltage signal the reference of which is a reference line on a ground side.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、蓄電池充電回路
および電池充電装置に関し、詳しくは、製品ごとの検出
充電電流のばらつきを抑え、適正充電ができるチウム・
イオン蓄電池等の蓄電池充電回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a storage battery charging circuit and a battery charging device, and more particularly, to a lithium-ion battery capable of suppressing variation in detected charging current for each product and performing proper charging.
The present invention relates to a storage battery charging circuit such as an ion storage battery.

【0002】[0002]

【従来の技術】リチウム・イオン二次蓄電池等の充電
は、蓄電池が放電後の状態にあものとすれば、例えば3
00mAの定電流での充電が行われ、次にかなり充電さ
れて充電状態が進んだ場合には定電圧での充電形態に切
り換わり、この定電圧充電の下で、充電電流が例えば3
0mA以下となったとき、あるいは充電電圧が所定値以
上になったとき、十分に充電が行われたものとして充電
を終了させる制御により行われる。
2. Description of the Related Art Charging of a lithium-ion secondary storage battery or the like can be performed, for example, by charging the storage battery in a state after discharging, for example, by 3
When charging is performed at a constant current of 00 mA, and then the battery is considerably charged and the charging state advances, the charging mode is switched to a constant voltage charging mode.
When the voltage becomes 0 mA or less, or when the charging voltage becomes a predetermined value or more, it is determined that the charging has been sufficiently performed, and the charging is terminated.

【0003】図2に、このような従来の電池充電回路の
例を示す。8は、電池充電装置であって、1はそのマイ
クロコンピュータ等からなるコントロール回路、2はそ
の制御信号に応じて充電動作を開始又は停止する充電電
流供給回路であり、駆動回路2aとMOSFET出力ト
ランジスタ2bとからなる。3は、検出抵抗Rを介して
充電電流供給回路2からの充電電流により充電されるリ
チウム・イオン電池(以下電池)、4は、前記の検出抵
抗Rを有する充電電流検出回路,5は、A/D変換回路
(A/D)であある。なお、Dは、充電電流供給回路2
の出力トランジスタ2bと抵抗Rとの間に設けられた過
充電防止用のダイオードである。この回路の全体的な充
電動作としては、電池3が装填されたことを検出してコ
ントロール回路1が充電開始信号を充電電流供給回路2
に送出してその駆動回路2aを制御し、この供給回路2
を動作させて電池3に充電を行う。この充電過程におい
て充電電流検出回路4により現在の充電電流値を検出
し、これをA/D5によりA/D変換してコントロール
回路1に送出する。コントロール回路1は、現在の充電
電流値を基準値と比較して充電状態を判定し、充電終了
状態になったときに、充電電流供給回路2を停止させ
る。
FIG. 2 shows an example of such a conventional battery charging circuit. Reference numeral 8 denotes a battery charger, 1 denotes a control circuit including the microcomputer and the like, 2 denotes a charging current supply circuit that starts or stops a charging operation according to the control signal, and includes a driving circuit 2a and a MOSFET output transistor. 2b. Reference numeral 3 denotes a lithium ion battery (hereinafter referred to as a battery) charged by the charging current from the charging current supply circuit 2 via the detection resistor R, 4 denotes a charging current detection circuit having the detection resistor R, and 5 denotes A / D conversion circuit (A / D). D is the charging current supply circuit 2
Is an overcharge preventing diode provided between the output transistor 2b and the resistor R. As the overall charging operation of this circuit, the control circuit 1 detects that the battery 3 is loaded, and the control circuit 1 sends a charging start signal to the charging current supply circuit 2.
To control the driving circuit 2a,
Is operated to charge the battery 3. In this charging process, the current value of the charging current is detected by the charging current detection circuit 4, the A / D conversion is performed by the A / D 5, and the converted value is transmitted to the control circuit 1. The control circuit 1 compares the current charging current value with a reference value to determine the charging state, and stops the charging current supply circuit 2 when the charging is ended.

【0004】ここで、充電電流検出回路4は、検出抵抗
Rの両端の端子電圧を受ける減算回路で構成される。こ
の減算回路は、オペアンプあるいは差動増幅回路4aの
(+)入力と(−)入力にそれぞれ等しい分圧比の分圧
抵抗R1,R2からなる分圧回路と分圧抵抗R3,R4の分
圧回路を設けて検出抵抗Rの両端子6,7の電圧V1と
V2の差の電圧を出力電圧Voとして得る。なお、分圧抵
抗R3,R4のうち抵抗R4が差動増幅回路4aの帰還抵
抗であり、抵抗R3が基準抵抗となっている。このと
き、差動増幅回路4aは、反転動作と非反転動作とを同
時に行う回路であって、その出力側の検出電圧Voは、
次の式で与えられる。 Vo=V1(R3+R4)R2/(R1+R2)R3−V2(R4
/R3) ここで、R1=R2=R3=R4とすれば、Vo=V1−V2
となる。ただし、R1,R2,R3,R4は、抵抗R1,R
2,R3,R4のそれぞれの抵抗値とする。
Here, the charging current detection circuit 4 is formed by a subtraction circuit that receives a terminal voltage between both ends of the detection resistor R. This subtraction circuit comprises a voltage dividing circuit composed of voltage dividing resistors R1 and R2 having a voltage dividing ratio equal to the (+) input and (-) input of the operational amplifier or the differential amplifier circuit 4a, and a voltage dividing circuit of the voltage dividing resistors R3 and R4. To obtain a voltage difference between the voltages V1 and V2 of the terminals 6 and 7 of the detection resistor R as the output voltage Vo. Note that, of the voltage dividing resistors R3 and R4, the resistor R4 is a feedback resistor of the differential amplifier circuit 4a, and the resistor R3 is a reference resistor. At this time, the differential amplifier circuit 4a is a circuit that performs an inverting operation and a non-inverting operation at the same time, and the detection voltage Vo on the output side is:
It is given by the following equation. Vo = V1 (R3 + R4) R2 / (R1 + R2) R3-V2 (R4
/ R3) Here, if R1 = R2 = R3 = R4, Vo = V1-V2
Becomes However, R1, R2, R3, and R4 are resistors R1, R2
2, R3 and R4.

【0005】[0005]

【発明が解決しようとする課題】しかし、このような充
電電流検出回路を用いると、抵抗R1,R2,R3,R4の
4つの抵抗値のばらつきにより、製造される充電装置ご
とに検出電圧VoがV1−V2とはならず、ばらつきが生
じて充電完了を検出する検出電圧がそれぞれに相違して
くる。その結果、検出される充電電流値が充電装置によ
って異なる。この場合、充電完了電流値の検出が小さい
方にばらついた装置は、充電完了手前で電池充電が終了
するために、その充電電池は、完全に充電が行われない
電池使用になり、使用時間が短くなる。一方、充電完了
電流値の検出が大きい方にばらついた装置は、たとえ過
充電防止のダイオードDが設けられていても、多少過充
電となり、電池寿命に影響を与える。この発明の目的
は、このような従来技術の問題点を解決するものであっ
て、製品ごとに検出充電電流のばらつきを抑え、適正充
電ができるチウム・イオン蓄電池等の蓄電池充電回路お
よび電池充電装置を提供することにある。
However, when such a charging current detection circuit is used, the detection voltage Vo is changed for each manufactured charging device due to variations in the four resistance values of the resistors R1, R2, R3, and R4. The voltage does not become V1−V2, but varies, and the detection voltages for detecting the completion of charging differ from each other. As a result, the detected charging current value differs depending on the charging device. In this case, the device in which the detection of the charging completion current value varies to the smaller side, the battery charging ends before the completion of charging, and the charged battery uses a battery that is not completely charged, and the usage time is shortened. Be shorter. On the other hand, in a device in which the detection of the charging completion current value varies to a large value, even if the overcharge prevention diode D is provided, the device is slightly overcharged, which affects the battery life. SUMMARY OF THE INVENTION An object of the present invention is to solve such a problem of the prior art, and suppresses the variation of the detected charging current for each product, and enables a proper charging of a storage battery charging circuit such as a lithium ion storage battery and a battery charging device. Is to provide.

【0006】[0006]

【課題を解決するための手段】このような目的を達成す
るこの発明の電池充電回路および充電装置の構成は、所
定の電流を蓄電池に充電電流値検出用の抵抗を介して供
給する充電電流供給回路と充電電流の検出回路とを備え
ていて、検出回路が、抵抗の充電電流供給回路側の第1
の端子に電源側の基準ラインが接続されて電力供給を受
けて動作しかつ抵抗の蓄電池側の第2の端子に入力端子
が接続されたボルテージフォロアと、基準ラインとボル
テージフォロアの出力との電位差に応じた電流値を受け
て接地側の基準ラインを基準とした電圧信号に変換する
抵抗を有する変換回路とからなるものである。
SUMMARY OF THE INVENTION A battery charging circuit and a charging apparatus according to the present invention for achieving the above object provide a charging current supply for supplying a predetermined current to a storage battery via a resistor for detecting a charging current value. And a detection circuit for detecting the charging current, wherein the detection circuit includes a first circuit on the charging current supply circuit side of the resistor.
The voltage difference between the reference line and the output of the voltage follower, wherein the voltage follower is connected to the power supply side reference line and connected to the power supply side to operate by receiving the power supply and the input terminal is connected to the resistor storage battery side second terminal. And a conversion circuit having a resistor for receiving a current value corresponding to the current value and converting the current value into a voltage signal based on the ground-side reference line.

【0007】[0007]

【発明の実施形態】このように、この発明にあっては、
ボルテージフォロアを設けることで、このボルテージフ
ォロアの出力電圧として充電電流値の検出抵抗の下流側
の第2の端子と同じ電圧値を得ることができる。さら
に、前記のボルテージフォロアは、検出抵抗の上流側の
第1の端子に電源側の基準ラインが接続され、ここから
電力供給を受けて動作する。そこで、電源側の基準ライ
ンとボルテージフォロアの出力端子との電圧は、検出抵
抗の両端子電圧に等しくなる。この等しい電圧を接地側
を基準とする電圧に変換回路により変換するようにして
いるので、検出抵抗の電圧を実質的にそのままあるいは
所定の比率で検出電圧として得ることができる。しか
も、この場合の抵抗を有する変換回路は、通常、1個
か、多くても2個程度の抵抗を有する回路で済むので、
抵抗のばらつきによる製品ごとの充電電流検出値のばら
つきを抑えることができる。
As described above, according to the present invention,
By providing the voltage follower, the same voltage value as that of the second terminal on the downstream side of the detection resistor for detecting the charging current value can be obtained as the output voltage of the voltage follower. Further, the voltage follower is connected to the first terminal on the upstream side of the detection resistor and connected to the power supply side reference line, and operates by receiving power supply therefrom. Therefore, the voltage between the power supply-side reference line and the output terminal of the voltage follower becomes equal to the voltage at both terminals of the detection resistor. Since this equal voltage is converted into a voltage with the ground side as a reference by the conversion circuit, the voltage of the detection resistor can be obtained as a detection voltage substantially as it is or at a predetermined ratio. In addition, the conversion circuit having the resistance in this case usually requires only one or at most about two resistance circuits.
Variations in the detected charging current for each product due to variations in resistance can be suppressed.

【0008】[0008]

【実施例】図1は、この発明の電池充電回路を適用した
一実施例の充電電流検出回路を中心とする回路図であ
る。なお、図2と同一の構成要素は同一の符号で示して
ある。そこで、それの説明を割愛する。図1の電池充電
装置10は、充電電流検出回路9を有している。その他
の構成は、図2と同様である。充電電流検出回路9は、
差動増幅器11とエミッタフォロア12とで構成され、
さらにエミッタフォロア12の出力を全帰還させること
でこれらにより回路全体としてボルテージフォロアが形
成されている。さらに、このボルテージフォロアの電源
側基準ライン+Vcが検出抵抗Rの上流側の端子6に接
続されて電力供給を充電電流供給回路2側から受ける。
そして、エミッタフォロア12の信号出力の基準ライン
がグランドGNDではなく、電源側基準ライン+Vcに
なっている。
FIG. 1 is a circuit diagram mainly showing a charging current detecting circuit according to an embodiment to which a battery charging circuit of the present invention is applied. The same components as those in FIG. 2 are denoted by the same reference numerals. Therefore, explanation of it is omitted. The battery charging device 10 of FIG. 1 has a charging current detection circuit 9. Other configurations are the same as those in FIG. The charging current detection circuit 9
It is composed of a differential amplifier 11 and an emitter follower 12,
Further, by completely feeding back the output of the emitter follower 12, a voltage follower is formed as a whole circuit by these. Further, the power supply side reference line + Vc of this voltage follower is connected to the terminal 6 on the upstream side of the detection resistor R, and receives power supply from the charging current supply circuit 2 side.
The reference line for the signal output of the emitter follower 12 is not the ground GND but the power supply side reference line + Vc.

【0009】差動増幅回路11は、NPN型の差動トラ
ンジスタQ4,Q5と、トランジスタQ4,Q5の上流側で
電源側基準ライン+Vcとの間に設けられたカレントミ
ラー接続のアクティブ負荷のPNP型トランジスタQ
6,Q7、トランジスタQ4,Q5の共通エミッタとグラン
ドGND間に設けられた抵抗Raとを有している。その
出力は、トランジスタQ7とトランジスタQ4のコレクタ
の接続点より取り出され、エミッタフォロア12のトラ
ンジスタQ1のベースに送出される。なお、トランジス
タQ4,Q5のコレクタ間を接続するコンデンサCは、ノ
イズキャンセル用のコンデンサである。
A differential amplifier circuit 11 is a PNP type of a current mirror-connected active load provided between an NPN type differential transistor Q4, Q5 and a power supply side reference line + Vc upstream of the transistor Q4, Q5. Transistor Q
6, Q7, a resistor Ra provided between the common emitter of the transistors Q4 and Q5 and the ground GND. The output is taken out from the connection point between the collectors of the transistors Q7 and Q4 and sent to the base of the transistor Q1 of the emitter follower 12. The capacitor C connecting the collectors of the transistors Q4 and Q5 is a noise canceling capacitor.

【0010】この差動増幅回路11には、さらに、微小
電流増幅回路としてトランジスタQ4の前段にトランジ
スタQ2が設けられていて、トランジスタQ2のベース
は、検出抵抗Rの電池3の充電側端子となる端子7に接
続され、そのコレクタは、電源側基準ライン+Vcに接
続され、そのエミッタは、抵抗Rbを介してグランドG
NDに接続され、さらにこのエミッタがトランジスタQ
4のベースに接続されている。また、このトランジスタ
Q2と対称となるように、トランジスタQ5の前段にトラ
ンジスタQ3が設けられている。トランジスタQ3のベー
スは、エミッタフォロアのトランジスタQ2のエミッタ
側の負荷抵抗R5の出力側に接続され、そのコレクタ
は、電源側基準ライン+Vcに接続され、そのエミッタ
は、抵抗Rcを介してグランドGNDに接続され、さら
にこのエミッタがトランジスタQ5のベースに接続され
ている。なお、以上において、差動増幅回路11のグラ
ンドGND側の抵抗Raをはじめとして、抵抗Rb,R
cは、それぞれ定電流源であってもよい。
In the differential amplifier circuit 11, a transistor Q2 is provided in front of the transistor Q4 as a minute current amplifier circuit, and the base of the transistor Q2 is a terminal of the detection resistor R on the charging side of the battery 3. The collector is connected to the terminal 7, the collector is connected to the power supply side reference line + Vc, and the emitter is connected to the ground G via the resistor Rb.
ND, and this emitter is connected to the transistor Q
Connected to the base of 4. Further, a transistor Q3 is provided before the transistor Q5 so as to be symmetric with the transistor Q2. The base of the transistor Q3 is connected to the output side of the load resistor R5 on the emitter side of the transistor Q2 of the emitter follower, the collector is connected to the power supply side reference line + Vc, and the emitter is connected to the ground GND via the resistor Rc. And the emitter is connected to the base of transistor Q5. In the above description, the resistors Rb and Rb, including the resistor Ra on the ground GND side of the differential amplifier circuit 11
c may each be a constant current source.

【0011】先に説明したように、電源側基準ライン+
Vcは、検出抵抗Rの充電電流供給回路2の出力側に接
続された端子6に接続されている。エミッタフォロア1
2は、そのエミッタが負荷抵抗R5を介して電源側基準
ライン+Vcに接続され、そのコレクタは、抵抗R6を介
してグランドGNDに接続されている。そして、これの
エミッタがトランジスタQ3のベースに接続されること
でエミッタ側出力が差動増幅器11に全帰還されてい
る。これにより、トランジスタQ2のベース電圧と同じ
電圧がトランジスタQ3のベース電圧に発生し、負荷抵
抗R5に発生する出力電圧は、検出抵抗Rの端子7の電
圧に追従してそれに等しくなる。しかも、電源側基準ラ
イン+Vcが端子6に接続されていことから、検出抵抗
Rの両端子6,7の電圧V1とV2と同じ電圧を電源側基
準ライン+Vcと抵抗R5のエミッタ側端子に得ることが
できる。もちろん、この場合に、充電電流検出回路9へ
の電力の供給は、電池3と同様に、充電電流供給回路2
から充電電流検出用抵抗Rの端子6を介して受けること
になる。
As described above, the power supply-side reference line +
Vc is connected to a terminal 6 connected to the output side of the charging current supply circuit 2 of the detection resistor R. Emitter follower 1
Reference numeral 2 denotes an emitter connected to the power supply-side reference line + Vc via a load resistor R5, and a collector connected to the ground GND via a resistor R6. The emitter is connected to the base of the transistor Q3, so that the output on the emitter side is fully fed back to the differential amplifier 11. As a result, the same voltage as the base voltage of the transistor Q2 is generated at the base voltage of the transistor Q3, and the output voltage generated at the load resistor R5 follows the voltage at the terminal 7 of the detection resistor R and becomes equal thereto. In addition, since the power supply side reference line + Vc is connected to the terminal 6, the same voltage as the voltages V1 and V2 of the terminals 6 and 7 of the detection resistor R is obtained at the power supply side reference line + Vc and the emitter side terminal of the resistor R5. Can be. Of course, in this case, power is supplied to the charging current detection circuit 9 in the same manner as the battery 3.
Through the terminal 6 of the charging current detection resistor R.

【0012】前記の電圧V1とV2と同じ電圧が発生する
抵抗R5の端子電圧は、この抵抗R5に流れる電流により
検出される。したがって、この電流が流れる抵抗R6の
電圧は、前記の電圧V1とV2の差に対応する電圧とな
る。この抵抗R6の端子電圧はグランドGND側が基準
となる電圧値である。すなわち、このときのエミッタフ
ォロア12は、コレクタ側に接続された抵抗R6により
検出電圧をグランドGND側を基準とした電圧値に変換
する。このとき、検出電圧は、抵抗R5と抵抗R6の抵抗
値の比率に応じた電圧値として取り出される。これが充
電電流検出回路9の出力電圧Voになり、A/D変換回
路5に出力される。このとき、この検出電圧のばらつき
は、2つの抵抗値R5,R6のばらつきにより決定され
る。しかも、比率で取り出される関係で、抵抗R5,R6
を同時に集積化すると、結果的には、抵抗R5のばらつ
きに多少加えた程度まで検出電圧のばらつきが抑えら
れ、実質的に1個程度の抵抗値のばらつきまで検出電流
値のばらつきを抑え込むことができる。
The terminal voltage of the resistor R5 at which the same voltage as the voltages V1 and V2 is generated is detected by the current flowing through the resistor R5. Therefore, the voltage of the resistor R6 through which this current flows is a voltage corresponding to the difference between the voltages V1 and V2. The terminal voltage of the resistor R6 is a voltage value with the ground GND side as a reference. That is, the emitter follower 12 at this time converts the detection voltage into a voltage value based on the ground GND by the resistor R6 connected to the collector. At this time, the detection voltage is extracted as a voltage value according to the ratio of the resistance values of the resistors R5 and R6. This becomes the output voltage Vo of the charging current detection circuit 9 and is output to the A / D conversion circuit 5. At this time, the variation of the detection voltage is determined by the variation of the two resistance values R5 and R6. In addition, the resistances R5, R6
At the same time, as a result, the variation in the detection voltage can be suppressed to a degree that is slightly added to the variation in the resistance R5, and the variation in the detection current value can be suppressed to substantially the variation in the resistance value of about one. it can.

【0013】なお、この充電電流検出回路9以外の各回
路は、図2に示す各回路と同一の構成になっているの
で、充電検出の全体的な動作についての説明は割愛す
る。ところで、この実施例でのエミッタフォロアは、全
帰還アンプのボルテージフォロアの出力電圧と電源側基
準ラインの電圧との電位差に応じた電流値を発生する回
路になっている。この電流値をコレクタ側の抵抗により
グランド側を基準とした電圧値に変換している。
Since the circuits other than the charging current detection circuit 9 have the same configuration as the respective circuits shown in FIG. 2, the description of the overall operation of the charging detection is omitted. The emitter follower in this embodiment is a circuit that generates a current value according to the potential difference between the output voltage of the voltage follower of the full feedback amplifier and the voltage of the power supply-side reference line. This current value is converted to a voltage value with reference to the ground side by a resistor on the collector side.

【0014】以上説明してきたが、この実施例では、エ
ミッタフォロアの出力段を入力段側に全帰還させて負荷
抵抗を有する変換回路と全帰還アンプとを同時に構成し
てボルテージフォロアと変換回路を形成しているが、こ
の発明は、このような構成に限定されるものではなく、
ボルテージフォロアの出力と電源側基準ラインとの電位
差に応じた電流値をグランド側を基準とする電圧値に変
換する抵抗を有する変換回路であればどのような回路で
あってもよい。
As described above, in this embodiment, the output stage of the emitter follower is fully fed back to the input stage side, and a conversion circuit having a load resistance and an all feedback amplifier are simultaneously configured to form a voltage follower and a conversion circuit. However, the present invention is not limited to such a configuration,
Any circuit may be used as long as it has a resistor for converting a current value corresponding to the potential difference between the output of the voltage follower and the power supply-side reference line into a voltage value based on the ground side.

【0015】[0015]

【発明の効果】以上の説明から理解できるように、この
発明にあっては、検出抵抗の上流側の第1の端子に電源
側の基準ラインが接続されたボルテージフォロアを設け
ることで、このボルテージフォロアの出力電圧として充
電電流値の検出抵抗の下流側の第2の端子と同じ電圧値
を得て、さらに、検出抵抗の両端子電圧に等しくなる電
圧を得るようにしている。そして、この等しい電圧を接
地側を基準とする電圧に変換回路により変換するように
しているので、検出抵抗の電圧を実質的にそのままある
いは所定の比率で検出電圧として得ることができる。し
かも、この場合の抵抗を有する変換回路は、通常、1個
か、多くても2個程度の抵抗を有する回路で済むので、
抵抗のばらつきによる製品ごとの充電電流検出値のばら
つきを抑えることができる。その結果、製品ごとに検出
充電電流のばらつきを抑えられ、適正充電が確保できる
チウム・イオン蓄電池等の蓄電池充電回路および電池充
電装置が実現できる。
As can be understood from the above description, according to the present invention, a voltage follower in which a reference line on the power supply side is connected to the first terminal on the upstream side of the detection resistor is provided. As the output voltage of the follower, the same voltage value as that of the second terminal on the downstream side of the detection resistor of the charging current value is obtained, and further, a voltage equal to the voltage of both terminals of the detection resistor is obtained. Then, since the equal voltage is converted by the conversion circuit into a voltage with respect to the ground side, the voltage of the detection resistor can be obtained as a detection voltage substantially as it is or at a predetermined ratio. In addition, the conversion circuit having the resistance in this case usually requires only one or at most about two resistance circuits.
Variations in the detected charging current for each product due to variations in resistance can be suppressed. As a result, a variation in the detected charging current for each product can be suppressed, and a storage battery charging circuit and a battery charging device such as a titanium-ion storage battery that can ensure proper charging can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は、この発明の電池充電回路を適用した一
実施例の充電電流検出回路を中心とする回路図である。
FIG. 1 is a circuit diagram mainly showing a charging current detection circuit of one embodiment to which a battery charging circuit of the present invention is applied.

【図2】図2に、このような従来の電池充電回路のブロ
ック図である。
FIG. 2 is a block diagram of such a conventional battery charging circuit.

【符号の説明】[Explanation of symbols]

1…コントロール回路、2…充電電流供給回路、3…蓄
電池、4,9…充電電流検出回路、5…A/D変換回
路、6,7…端子、8,10…電池充電装置、11…差
動増幅回路、12…エミッタフォロア、Q1〜Q7…トラ
ンジスタ。
DESCRIPTION OF SYMBOLS 1 ... Control circuit, 2 ... Charge current supply circuit, 3 ... Storage battery, 4, 9 ... Charge current detection circuit, 5 ... A / D conversion circuit, 6,7 ... Terminal, 8,10 ... Battery charger, 11 ... Difference Dynamic amplifier circuit, 12: emitter follower, Q1 to Q7: transistor.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】所定の電流を蓄電池に充電電流値検出用の
抵抗を介して供給する充電電流供給回路と充電電流の検
出回路とを備え、前記検出回路は、前記抵抗の前記充電
電流供給回路側の第1の端子に電源側の基準ラインが接
続されて電力供給を受けて動作しかつ前記抵抗の前記蓄
電池側の第2の端子に入力端子が接続されたボルテージ
フォロアと、前記基準ラインと前記ボルテージフォロア
の出力との電位差に応じた電流値を受けて接地側の基準
ラインを基準とした電圧信号に変換する抵抗を有する変
換回路とからなる蓄電池充電回路。
1. A charge current supply circuit for supplying a predetermined current to a storage battery via a resistor for detecting a charge current value, and a charge current detection circuit, wherein the detection circuit comprises a charge current supply circuit for the resistor. A voltage follower having a power supply side reference line connected to a first terminal on the power supply side, receiving power supply and operating, and an input terminal connected to a second terminal on the storage battery side of the resistor; and A conversion circuit having a resistor for receiving a current value corresponding to a potential difference from an output of the voltage follower and converting the current value into a voltage signal based on a ground-side reference line.
【請求項2】前記ボルテージフォロアは、前記第2の端
子からの電圧信号に応じた信号を一方の入力に受ける差
動増幅回路とこの差動増幅回路の出力を受けて前記電源
側の基準ラインを基準として動作するエミッタフォロア
とを有し、このエミッタフォロアの出力が前記差動増幅
器の他方の入力に全帰還され、前記変換回路は、このエ
ミッタフォロアとこれのコレクタ側と前記接地側基準ラ
インとの間に設けられた前記電圧信号に変換する抵抗に
より形成される請求項2記載の蓄電池充電回路。
2. The voltage follower according to claim 1, wherein the voltage follower has a differential amplifier circuit receiving a signal corresponding to a voltage signal from the second terminal at one input, and a reference line on the power supply side receiving an output of the differential amplifier circuit. The output of the emitter follower is fully fed back to the other input of the differential amplifier, and the conversion circuit includes the emitter follower, its collector side, and the ground side reference line. 3. The storage battery charging circuit according to claim 2, wherein the storage battery charging circuit is formed by a resistor that converts the voltage signal and that is provided between the two.
【請求項3】所定の電流を蓄電池に充電電流値検出用の
抵抗を介して供給する充電電流供給回路と充電電流の検
出回路とこの検出回路から出力される検出電圧信号をA
/D変換するA/D変換回路と、このA/D変換回路に
よりA/D変換されたデジタル値を受けて前記充電電流
供給回路を動作を停止させる制御するコントロール回路
とを備えていて、前記検出回路は、前記抵抗の前記充電
電流供給回路側の第1の端子に電源側の基準ラインが接
続されて電力供給を受けて動作しかつ前記抵抗の前記蓄
電池側の第2の端子に入力端子が接続されたボルテージ
フォロアと、前記基準ラインと前記ボルテージフォロア
の出力との電位差に応じた電流値を受けて接地側の基準
ラインを基準とした電圧信号に変換して前記検出電圧信
号を発生する抵抗を有する変換回路とからなる電池充電
装置。
3. A charging current supply circuit for supplying a predetermined current to a storage battery through a resistor for detecting a charging current value, a charging current detection circuit, and a detection voltage signal output from the detection circuit.
An A / D conversion circuit for performing A / D conversion, and a control circuit that receives the digital value A / D converted by the A / D conversion circuit and controls the charging current supply circuit to stop operation. A detection circuit is connected to a first terminal on the charging current supply circuit side of the resistor, a reference line on a power supply side is connected to the power supply, operates and receives an input terminal on a second terminal of the resistor on the storage battery side. And a current follower connected to the voltage follower, and a current value corresponding to a potential difference between the reference line and the output of the voltage follower, and converted into a voltage signal based on a ground-side reference line to generate the detection voltage signal. A battery charger comprising a conversion circuit having resistance.
【請求項4】前記ボルテージフォロアは、前記第2の端
子からの電圧信号に応じた信号を一方の入力に受ける差
動増幅回路とこの差動増幅回路の出力を受けて前記電源
側の基準ラインを基準として動作するエミッタフォロア
とを有し、このエミッタフォロアの出力が前記差動増幅
器の他方の入力に全帰還され、前記変換回路は、このエ
ミッタフォロアとこれのコレクタ側と前記接地側基準ラ
インとの間に設けられた前記電圧信号に変換する抵抗に
より形成される請求項3記載の電池充電装置。
4. The voltage follower includes: a differential amplifier circuit receiving a signal corresponding to a voltage signal from the second terminal at one input; and a reference line on the power supply side receiving an output of the differential amplifier circuit. The output of the emitter follower is fully fed back to the other input of the differential amplifier, and the conversion circuit includes the emitter follower, its collector side, and the ground side reference line. The battery charging device according to claim 3, wherein the battery charging device is formed by a resistor provided between the first and second terminals for converting the voltage signal.
JP33942097A 1997-11-25 1997-11-25 Battery charging circuit and battery charger Expired - Fee Related JP3180188B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP33942097A JP3180188B2 (en) 1997-11-25 1997-11-25 Battery charging circuit and battery charger
GB9825419A GB2331639B (en) 1997-11-25 1998-11-19 Battery charging circuit and battery charging device
CN98123026A CN1089959C (en) 1997-11-25 1998-11-25 Battery charging circuit and battery charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33942097A JP3180188B2 (en) 1997-11-25 1997-11-25 Battery charging circuit and battery charger

Publications (2)

Publication Number Publication Date
JPH11164492A true JPH11164492A (en) 1999-06-18
JP3180188B2 JP3180188B2 (en) 2001-06-25

Family

ID=18327310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33942097A Expired - Fee Related JP3180188B2 (en) 1997-11-25 1997-11-25 Battery charging circuit and battery charger

Country Status (3)

Country Link
JP (1) JP3180188B2 (en)
CN (1) CN1089959C (en)
GB (1) GB2331639B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8493035B2 (en) 2004-09-29 2013-07-23 St-Ericsson Sa Charging method and circuit using indirect current sensing
US7598710B2 (en) * 2006-12-08 2009-10-06 Monolithic Power Systems, Inc. Battery charger with temperature control
CN103475317A (en) * 2013-09-10 2013-12-25 昆山奥德鲁自动化技术有限公司 Negative feedback amplifying circuit

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01313783A (en) * 1988-06-14 1989-12-19 Philips Kk Measuring circuit for capacity of battery
JP2593253B2 (en) * 1991-05-29 1997-03-26 富士通株式会社 Current measurement circuit

Also Published As

Publication number Publication date
GB9825419D0 (en) 1999-01-13
CN1089959C (en) 2002-08-28
JP3180188B2 (en) 2001-06-25
GB2331639A (en) 1999-05-26
GB2331639B (en) 2001-10-10
CN1218322A (en) 1999-06-02

Similar Documents

Publication Publication Date Title
US5627494A (en) High side current sense amplifier
US20090058369A1 (en) Battery charging circuit
JP3270327B2 (en) Overcharge / discharge detection circuit
JP2008216270A (en) Current detection circuit
WO1998009361A1 (en) Power supply
CA1220520A (en) Regulated dc power supply
JPH0232722A (en) Power source equipment
JP3920371B2 (en) Charging device, current detection circuit, and voltage detection circuit
JP3180188B2 (en) Battery charging circuit and battery charger
JP3177955B2 (en) Rechargeable battery charging method and charging system
JPH06284594A (en) Chargeable power supply apparatus
JP3203533B2 (en) Battery pack charging device
US5777456A (en) NiCad deep cycle charging/discharging system
JP2730500B2 (en) Charging device
JPH053634A (en) Battery charging and discharging circuit
JP3760764B2 (en) Voltage detection circuit
JP3103135B2 (en) Battery current detection circuit
JP3747398B2 (en) Charge / discharge device
JPH08214467A (en) Secondary battery charging circuit
JP2632291B2 (en) Battery charger test method
JPH09285033A (en) Charging control circuit of secondary battery
JP2002152983A (en) Charger
JP3510666B2 (en) Charging circuit
JPH11289684A (en) Charging control circuit
JPH0265631A (en) Battery recharge detecting circuit

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100420

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110420

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120420

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees